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Abstract
Purpose The Working Group for Neuro-Oncology of the German Society for Radiation Oncology in cooperation with
members of the Neuro-Oncology Working Group of the German Cancer Society aimed to define a practical guideline for
the diagnosis and treatment of radiation-induced necrosis (RN) of the central nervous system (CNS).
Methods Panel members of the DEGRO working group invited experts, participated in a series of conferences, supple-
mented their clinical experience, performed a literature review, and formulated recommendations for medical treatment of
RN including bevacizumab in clinical routine.
Conclusion Diagnosis and treatment of RN requires multidisciplinary structures of care and defined processes. Diagnosis
has to be made on an interdisciplinary level with the joint knowledge of a neuroradiologist, radiation oncologist, neurosur-
geon, neuropathologist, and neuro-oncologist. A multistep approach as an opportunity to review as many characteristics
as possible to improve diagnostic confidence is recommended. Additional information about radiotherapy (RT) techniques
is crucial for the diagnosis of RN. Misdiagnosis of untreated and progressive RN can lead to severe neurological deficits.
In this practice guideline, we propose a detailed nomenclature of treatment-related changes and a multistep approach for
their diagnosis.
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Introduction

Improvements in systemic therapies, especially targeted
therapies, and radiotherapy (RT) techniques have led to
prolonged survival in cancer patients over the past decade.
Oligometastatic patients receive more radical local treat-
ments and stereotactic radiotherapy (SRS) is frequently
used in this setting. Furthermore, longer survival leads to
an increased absolute risk for cancer patients to develop
brain metastases (BM) during the course of their disease.
As whole-brain radiotherapy (WBRT) is associated with
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significant neurocognitive decline compared to SRS, SRS
has been explored and increasingly utilized for selected
patients with multiple BMs [1–3]. But also patients with
primary brain tumors (e.g., glioma, glioblastoma, etc.)
receive more reirradiation and molecular analyses allow
for targeted therapies in selected patients, sometimes in
combination with RT [4–7]. As a result, long-term side
effects have become more prevalent—typically identified
on posttreatment imaging including computed tomography
(CT) and magnetic resonance imaging (MRI) as con-
trast-enhancing lesions (CEL). Contrast enhancement can
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represent a variety of pathophysiologies including treat-
ment-associated effects such as radiation necrosis (RN)
or blood–brain barrier disruptions (BBD); sometimes also
referred to as pseudoprogression or late radiation tissue
injury (LRTI) [8, 9]. Unfortunately, differentiation between
RN, BBD, and tumor progression is extremely challenging,
and the term itself is often misleading due to the contin-
uous temporal overlap. The aforementioned more radical
radio-oncological approaches in glioma and other cancer
therapies involving the central nervous system (CNS) in
combination with prolonged survival lead to an increase in
the incidence of CEL. The clinical course may vary and
while some of these CEL are clinically subtle and demon-
strate long-term radiological stability, others may display
a more acute and “malignant” course, leading to substantial
symptoms and therefore requiring prompt action, while also
challenging physicians to differentiate between treatment-
associated effects and true tumor progression. In addition
to the variations in clinical behavior, the nomenclature is
not used consistently in the literature. The terms “radiation
necrosis,” “pseudoprogression,” and “blood–brain barrier
disruptions” are used synonymously both in tumor boards
and throughout the literature, despite describing different
clinical entities [10].

Currently there is no defined guideline for the treatment
and diagnosis of RN. Several guidelines already recom-
mend the use of steroids and bevacizumab in the treatment
of RN, although there are no defined treatment algorithms
[11, 12]. This lack of consensus was identified by the Ger-
man Society for Radiation Oncology (DEGRO) and the
DEGRO board therefore mandated the DEGRO working
group to establish a practice guideline. In 2020, a position
paper about the use of bevacizumab and the treatment of
RN was already established and published by the DEGRO
society [13]. The aim of this practice guideline is to propose
a distinct nomenclature and develop a practical approach for
the diagnosis and treatment of new radiation-induced CEL
(RN vs. BBD). In this practice guideline, we have inte-
grated the limited results from contemporary clinical trials
and the available retrospective data. The implementation of
this guideline requires multidisciplinary structures of care
and defined processes of diagnosis and treatment of CEL.

