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Abstract: Background: Graf’s method is currently the most commonly used ultrasound-based
technique for the diagnosis of developmental dysplasia of the hip (DDH). However, the efficiency
and accuracy of diagnosis are highly affected by the sonographers’ qualification and the time and
effort expended, which has a significant intra- and inter-observer variability. Methods: Aiming to
minimize the manual intervention in the diagnosis process, we developed a deep learning-based
computer-aided framework for the DDH diagnosis, which can perform fully automated standard
plane detection and angle measurement for Graf type I and type II hips. The proposed framework
is composed of three modules: an anatomical structure detection module, a standard plane scoring
module, and an angle measurement module. This framework can be applied to two common
clinical scenarios. The first is the static mode, measurement and classification are performed directly
based on the given standard plane. The second is the dynamic mode, where a standard plane from
ultrasound video is first determined, and measurement and classification are then completed. To
the best of our knowledge, our proposed framework is the first CAD method that can automatically
perform the entire measurement process of Graf’s method. Results: In our experiments, 1051 US
images and 289 US videos of Graf type I and type II hips were used to evaluate the performance
of the proposed framework. In static mode, the mean absolute error of α, β angles are 1.71◦ and
2.40◦, and the classification accuracy is 94.71%. In dynamic mode, the mean absolute error of α, β
angles are 1.97◦ and 2.53◦, the classification accuracy is 89.51%, and the running speed is 31 fps.
Conclusions: Experimental results demonstrate that our fully automated framework can accurately
perform standard plane detection and angle measurement of an infant’s hip at a fast speed, showing
great potential for clinical application.

Keywords: developmental dysplasia of the hip (DDH); ultrasound image; standard plane detection;
computer-aided diagnosis; deep learning

1. Introduction

Developmental dysplasia of the hip (DDH) is one of the most common disorders seen in
infants, and its incidence ranges from about 0.1% to 3% depending on the population [1–3].
This condition represents a spectrum of mild dysplasia, to subluxation, to dislocation
of the hip joint. The pathogenesis of DDH is multifactorial, involving both genetic and
intrauterine factors [4]. The importance of identifying and treating DDH in the early stage
is globally accepted, and research found that the incidence of late-diagnosed hip dislocation
decreased from 0.9 to 0.12 per 1000 live births following an introduction of a screening
program [5]. The treatment of DDH includes dynamic splinting and static splinting [6],
and the Pavlik harness is the most popular one in early treatment, with the success rate
ranging from 50% to 96% [7,8]. Left untreated, DDH may lead to serious consequences
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for patients, impacting their whole life. It is reported that DDH accounts for 10~15%
of hip replacements in patients under 50 years of age [9]. Due to its ability to visualize
cartilaginous hip structures and its advantages of providing real-time imaging and being
non-ionizing radiation, non-invasiveness, and low cost, 2D ultrasound has become the
gold standard technique for early diagnosis of DDH [10].

Graf’s method [11,12] is the most common 2D US-based DDH analysis used in clinical
practice, it can be summarized as two steps: (1) first, a standard plane from US video is
determined according to the shape and positional relationship of the ilium, bony rim, lower
limb of the os ilium, labrum, and other anatomical structures; (2) then, landmarks based on
the anatomical structures are identified, and the α, β angles are measured and the hip joint
is classified, as shown in Figure 1.

Diagnostics 2022, 12, x FOR PEER REVIEW 2 of 16 
 

 

success rate ranging from 50% to 96% [7,8]. Left untreated, DDH may lead to serious con-
sequences for patients, impacting their whole life. It is reported that DDH accounts for 
10~15% of hip replacements in patients under 50 years of age [9]. Due to its ability to vis-
ualize cartilaginous hip structures and its advantages of providing real-time imaging and 
being non-ionizing radiation, non-invasiveness, and low cost, 2D ultrasound has become 
the gold standard technique for early diagnosis of DDH [10]. 

Graf’s method [11,12] is the most common 2D US-based DDH analysis used in clini-
cal practice, it can be summarized as two steps: (1) first, a standard plane from US video 
is determined according to the shape and positional relationship of the ilium, bony rim, 
lower limb of the os ilium, labrum, and other anatomical structures; (2) then, landmarks 
based on the anatomical structures are identified, and the α, β angles are measured and 
the hip joint is classified, as shown in Figure 1. 

 
(a) (b) (c) 

Figure 1. Example of a hip joint US image and Graf’s method. (a) The anatomical structures in stand-
ard plane. (b) Four landmarks determined based on the anatomical structures, bony roof point (red 
dot), bony rim point (yellow dot), lower limb point (green dot), and the center of labrum (blue dot). 
(c) Measurement lines and α, β angles. First, the uppermost point of the cartilaginous roof (purple 
dot) must be sought. From this pivot at the uppermost point of the cartilaginous roof, the baseline 
(yellow dash line) is a tangent placed cranial to caudal along the echo of the ilium. The lower limb 
of the os ilium (green dot) is the pivot point, and the bony roof line (red dash line) is a tangent placed 
laterally from the pivot point just touching the bony roof (red dot). The cartilage roof line (blue dash 
line) is drawn from the bony rim (yellow dot) through the center of the labrum (blue dot). α is the 
angle between bony roof line and baseline, and β is the angle between cartilage roof line and base-
line. 
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sonographers’ qualifications [16]. To deal with these problems, a large number of com-
puter-aided diagnostic (CAD) methods have been proposed to reduce manual interven-
tion and improve the quality and efficiency of the DDH diagnostic process. As shown in 
Table 1, most of the CAD methods focused on one of the following steps in the Graf diag-
nosis process, such as the evaluation of the standard plane [17–23], the measurement of α 
and β [15,24–29], or the classification of hip dysplasia severity [30,31]. Due to their pow-
erful ability to hierarchically mine and utilize multi-level features, deep learning-based 
methods can generally bring more accurate and robust diagnostic results than conven-
tional traditional image processing-based methods. However, for all of the methods 
shown in Table 1, computer assistance is provided for only part of the process, so they are 
semi-automated diagnostics solutions in essence.  

Figure 1. Example of a hip joint US image and Graf’s method. (a) The anatomical structures in
standard plane. (b) Four landmarks determined based on the anatomical structures, bony roof point
(red dot), bony rim point (yellow dot), lower limb point (green dot), and the center of labrum (blue
dot). (c) Measurement lines and α, β angles. First, the uppermost point of the cartilaginous roof
(purple dot) must be sought. From this pivot at the uppermost point of the cartilaginous roof, the
baseline (yellow dash line) is a tangent placed cranial to caudal along the echo of the ilium. The lower
limb of the os ilium (green dot) is the pivot point, and the bony roof line (red dash line) is a tangent
placed laterally from the pivot point just touching the bony roof (red dot). The cartilage roof line
(blue dash line) is drawn from the bony rim (yellow dot) through the center of the labrum (blue dot).
α is the angle between bony roof line and baseline, and β is the angle between cartilage roof line
and baseline.

Although Graf’s method has been widely adopted clinically, there are still some
problems regarding its application and promotion: (1) the identification of tiny structures,
such as the bony rim point, is required in the process of standard plane selection, which
is laborious and time-consuming, and the results are also inaccurate and subjective [13].
(2) There is high intra- and inter-observer variability of angle measurement [14], where
the standard deviation may reach 3◦ for α and 6◦ for β, even when measured only by
experienced sonographers [15]. (3) Measurement accuracy is highly correlated with the
sonographers’ qualifications [16]. To deal with these problems, a large number of computer-
aided diagnostic (CAD) methods have been proposed to reduce manual intervention
and improve the quality and efficiency of the DDH diagnostic process. As shown in
Table 1, most of the CAD methods focused on one of the following steps in the Graf
diagnosis process, such as the evaluation of the standard plane [17–23], the measurement
of α and β [15,24–29], or the classification of hip dysplasia severity [30,31]. Due to their
powerful ability to hierarchically mine and utilize multi-level features, deep learning-based
methods can generally bring more accurate and robust diagnostic results than conventional
traditional image processing-based methods. However, for all of the methods shown in
Table 1, computer assistance is provided for only part of the process, so they are semi-
automated diagnostics solutions in essence.
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Table 1. Brief presentation of existing CAD methods for the diagnosis of DDH.

Aim Type of CAD Author Year Algorithm Applicable Data

Standard
Plane

Evaluation

Conventional CAD
Quader et al. [17] 2021 random forest classifier 3D volume

Hareendranathan et al. [18] 2021 manual method 2D standard plane

Deep
Learning-based

CAD

Paserin et al. [19,20] 2017 CNN 3D volume

Paserin et al. [21] 2018 LSTM 3D volume

El-Hariri et al. [22] 2021 3D U-Net 3D volume

Liu et al. [23] 2021 NHBS-Net 2D standard plane

Angle
Measurement

Conventional CAD

Quader et al. [15] 2017 morphological and
geometric features

2D standard plane

Quader et al. [17] 2021 3D volume

Sezer et al. [24] 2019 level set 2D standard plane

Deep
Learning-based

CAD

Golan et al. [25] 2016 FCN 2D standard plane

Hareendranathan et al. [26] 2016 CNN 2D standard plane

El-Hariri et al. [27] 2019 2D U-Net 2D standard plane

Hu et al. [28] 2021 multi-head Mask
R-CNN 2D standard plane

Lee et al. [29] 2021 Mask R-CNN + FCN 2D standard plane

Graf Type
Classification

Deep
Learning-based

CAD

Sezer et al. [30] 2020 CNN 2D standard plane

Gong et al. [31] 2021 DNN + random forest
classifier 2D standard plane

In this study, aiming to minimize the manual intervention in the diagnosis process, we
developed a deep learning-based computer-aided framework for the DDH diagnosis, and
it can perform fully automated standard plane detection and angle measurement for Graf
type I and type II hips. The framework is composed of three novel modules: an anatomical
structure detection module, a standard plane scoring module, and an angle measurement
module. These modules utilize the deep object detection algorithm and traditional image
processing technology. The proposed framework can run in two modes. In static mea-
surement mode, our framework directly performs accurate angle measurement based on
the standard planes given by sonographers, which is the most common paradigm of the
current CAD methods. Furthermore, we innovatively support the dynamic measurement
mode for the first time, and in this mode, our framework can automatically perform the
two steps of Graf’s method without any manual intervention. First, each frame of the
video is quantitatively evaluated according to the visibility, shape, and relative position of
anatomical structures, and the frame with the highest score is then selected as the standard
plane. Second, the α, β angles are automatically measured based on the selected plane. The
framework can also report the Graf type (type I or type II) of the hip according to the α

angle in both measurement modes. To the best of our knowledge, our proposed framework
is the first CAD method that can automatically perform the entire measurement process of
Graf’s method.