Methods

This guideline was prepared by an expert panel of the Ger-
man Society of Radiation Oncology (Deutsche Gesellschaft
für Radioonkologie, DEGRO) Working Group for Neuro-
Oncology (AG NRO) in cooperation with members of the
Neuro-OncologyWorking Group of the German Cancer So-
ciety (DKG-NOA). The guidelines subcommittee recruited
a panel of recognized experts from the field of neuro-

surgery, neuroradiology, and neuro-oncology/neurology.
This task force represents all disciplines involved in the
diagnosis and care of patients with CNS RN/BBD. We
retrieved references published in English on PubMed
with the search terms “radiation necrosis” alone and in
combination with “avastin,” “bevacizumab,” “steroids,”
“radiosurgery,” “stereotactic,” “re-irradiation,” “vascular
endothelial growth factor (VEGF),” “immunotherapy,” or
“dexamethasone,” from January 1, 2000, to November 1,
2021. We also identified publications through searches of
the authors’ own files. Screening and initial eligibility were
addressed by two authors (DB, LK), consulting others for
disagreement resolution. Panel members of the DEGRO
and experts participated in a series of virtual conferences
and circular emails and supplemented their clinical expe-
rience and formulated recommendations for the treatment
and diagnosis of RN in clinical routine. The treatment
recommendations were formed by full consensus of the
participating experts.

Results

Incidence and pathophysiology of RN and BBD

The true incidence of RN and BBD is hard to estimate
and varies according to the diagnostic criteria and modality
used as well as treatment-associated factors and lies be-
tween 5–30% [8–10]. Moreover, the risk of development is
influenced by the time, type, and temporality of systemic
treatments; applied (cumulative) radiotherapy dose; tumor
volume; and type of cancer. Statistics must be taken with
a grain of salt since much of the published data are reliant
on radiological rather than pathological endpoints.

Three distinct types of radiation injury can be recog-
nized: acute (during or shortly after radiation), subacute or
early-delayed (typically up to 12 weeks after radiation), and
late (months to years after completion of radiation) [14].
Two theories behind the pathophysiology of RN and BBD
have emerged over the past few years, although a multifac-
torial cause seems most likely [15, 16]. The acute injury
during or immediately after completion of RT is mostly re-
versible and secondary to edema associated with increased
capillary leakage. BBD likely results from transiently in-
creased permeability of the tumor vasculature and inflam-
mation induced by previous therapies [17]. If tissue is sub-
mitted to histological analysis, paravascular edema and in-
flammatory infiltrates might be observed. However, the as-
sessment can be hampered by similar alterations subsequent
to the proceeding surgery. Since radiation can induce cellu-
lar atypia presenting similar to neoplastic cells, molecular
analysis for pathognomonic tumor alterations may be re-
quired when morphology is not indicative. Nevertheless,
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Fig. 1 Pathogenesis of
blood–brain barrier disrup-
tions and radionecrosis with the
targeting point of bevacizumab
as an inhibitor of vascular
endothelial growth factor,
therefore being a potent effector
for disrupting the vicious cycle
(adaption of Fig. 1 from Zhuang
et al. [15])

both mechanisms are closely interlinked and mutually de-
pendent, which can be observed at the cellular level: vascu-
lar tissue damage due to RT leads to local ischemia and hy-
poxia and increased secretion of HIF-1-alpha, which leads
to increased liberation of vascular endothelial growth factor
(VEGF) [14, 15, 18]. VEGF is the main driver for angio-
genesis of abnormal vessels with increased permeability,
which promotes exudation and thus brain edema. This in
turn causes additional ischemia and hypoxia, leading to a vi-
cious positive feedback loop and ultimately ending in brain
necrosis. Extensive research has explored cellular mecha-
nisms that could be targeted in an effort to manage this
clinical syndrome [19]: Gonzales et al. first reported the
treatment efficacy of bevacizumab [20], a monoclonal anti-
body binding VEGF and therefore a potent target to disrupt
this vicious cycle. A delayed (late) injury follows months
after RT, is irreversible in most cases, and is caused by di-
rect injury to glial cells. Histological analysis may reveal
reduced cellularity of neurons and glia or vacuolization, but
also gliosis, hyalinized vessels, or fibrinoid necrosis of en-
dothelium. Wider RN with involvement of the parenchyma
is challenging to diagnose since necrosis occurs in most
high-grade CNS tumors even without therapy. In contrast to
tumor necrosis, RN is often coagulative, may include areas
of dystrophic calcification, and remnants of hyalinized and
necrotic vessels may be observed. RN can be surrounded by
hypocellular tissue, whereas tumor necrosis is mostly ad-
jacent to highly cellular and proliferating neoplastic cells.
(Fig. 1).