2. Materials and Methods
2.1. Data Acquisition

This study was approved by the ethics committee of Beijing Jishuitan Hospital (proto-
col code 201805-09). To ensure the quality of data, the sonograms were obtained by two
qualified and certified sonographers with 7–10 years of experience in infant hip screening.
Both of them had attended a hip ultrasonography course given by Professor Graf. The
exclusion criteria were as follows: (1) the infant twisted or did not cooperate; (2) US data
with infant hip dysplasia caused by purulent hip arthritis, joint contractures, cerebral palsy,
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and other diseases were excluded; (3) US data of patients with other hip joint diseases and
limb deformities were excluded; (4) US data with infant hips of Graf type D, type III, and
type IV were excluded. From June 2019 to May 2020, they collected 2223 US images of
Graf’s standard plane (1729 Graf type I and 494 Graf type II) and 289 US videos (238 Graf
type I and 51 Graf type II) from 1341 infants. US images were collected from each infant,
and US videos were collected from 173 infants. The life ages of the infants ranged from 0
to 6 months when they had the DDH ultrasound examination. The minimum age of the
infants was 3 days, the maximum age was 168 days, and the median age was 87 days. A
total of 510 infants (38.03%) are male, and the rest 831 infants (61.97%) are female. All US
images or videos were captured by the Mindray Resona 7 ultrasound system with an L9-3U
3~9 MHz linear array transducer. For each US video, one sonographer first selected and
saved a US image of Graf’s standard plane, and the image was then reviewed by the other
sonographer. For each US image, one sonographer first annotated the bounding boxes of
ilium, labrum, bony rim, and lower limb of the os ilium, then measured α, β angle with
integer values according to Graf’s method, and finally confirmed the Graf type of hip joint.
The results were also reviewed by the other sonographer. Both sonographers agreed with
the final results in all cases.

2.2. The Fully Automated DDH Diagnosis Framework

We developed a deep learning-based computer-aided framework for the DDH diagno-
sis, and it can perform fully automated standard plane detection and angle measurement
for Graf type I and type II hips. This framework utilizes deep object detection algorithm
and traditional image processing technology and is composed of three modules: an anatom-
ical structure detection module (ASDM), a standard plane scoring module (SPSM), and
an angle measurement module (AMM). Figure 2 shows the framework architecture. The
proposed framework can work in two modes, static measurement mode, and dynamic
measurement mode, and the detailed procedures of each mode are described below:

• Static measurement mode (SM mode): Based on the standard plane US image selected
by sonographer, ASDM is first used to detect four key anatomical structures in this
image: ilium, labrum, bony rim, and lower limb of the os ilium. AMM is then used to
generate landmarks followed by measurement of α, β angles.

• Dynamic measurement mode (DM mode): ASDM is first used to detect the four key
anatomical structures in each frame of a hip US video, and SPSM is then used to
quantify the quality of each frame according to the scoring formula we designed, and
finally, AMM is used to measure α, β angles of the highest-scoring frame.
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2.2.1. Anatomical Structure Detection Module

YOLOv3-tiny [32] is the main part of the anatomical structure detection module
(ASDM). It is a lightweight one-stage object detection network exhibiting an excellent
balance between inference speed and accuracy. Figure 3 shows the architecture of YOLOv3-
tiny, which is composed of one backbone network and two branch networks. The backbone
is built with 7 convolutional layers and 6 pooling layers and is used to extract features
from the input image. Branch1 and branch2 are connected to conv5 and conv7, respectively,
they implement object detection at 1/16 and 1/32 spatial scales. The output of the entire
network is the summary of branch1 and branch2 results. There are two advantages of the
dual-branch and multi-scale network design. First, it enhances the ability of the network to
detect objects of different scales in the same image. Second, it increases the robustness of
network when dealing with US images of different magnification factors.
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Figure 3. Overview of the YOLOv3-tiny network.

In this study, the input of network is hip US images of size 416 × 416, and the output
is the coordinate information and confidence score of four bounding boxes. The four
bounding boxes each cover ilium, labrum, bony rim, and lower limb of the os ilium, which
are the essential anatomical structures for standard plane detection and angle measurement.
A large number of standard plane images of hips, which were annotated and reviewed by
experienced sonographers, were used to train the network. Thus, for the clearer anatomical
structure, the network will output a higher confidence score, and for the unclear or invisible
anatomical structure in the non-standard plane, the network will output a lower confidence
score, as shown in Figure 4. The confidence scores can represent the standard level of
a plane to a certain extent. From the raw network output, the ASDM will filter out the
bounding boxes with the highest score in each category as the final result. The relative
position between these bounding boxes will also be checked by ASDM to ensure it is
consistent with the clinical practice such that the result can be used in the subsequent
scoring and measurement process.
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Figure 4. The network detection results. (a) Graf’s standard planes, where the anatomical structures
are clear and visible for recognition, and can be accurately localized by the network, so they have
high confidence scores. (b,c) Non-standard planes with unclear structures and low confidence scores.
The lower limb of the os ilium cannot be recognized in (c), and thus the confidence score is 0.

2.2.2. Standard Plane Scoring Module

Standard planes which meet Graf’s criteria are the prerequisite for subsequent accurate
measurement and diagnosis. For this purpose, we proposed the standard plane scoring
module (SPSM). SPSM can quantitatively evaluate the standard level of each frame in US
video using the scoring formula in DM mode and can select the highest-scoring frame of
this video as the standard plane for subsequent tasks. Based on Graf’s method and other
clinical prior knowledge, the scoring formula is defined as:

S = λ1 · Slower limb + λ2 · Slabrum + λ3 · Sbony rim + λ4 · Silium, (1)

where S is the total score of a frame. Slower limb, Slabrum, Sbony rim, and Silium are scores for
the lower limb of the os ilium, labrum, bony rim, and ilium, respectively, and λ1 to λ4 are
the corresponding score weights. Graf’s method requires that the lower limb of os the
ilium, labrum, and ilium must be shown clearly in the standard plane. Additionally, we
add the evaluation of the bony rim because the bony rim point is one of the landmarks
used to determine the cartilage roof line, which means that the measurement of β angle is
directly affected by the quality of the bony rim.

The confidence score for each structure has a high reference value for standard plane
scoring task due to the high quality of training data and annotations. Thus, Slower limb,
Slabrum, and Sbony rim are assigned with the corresponding confidence scores, and we set
λ1 = 3, λ2 = 1, and λ3 = 1. There are three reasons that we make SPSM focus more on
lower limb of the os ilium than the other two anatomical structures. (1) In Graf’s method,
the lower limb of the os ilium must always be seen except in markedly decentered hip
joints, and no diagnosis should be made if it is not seen. (2) Due to its deepest location, the
visibility of lower limb of the os ilium is the most vulnerable to the depth of penetration of
the ultrasound probe. (3) The lower limb of the os ilium is associated with the measurement
of α angle, which is crucial to the classification of Graf’s types.

In the definition of Graf’s method, the straightness and tilt degree of ilium is critical
for determining the standard level of a plane, but it is difficult to obtain this information
by the confidence score only. Because the confidence score generally reflects more on
the visibility of the ilium in a plane. For this reason, we established a scoring formula
specifically for ilium:

Silium = λ5 · Scon f + λ6 · Shw + λ7 · Sangle, (2)
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where Scon f is the confidence score of ilium, Shw is the height–width ratio of the bounding
box of ilium, and Sangle is the angle score of ilium. λ5 to λ7 are the corresponding weights
of the above scores. As shown in Figure 5, Shw of a straight and vertical ilium is usually
larger because it occupies less space in the width dimension, while Shw of a non-vertical or
curved ilium is usually smaller. Therefore, it can be considered that, for different frames in
one video, frames where ilium has a larger height–width ratio may be closer to the standard
plane, and Shw is an indirect measure of the tilt degree of ilium by evaluating the shape of
the bounding box.
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In addition, the angle θ between ilium and the vertical direction is measured according
to image moment, which is a gray-scale distribution-based method [33]. The original box
is first expanded to ensure that the bounding box contains the entire ilium as much as
possible. We denote that the expanded box V is a rectangle region with I columns and J
rows, and the p + q order image moments Mpq can be expressed as follows:

Mpq = ∑
I

∑
J

ip · jq ·V(i, j), (3)

where p + q ∈ N. The coordinate of centroid is:

{xc, yc} =
{

M10

M00
,

M01

M00

}
, (4)

and the θ can be calculated from the centroid, the zero-order moment, and the second-
order moments:

a =
M20

M00
− x2

c , b =
M11

M00
− xc · yc, c =

M02

M00
− y2

c , (5)

θ =
1
2

arctan
(

2b
a− c

)
. (6)

The angle score is designed based on the angle, which is defined as follows:

Sangle = 1− |θ|/10. (7)

The angle score directly and quantitively models the tilt degree of ilium. According to
the definition, the more vertical the ilium is, the higher the angle score. Sangle reaches the
maximum value of 1 when θ is 0, and Sangle decreases accordingly to penalize Silium as θ
increases. Sangle will be negative if θ > 10◦, and this value of 10 can effectively deal with
the measurement error of θ caused by random noise in the ROI, while ensuring the quality
of the standard plane detection. The design of angle score can void the scoring system
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resulting in complete reliance on the deep learning network. We set λ5 = 0.2, λ6 = 0.3, and
λ7 = 0.5 according to their different importance in the process of ilium quality evaluation.

2.2.3. Angle Measurement Module

We use maximum entropy threshold segmentation [34] to acquire the anatomical
structures from the four bounding boxes’ output by ASDM. Then, gradient information
and clinical prior knowledge are utilized to identify landmarks in the structures. The four
landmarks are bony roof point, center of labrum, bony rim point, and lower limb point.
The baseline is the tangent of uppermost ilium. The bony roof line is formed by bony roof
point and lower limb point, and α is the angle between the bony roof line and baseline. The
cartilage roof line is formed by bony rim point and the center of labrum, and β is the angle
between the cartilage roof line and baseline.

2.3. Experiment Design

The training process of the YOLOv3-tiny requires only static US images, in order to
fully validate the performance of the proposed framework in DM mode, cases without
US videos were randomly selected to construct training (565 cases, 938 US images) and
validation (142 cases, 234 US images) sets. The remaining cases (634 cases, 1051 US images,
and all 289 US videos) were used as the test set. Data augmentation was performed
to expand the size of training set and improve the diversity of training data. The data
augmentation operations include random scaling, random rotation, and Gaussian noise.
There is a total of 19,698 images in the final training set.

The network was initialized using ImageNet [35] pre-trained weights, and the training
process takes 30 epochs in total. The ADAM optimizer [36] was used with a learning rate of
1 × 10−4 and weight decay of 5 × 10−4. We saved the weights and validated the detection
performance of the network at the end of each epoch. We used an early stopping strategy
to determine which was the best performance model for subsequent tasks.