With conventional fractionation (1.8–2Gy per fraction)
and doses ≤60Gy, symptoms of acute radiation injury are
typically mild and self-limiting and mostly completely re-
solve without therapeutic intervention [18]. BBD frequently
presents with no or few symptoms, is often self-limiting
and slowly changing in size, whereas RN on the other
hand often presents with notable symptoms, a consecutive
need of therapeutic intervention, and rather fast progres-
sion/volumetric change over time. Patients may suffer from
symptoms due to increased intracranial pressure (headache,
nausea, and dizziness), seizures, loss of cranial nerve func-
tion, or other symptoms specific to the neuroanatomical
location of the lesion. Since symptoms in patients with RN
are often caused by edema, they often respond well to cor-
ticosteroid therapy, which might be a possible factor for
differentiating between RN and tumor progression.

Nomenclature—differentiation between CELs

Given the variety of terms used to differentiate clinical and
radiological CEL, here we propose objective criteria to de-
fine BBD versus RN (Table 1):

1. Blood–brain barrier disruptions (BBD; also referred to
as “pseudoprogression”) and nonmeasurable, speckled
contrast-enhancing lesions (SCEs).
– Radiation-induced BBD occurs as CEL in primary

and secondary brain tumors, both in field and out of
field relative to the high-dose radiation volume. The
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Table 1 Nomenclature with characteristics for differentiating between BBD and RN

BBD BBD BBD along isodoses Early RN Typical RN (Ultra-) late RN

RT Primary RT, nor-
mofractionated

High-dose primary
RT or Re-RT

Single-fraction SRS or hy-
pofractionated SRS, Cy-
berKnife, Gamma Knife

After ex-
ceeding
the TD5/5
by a large
number
(Re-RT
with pho-
tons, SRS
or C12)

Possible
after all
forms of
RT

Possible after all
forms of RT

Dose
range

≤60Gy
(54–60Gy)

>60Gy cumulative
or high fraction
dose

Ablative doses (e.g., 20/18Gy
single dose, Cavity SRS)

Cumulative
doses
EQD2
>100Gy
TD5/5 is
exceeded
widely

Clear
dose–volume
depen-
dency,
TD5/5
can be
exceeded

Clear
dose–volume
dependency,
TD5/5 can be
exceeded

Time
after RT

Typically
1–6 months after
RT (“pseudogro-
gression”)
Can occur later
(6–18 months)

Typically
1–6 months after
RT (“pseudopro-
gression”)
Can occur later
(6–18 months)

Typically 3–6 months after RT
(“pseudoprogression”)
Can occur later (6–18 months)

Early, often
1–6 months
after RT

6–18 months >18 months–sev-
eral years

Special
consid-
erations

CEL in association
with ventricular
system after pro-
tons (distal end of
beams, increase of
RBE)
Frontal or tempo-
ral lobe (protons:
lateral beam appli-
cation)

CEL in association
with ventricular
system after pro-
tons (distal end of
beams, increase of
RBE)
Frontal or tempo-
ral lobe (protons:
lateral beam appli-
cation)

CEL according to isodoses,
clear dose–volume depen-
dency, central necrosis of
tumor tissue is the desired
treatment effect in tumors,
especially brain metastasis.
Association with ventricu-
lar system possible. Higher
risk in patients treated with
immunotherapy concomitantly

Often large
edema,
central
necrosis

Usually
mixed form
of BBD
and RN

Often misdiag-
nosed as pro-
gression, often
associated with
immunotherapy

Progression
pattern

Slow, fluctuat-
ing, usually self-
limiting, reversible
Progression into
RN is rare

Slow, fluctuating,
often reversible
Progression into
RN is possible

Fluctuating, middle, often self-
limiting and reversible,
Progression into RN is possi-
ble

Rapidly,
can be
tumor like,
Irreversible

Often pro-
gressive,
can be tu-
mor like,
Irreversible

All forms of
progression,
irreversible

Symptoms Typically no/few
symptoms,
small–medium
edema possible

Small–medium
edema possible,
symptoms usually
not severe

Small–medium edema pos-
sible, symptoms usually not
severe

Small–large
edema pos-
sible, often
associated
with large
edema,
symptoms
can be se-
vere

Small–large
edema
possible,
symp-
toms can
range from
asymp-
tomatic to
severe

Small–large
edema possible,
symptoms can
range from
asymptomatic to
severe

RT radiotherapy, CEL contrast-enhancing lesions, RBE relative biologic effectiveness, BBD blood–brain barrier disruptions; Gamma Knife,
ELEKTA, Sweden; CyberKnife, Accuray Incorporated, Sunnyvale, CA, USA

maximal tolerated dose with a 5% rate within 5 years
(TD5/5) for brain necrosis (=60Gy EQD2) is usu-
ally not exceeded (according to Emami et al. [21]
and QUANTEC [22, 23]). BBD or pseudoprogression
occurs predominantly within the first 6 months after
(chemo)radiotherapy.