We statistically analyzed the experimental results of the proposed framework in SM
mode and DM mode. The software used was SPSS Statistics version 26 (IBM, Armonk,
NY, USA). To validate the angle measurement performance of the framework, we used the
standard deviation and mean absolute error (MAE) of the angle differences between the
framework and sonographers to quantify the interobserver differences, and the intraclass
correlation coefficient (ICC) and Bland–Altman plot were used to evaluate their agreement.
The classification agreement rate (accuracy) and Cohen’s kappa coefficient were used to
validate the classification performance of the framework.

3. Results
3.1. Statistical Results of Static Measurement Mode

A total of 1051 standard plane US images in the test set, including 798 type I hips
and 253 type II hips, were used to test the measurement and classification performance of
the proposed framework in SM mode. As summarized in Table 2, the standard deviation
of the difference between SM mode and sonographers of α, β angles are 1.79◦ and 2.97◦,
respectively. The MAE of α, β angles are 1.71◦ and 2.40◦. The ICCs of α, β angles are 0.85
and 0.73, respectively, both revealing good agreement. According to the Bland–Altman
plots shown in Figure 6, the measurement results of α and β are symmetrically distributed
around the reference line, and 95.46% and 96.29% of the measurement results of α and
β, respectively, are within the limits of agreement. The classification accuracy of the
SM Mode is 94.71%. Cohen’s kappa coefficient is 0.85, which shows good agreement.
Figure 7 shows a comparison of some typical measurement results of the SM mode and
the sonographers.
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Table 2. Comparison of angle measurement between SM mode and sonographers.

Sonographers Framework
(SM Mode)

Framework-
Sonographer MAE ICC (95% CI) Agreement

α 60.94 ± 3.54 61.88 ± 4.08 1.09 ± 1.79 1.71 0.85 (0.84~0.87) Good (>0.7)

β 61.57 ± 3.82 62.20 ± 4.26 0.44 ± 2.97 2.40 0.73 (0.70~0.76) Good (>0.7)
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Figure 7. Qualitative comparisons for the angle measurement between the SM mode and the sono-
graphers. The white dash lines are the manual plot in clinic. The green lines are formed by the
SM mode based on the detected bounding boxes. The white values are given by sonographers,
and the green values are given by the SM mode. The absolute differences between SM mode and
sonographers are (a) ∆α = 0.26◦, ∆β = 0.35◦; (b) ∆α = 0.31◦, ∆β = 1.91◦; (c) ∆α = 0.77◦, ∆β = 0.14◦;
(d) ∆α = 1.37◦, ∆β = 1.62◦; (e) ∆α = 1.49◦, ∆β = 3.31◦; (f) ∆α = 1.50◦, ∆β = 1.25◦; (g) ∆α = 1.70◦,
∆β = 2.54◦; (h) ∆α = 1.87◦, ∆β = 3.89◦.

3.2. Statistical Results of Dynamic Measurement Mode

A total of 289 US videos and their corresponding standard plane US images in the
test set, including 238 type I hip joints and 51 type II hip joints, were used to test the
measurement and classification performance of three modes: (1) the DM mode with SPSM
(DM w. SPSM); (2) the DM mode without SPSM (DM w/o. SPSM), and using the sum of
confidence scores as the scoring formula to evaluate planes; (3) the SM mode. We used
these modes to validate the effectiveness of SPSM. As summarized in Table 3, the standard
deviation of the difference between the DM w. SPSM and sonographers of α and β are
2.43◦ and 3.15◦, respectively, and both are higher than the standard deviation measured by
the SM mode (α: 1.66◦, β: 2.91◦), but much less than the DM w/o. SPSM (α: 3.30◦, β: 4.29◦).
The MAE of α and β between the DM w. SPSM and sonographers are 1.97◦ and 2.53◦,
respectively, and both are higher than the values measured by SM mode (α: 1.59◦, β: 2.28◦),
but much less than DM w/o. SPSM (α: 2.61◦, β: 3.64◦). For the DM w. SPSM, the ICCs of α
and β are 0.80 and 0.68, respectively. They show less agreement compared with the values
by SM mode (α: 0.85, β: 0.71), but show higher agreement compared with those by DM
w/o. SPSM (α: 0.64, β: 0.44). According to the Bland–Altman plots shown in Figure 8, the
measurement results of α and β are symmetrically distributed around the reference line,
and 97.22% and 93.97% of the measurement results of α and β, respectively, are within the
limits of agreement. Table 4 shows the classification performance of three modes, and the
Cohen’s kappa coefficients of DM w/o. SPSM, DM w. SPSM, and SM mode are 0.39, 0.76,
and 0.89, respectively. The classification agreement rates are 71.73%, 89.51%, and 95.80%.
Figure 9 shows some typical measurement results of DM w. SPSM and sonographers. In
summary, the angle measurement performance and classification performance of DM w.
SPSM is between DM w/o. SPSM and SM mode, but much closer to SM mode.
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Table 3. Comparison of angle measurement between DM w/o. SPSM, DM w. SPSM, SM mode, and
sonographers.