– Small and clinically asymptomatic SCEs can occur
in glioma patients during the course of their disease
without immediate relation to prior therapy [24]. SCEs

occur more frequently in World Health Organization
grade 2 and 3 astrocytoma and oligodendroglial tu-
mors and gliomas with an isocitrate dehydrogenase
(IDH) mutation. In patients with glioblastoma, SCEs
were associated with a favorable prognosis, which
was also observed in the subgroup of patients with
glioblastoma with IDH wildtype status [24, 25]. These
SCEs in glioma patients typically develop temporally
distant from RT (6–18 months), may vary in their
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location over the follow-up period, and are typically
temporary and often asymptomatic. At the cellular
level, these changes are caused by small capillary
leaks with or without edema [24]. SCEs mostly re-
main stable or dissolve with no further treatment.
The manifestation of a spontaneous immune reaction
rather than a new tumor manifestation is discussed as
potential causes of SCEs.

2. Radiation necrosis (RN) occurs in the high-dose-treated
region. The CEL are caused by significant capillary leak-
iness but also direct glial damage and therefore often
present with a large zone of edema leading to pronounced
clinical symptoms. If not treated promptly, these changes
are irreversible and may even be lethal.
– In the literature, typical RN is described to occur later

in the course, usually 6–18months after (chemo)radio-
therapy [14, 26].

– Early RN: it is important to take radiation technique,
total dose, and fractionation into account. If the TD5/5
has been exceeded by large numbers (e.g., SRS, Re-
RT) and the CEL occurs directly or shortly after
RT (<6 months), potentially showing a rapid pro-
gression, early RN can be more likely than BBD/
pseudoprogression [27, 28].

– Late- or ultra-late RN: with prolonged survival of
cancer patients in the past decade (e.g., ALK-mu-
tated NSCLC), the incidence of (ultra-) late RN has
increased, and it is important to notice that RN can oc-
cur several years and even decades after radiotherapy,
especially after high-dose SRS. Late-RN is often mis-
interpreted as tumor progression, which can lead to
discontinuation of a successful treatment, unnecessary
operations, or re-irradiation and unnecessary systemic
therapies, and can therefore be extremely harmful for
a patient. Misdiagnosis of untreated or mistreated pro-
gressive RN can lead to severe neurological deficits
due to further progression of the RN [29–31].

3. Late tissue effects. Additionally to BBD and RN, radi-
ation-induced late effects include white matter changes
[32, 33], cerebral atrophy, and vascular lesions such
as lacunar infarcts and parenchymal calcifications [34].
The interval between therapy and time to occurrence
varies from months to several years. CNS injury, as
demonstrated by subclinical white matter changes, is rel-
atively common and can even manifest after chemother-
apy alone.

4. Mixed forms. Since both entities are closely linked with
each other at the pathogenesis level, BBD may show
a fluent transition to RN and sometimes a clear distinc-
tion between RN and BBD is not possible or reasonable
(see Table 1). In gliomas, especially recurrent glioblas-
toma, a mixed form of BBD, RN, and progressive disease
is common.

Diagnostic multistep approach

General recommendations

Biopsy is still regarded as the diagnostic gold standard to
differentiate between tumor progression (TP) and RN/BBD,
but cannot be performed in all patients due to the location
of the lesion or the general performance status of the pa-
tient. Further, the diagnosis is difficult despite histopatho-
logic analysis as a recent study revealed, since a biopsy
might be not representative enough or yield insufficient
amounts of tissue. Only marginal reproducibility was found
when pathologists were asked if they were able to provide
a final diagnosis (BBD vs. RN vs. progression) in patients
with suspected recurrent glioblastoma, also because necro-
sis itself is a characteristic for glioblastoma [35]. Defini-
tive diagnosis without pathology is difficult, and until the
present day, no diagnostic modality provides absolute cer-
tainty. With respect to the following points, it is important to
mention that the diagnosis has to be made on an interdisci-
plinary level with the joint knowledge of a neuroradiologist,
neuropathologist, radiation oncologist, neurosurgeon, and
neuro-oncologist, and revision of the applied treatments (ra-
diation plan, immunotherapies, chemotherapies, etc.). This
is one of the reasons why we recommend the multistep
approach as an opportunity to review as many characteris-
tics as possible to improve diagnostic confidence. Because
many of the new CEL represent a mixture of tumor cells
and radiation injury, the goal is to identify the predominant
component.