Angle Mea-
surement Difference MAE ICC (95% CI) Agreement

sonographers
α 61.35 ± 3.26 – – – –

β 61.52 ± 3.51 – – – –

DM w/o.
SPSM

α 61.18 ± 3.41 –0.37 ± 3.30 2.61 0.64 (0.59~0.69) Moderate (0.5~0.7)

β 61.57 ± 3.70 1.55 ± 4.29 3.64 0.44 (0.38~0.51) Poor (<0.5)

DM w.
SPSM

α 61.04 ± 4.17 −0.31 ± 2.43 1.97 0.80 (0.75~0.84) Good (>0.7)

β 62.58 ± 4.35 0.80 ± 3.15 2.53 0.68 (0.61~0.74) Moderate (0.5~0.7)

SM mode
α 62.31 ± 3.74 1.03 ± 1.66 1.59 0.85 (0.81~0.88) Good (>0.7)

β 61.95 ± 4.15 0.17 ± 2.91 2.28 0.71 (0.65~0.76) Good (>0.7)
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Table 4. Classification performance of DM w/o. SPSM, DM w. SPSM, and SM mode.

Classification Agreement Rate (%) Cohen’s Kappa Agreement

DM w/o. SPSM 71.73 0.39 Poor

DM w. SPSM 89.51 0.76 Good

SM mode 95.80 0.89 Good
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Figure 9. Qualitative comparisons on the angle measurement between the DM w. SPSM (upper)
and sonographers (lower). The standard plane frames selected from the same US video are usually
different, but the planes selected by DM w. SPSM and the angle measurement results are also reliable.
The absolute differences between DM w. SPSM and sonographers are (a) ∆α = 0.18◦, ∆β = 0.19◦;
(b) ∆α = 0.45◦, ∆β = 3.83◦; (c) ∆α = 0.39◦, ∆β = 0.64◦; (d) ∆α = 2.67◦, ∆β = 3.39◦.

3.3. Running Speed of Dynamic Measurement Mode

The running speed of the framework in dynamic measurement mode was tested
using a hardware environment of an Intel Core i7-9700 CPU, 32 GB of RAM, and an
NVIDIA GeForce 1660 GPU. The software on it is Windows 10 (Microsoft, Redmond, WA,
USA), Python 3.6 (Python Software Foundation, Beaverton, OR, USA), and TensorFlow
1.8 (Google, Mountain View, CA, USA). The average speed of the plane scoring and angle
measurement on 289 US videos is 31 fps.

4. Discussion

In this study, we proposed a deep learning-based computer-aided framework for the
DDH diagnosis of Graf type I and type II hips, which can not only perform the common
static measurement mode like the current CAD methods but also innovatively realize the
dynamic measurement mode for the first time. To the best of our knowledge, there is
currently no CAD method that can automatically complete the entire measurement process
of Graf’s method.

In the static measurement mode, the measurement and classification are directly
performed based on the standard planes selected by a sonographer. On the test set, the
standard deviation of the difference between SM mode and sonographers is lower than the
standard deviation of the difference between human observers (α: 3.2◦, β: 6.1◦) reported
by [37]. The ICCs of α and β in SM mode were higher than the ICCs between human
observers (α: 0.72, β: 0.34) reported by [38]. The above results demonstrate that, in terms of
measurement accuracy, the performance of SM mode is better than that of human observers.
The MAEs of the α, β angles demonstrate that SM mode also performs better than other
deep learning-based methods [28,29].

Since there are only Graf type I and type II hip joints in the dataset, we used 60◦

as the boundary and performed a binary classification according to α measured by the
framework. It can be seen from Table 2 that the mean α value of the test set is 60.94◦,
which means that measurement error may lead to misclassification [28]. While in SM
mode, both the classification agreement rate and Cohen’s kappa show high classification
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performance compared with that of experienced sonographers (classification agreement
rate: 82%~91%, Cohen’s kappa: 0.60~0.86) reported by [38] and better than for other CAD
methods [28,29,31]. Nevertheless, we still suggest sonographers pay more attention to the
potential misclassification situation of hips with α around 60◦ (58◦~62◦).

The dynamic measurement mode is an important innovation of this study. For the
dynamic measurement mode, SPSM is the decisive factor for its measurement and clas-
sification performance, so we designed DM w. SPSM and DM w/o. SPSM to validate it.
As shown in Tables 3 and 4, compared with DM w/o. SPSM, DM w. SPSM can provide
more accurate angle measurement results, the MAEs of α and β of DM w. SPSM are re-
duced by 0.64◦ and 1.11◦, respectively, and the ICCs of α and β are much higher. Different
angle error levels are reflected by the classification performance, where DM w. SPSM has
much higher classification agreement rate and Cohen’s kappa. Although confidence scores
from the network have a high reference value for the evaluation of the standard level of a
certain plane, they are usually more related to the structure visibility and cannot properly
indicate whether the shape of the anatomical structure meets the requirements. SPSM
simultaneously takes confidence scores, the positional relationship between the anatomical
structures, and the shape of the ilium into consideration, so the selected standard planes
based on it are usually more reliable. The SPSM can identify the standard planes that have
clear anatomical structures with correct positional relationships and straight and vertical
ilium, as shown in Figure 10.
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(lower). The ilia selected by DM w/o. SPSM are titled to the left (a,b), or the right (c), but the ilia
selected by DM w. SPSM are all vertical and straight.

Although the SPSM can select standard planes with higher quality in DM mode, it
is still difficult to guarantee that these are identical to planes selected by sonographers.
This means that the measurement results of DM mode and sonographers exist inter-scan
inter-observer discrepancies other than same scan inter-observer discrepancies of SM mode.
In general, the former will lead to greater errors. As shown in Tables 3 and 4, DM w.
SPSM has a slightly greater standard deviation of differences and MAEs compared with
SM mode and shows lower ICCs, though still higher compared to the ICCs between
human observers [38]. The classification agreement rate and Cohen’s kappa of DM w.
SPSM are similar to the classification agreement of human observers [37,38]. As shown in
Figure 9, although the SPSM-selected plane is not identical to the sonographer-selected
plane in the same video, it still meets Graf’s criteria and can produce reliable measurement
results. In summary, the dynamic measurement mode of the proposed framework shows
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good measurement performance and classification performance, similar to experienced
sonographers. In addition, compared with the methods based on two-stage instance
segmentation networks [28,29], our YOLOv3-tiny-based method has more advantages in
terms of the number of parameters, computational cost, and inference speed, which makes
it possible to implement our framework in ultrasound devices. Considering that it is a fully
automated diagnostic pipeline with high running speed and does not require any manual
intervention, the application of the dynamic measurement mode may effectively improve
the work quality and efficiency of sonographers in infant DDH screening.

Our study also has several limitations. First, we just performed a simple binary
classification (Graf type I and type II) of the hips by comparing the α angle with 60◦ and did
not utilize any age information to implement the differentiation of Graf subtypes. Second,
the number of US videos used to test the DM mode is still small, so the generalization
ability of DM mode may not have been sufficiently evaluated. In the future, we plan to take
the week/month age information and β angle into account to implement the classification
of Graf subtypes to better assist sonographers in the diagnosis of DDH. We will also collect
more US videos and hip joint data with α angle under 50◦ (Graf type IIc) to further improve
and evaluate the performance of the proposed framework.

5. Conclusions

In this study, we proposed a deep learning-based computer-aided framework for the
DDH diagnosis of Graf type I and type II hips. It can not only run in the static mode like
other CAD methods but also innovatively support the dynamic mode, which includes
standard plane detection from ultrasound video and angle measurement. To the best of
our knowledge, our proposed framework is the first CAD method that can automatically
perform the entire measurement process of Graf’s method. The performance of both modes
is comparable to that of human experts. The high running speed indicates that it can run in
real-time as well. Therefore, our framework has great potential to assist sonographers in
routine DDH screening.
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16. Orak, M.M.; Onay, T.; Çağırmaz, T.; Elibol, C.; Elibol, F.D.; Centel, T. The reliability of ultrasonography in developmental dysplasia
of the hip: How reliable is it in different hands? Indian J. Orthop. 2015, 49, 610. [CrossRef]

17. Quader, N.; Hodgson, A.J.; Mulpuri, K.; Cooper, A.; Garbi, R. 3-d ultrasound imaging reliability of measuring dysplasia metrics
in infants. Ultrasound Med. Biol. 2021, 47, 139–153. [CrossRef]

18. Hareendranathan, A.R.; Chahal, B.; Ghasseminia, S.; Zonoobi, D.; Jaremko, J.L. Impact of scan quality on AI assessment of hip
dysplasia ultrasound. J. Ultrasound 2022, 25, 145–153. [CrossRef]

19. Paserin, O.; Mulpuri, K.; Cooper, A.; Hodgson, A.J.; Abugharbieh, R. Automatic near real-time evaluation of 3D ultrasound scan
adequacy for developmental dysplasia of the hip. In Computer Assisted and Robotic Endoscopy and Clinical Image-Based Procedures;
Springer: Cham, Switzerland, 2017; pp. 124–132.

20. Paserin, O.; Mulpuri, K.; Cooper, A.; Abugharbieh, R.; Hodgson, A.J. Improving 3D ultrasound scan adequacy classification
using a three-slice convolutional neural network architecture. CAOS 2018, 2, 152–156.

21. Paserin, O.; Mulpuri, K.; Cooper, A.; Hodgson, A.J.; Garbi, R. Real time RNN based 3D ultrasound scan adequacy for develop-
mental dysplasia of the hip. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer:
Cham, Switzerland, 2018; pp. 365–373.

22. El-Hariri, H.; Hodgson, A.J.; Mulpuri, K.; Garbi, R. Automatically Delineating Key Anatomy in 3-D Ultrasound Volumes for Hip
Dysplasia Screening. Ultrasound Med. Biol. 2021, 47, 2713–2722. [CrossRef]

23. Liu, R.; Liu, M.; Sheng, B.; Li, H.; Song, H.; Zhang, P.; Jiang, L.; Shen, D. NHBS-Net: A Feature Fusion Attention Network for
Ultrasound Neonatal Hip Bone Segmentation. IEEE Trans. Med. Imaging 2021, 40, 3446–3458. [CrossRef]

24. Sezer, H.B.; Sezer, A. Automatic segmentation and classification of neonatal hips according to Graf’s sonographic method: A
computer-aided diagnosis system. Appl. Soft Comput. 2019, 82, 105–516. [CrossRef]

25. Golan, D.; Donner, Y.; Mansi, C.; Jaremko, J.; Ramachandran, M. Fully automating Graf’s method for DDH diagnosis using deep
convolutional neural networks. In Deep Learning and Data Labeling for Medical Applications; Springer: Cham, Switzerland, 2016;
pp. 130–141.

26. Hareendranathan, A.R.; Zonoobi, D.; Mabee, M.; Cobzas, D.; Punithakumar, K.; Noga, M.; Jaremko, J.L. Toward automatic
diagnosis of hip dysplasia from 2D ultrasound. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical
Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017; pp. 982–985.

http://doi.org/10.1302/0301-620X.83B4.0830579
http://doi.org/10.14366/usg.16051
http://www.ncbi.nlm.nih.gov/pubmed/28372341
http://doi.org/10.1542/peds.105.4.896
http://www.ncbi.nlm.nih.gov/pubmed/10742345
http://doi.org/10.1016/j.otsr.2020.09.004
http://www.ncbi.nlm.nih.gov/pubmed/33069603
http://doi.org/10.1001/jamanetworkopen.2019.14779
http://www.ncbi.nlm.nih.gov/pubmed/31702798
http://doi.org/10.3390/children8020104
http://doi.org/10.1302/0301-620X.84B3.0840418
http://doi.org/10.5312/wjo.v4.i2.32
http://doi.org/10.5301/hipint.5000514
http://doi.org/10.1007/s00247-019-04504-3
http://doi.org/10.1097/01241398-198411000-00015
http://www.ncbi.nlm.nih.gov/pubmed/6392336
http://doi.org/10.1148/radiol.14140451
http://www.ncbi.nlm.nih.gov/pubmed/24964047
http://doi.org/10.1016/j.ultrasmedbio.2017.01.012
http://www.ncbi.nlm.nih.gov/pubmed/28341489
http://doi.org/10.4103/0019-5413.168753
http://doi.org/10.1016/j.ultrasmedbio.2020.08.008
http://doi.org/10.1007/s40477-021-00560-4
http://doi.org/10.1016/j.ultrasmedbio.2021.05.011
http://doi.org/10.1109/TMI.2021.3087857
http://doi.org/10.1016/j.asoc.2019.105516


Diagnostics 2022, 12, 1423 16 of 16

27. El-Hariri, H.; Mulpuri, K.; Hodgson, A.; Garbi, R. Comparative evaluation of hand-engineered and deep-learned features for
neonatal hip bone segmentation in ultrasound. In International Conference on Medical Image Computing and Computer-Assisted
Intervention; Springer: Cham, Switzerland, 2019; pp. 12–20.

28. Hu, X.; Wang, L.; Yang, X.; Zhou, X.; Xue, W.; Cao, Y.; Liu, S.; Huang, Y.; Guo, S.; Shang, N.; et al. Joint Landmark and Structure
Learning for Automatic Evaluation of Developmental Dysplasia of the Hip. IEEE J. Biomed. Health Inform. 2021, 345–358.
[CrossRef] [PubMed]

29. Lee, S.W.; Ye, H.U.; Lee, K.J.; Jang, W.Y.; Lee, J.H.; Hwang, S.M.; Heo, Y.R. Accuracy of New Deep Learning Model-Based
Segmentation and Key-Point Multi-Detection Method for Ultrasonographic Developmental Dysplasia of the Hip (DDH) Screening.
Diagnostics 2021, 11, 1174. [CrossRef] [PubMed]

30. Sezer, A.; Sezer, H.B. Deep convolutional neural network-based automatic classification of neonatal hip ultrasound images: A
novel data augmentation approach with speckle noise reduction. Ultrasound Med. Biol. 2020, 46, 735–749. [CrossRef]

31. Gong, B.; Shi, J.; Han, X.; Zhang, H.; Huang, Y.; Hu, L.; Wang, J.; Du, J.; Shi, J. Diagnosis of Infantile Hip Dysplasia with B-mode
Ultrasound via Two-stage Meta-learning Based Deep Exclusivity Regularized Machine. IEEE J. Biomed. Health Inform. 2021, 26,
334–344. [CrossRef]

32. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
33. Hu, M.-K. Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 1962, 8, 179–187.
34. Kapur, J.N.; Sahoo, P.K.; Wong, A.K. A new method for gray-level picture thresholding using the entropy of the histogram.

Comput. Vis. Graph. Image Process. 1985, 29, 273–285. [CrossRef]
35. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the

2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 22–24 June 2009. [CrossRef]
36. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
37. Roovers, E.A.; Boere-Boonekamp, M.M.; Geertsma, T.S.A.; Zielhuis, G.A.; Kerkhoff, A.H.M. Ultrasonographic screening for

developmental dysplasia of the hip in infants: Reproducibility of assessments made by radiographers. J. Bone Jt. Surg. 2003, 85,
726–730. [CrossRef]

38. Simon, E.A.; Saur, F.; Buerge, M.; Glaab, R.; Roos, M.; Kohler, G. Inter-observer agreement of ultrasonographic measurement of
alpha and beta angles and the final type classification based on the Graf method. Swiss Med. Wkly. 2004, 134, 671–677. [PubMed]

http://doi.org/10.1109/JBHI.2021.3087494
http://www.ncbi.nlm.nih.gov/pubmed/34101608
http://doi.org/10.3390/diagnostics11071174
http://www.ncbi.nlm.nih.gov/pubmed/34203428
http://doi.org/10.1016/j.ultrasmedbio.2019.09.018
http://doi.org/10.1109/JBHI.2021.3093649
http://doi.org/10.1016/0734-189X(85)90125-2
http://doi.org/10.1109/CVPR.2009.5206848
http://doi.org/10.1302/0301-620X.85B5.13893
http://www.ncbi.nlm.nih.gov/pubmed/15611889

	Introduction 
	Materials and Methods 
	Data Acquisition 
	The Fully Automated DDH Diagnosis Framework 
	Anatomical Structure Detection Module 
	Standard Plane Scoring Module 
	Angle Measurement Module 

	Experiment Design 

	Results 
	Statistical Results of Static Measurement Mode 
	Statistical Results of Dynamic Measurement Mode 
	Running Speed of Dynamic Measurement Mode 

	Discussion 
	Conclusions 
	References