Diagnostic imaging

Diagnostic imaging should be done on a regular basis dur-
ing follow-up (FU) using MRI with and without gadolinium
contrast. First signs that may be seen are an increase in the
T2-FLAIR signal corresponding to edema, which often oc-
curs before the development of CEL. Contrast-enhanced
MRI is the basis of brain imaging, but its specificity for the
differentiation between blood–brain barrier disturbances re-
lated to either the treatment or to tumor progression is low
[36–38]. T1w contrast-enhanced sequences show damage in
the blood–brain barrier with contrast leakage to surround-
ing normal brain tissue, therefore it can be seen in BBD
and the marginal zone of RN, as well as in true tumor pro-
gression. Compared to BBD, CE in RN often shows rapid
growth, very similar to a tumor-like growth pattern. Areas
of CE and high T2-FLAIR typically show a decrease in re-
gional cerebral blood volume (rCBV) in perfusion imaging
and an increase in the apparent diffusion coefficient (ADC)
in diffusion imaging, which can be helpful in distinguish-
ing them from residual tumor/recurrence, which typically
present with increased rCBV and decreased ADC as corre-
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lates of neoangiogenesis and hypercellularity. Nevertheless,
both can be seen in the central location of the tumor and
demonstrate the difficulty of diagnosis based on imaging
alone [39].

Further advanced complementary diagnostic tools like
MR spectroscopy (MRS) or positron-emission tomography
(PET) may support clinical decision-making. MRS may
show low choline, creatinine, and N-acetylaspartate (NAA)
peaks [40, 41]. A correlation with the initial behavior of the
tumor might be beneficial when differentiating from tumor
progression (e.g., low-grade glioma with no or low-contrast
enhancement).

The Response Assessment in Neuro-Oncology (RANO)
working group established guidelines to improve the as-
sessment of tumor response in gliomas, specifically in the
context of clinical trials [42, 43]. According to the RANO
criteria, in the first months after completion of chemora-
diotherapy, tumor progression can only be radiologically
defined if there is new enhancement outside the radiation
field (beyond the 80% isodose line). If the area of new or in-
creased enhancement occurs inside the radiation field, pseu-
doprogression (BBD) is more likely and further evidence of
tumor progression is required by histopathologic sampling
or follow-up imaging showing further progression of con-
trast-enhancement. Additionally, factors that might influ-
ence CEL and therefore BBD and RN are operative proce-
dures and concomitant chemotherapy [44] or immunothera-
peutic agents [45, 46]. The RANO working group also pub-
lished guidelines for the evaluation of response in glioma
patients who underwent immunotherapy treatments [42]. If
the lesion developed within ≤6 months after starting im-
munotherapy and the patient has no new or progressive
neurologic symptoms, follow-up imaging is required for
diagnosis confirmation. RANO criteria now include the use
of dexamethasone as well as information about the radio-
therapy target volume (e.g., 80% isodose line). Additional
information about radiotherapy like the biological dose, re-
irradiation, and radiotherapy technique are not considered
in the RANO criteria but are crucial for the diagnosis of
RN. The location of a CEL relative to the irradiated tumor
and the radiation field is the most important factor in decid-
ing whether the lesion is a new abnormality secondary to
radiation. Amino acid tracers are applied for RT planning
[47], but also for the differentiation of recurrent or pro-
gressive disease and pseudoprogression or RN after initial
RT [48–52], as published by the PET RANO group [53].
Several FET or F-DOPA PET studies have suggested that
a differentiation between BBD or RN and relapse can be
obtained with a high diagnostic accuracy between 80–90%
[54–57] and dynamic FET PET acquisition may further in-
crease diagnostic value [51, 54, 55, 58, 59].

In analogy to gliomas, brain metastases (BM) can also be
visualized by PET imaging [59]. PET imaging has evolved

as a complementary imaging tool for the differentiation of
true progression from CEL [60–62], and the use of PET
in brain metastases was also recently recommended by the
PET RANO group [59]. However, PET differentiation is
less used in clinical routine in brain metastases compared
to glioma and cost coverage can be an issue. Moreover,
necrosis of tumor tissue is a wanted effect in ablative SRS
of BM. Currently, there is no imaging technology to dis-
tinguish between brain tissue necrosis and tumor necrosis,
and a multistep approach to obtain diagnostic accuracy is
needed. To correctly interpret CEL after SRS of BM or cav-
ities after BM resection, the evidence of local tumor control
must be understood depending on size/volume of the lesion
and applied dose. Local control rates after SRS are typ-
ically in the range of >90% and, therefore, RN is more
likely than tumor progression [29]. Depending on the size
of the lesion, volume of the treated area, and fractionation,
tumor progression can become more likely [1, 63, 64]. Dif-
ferences in isodose surface selection for target coverage can
lead to differences in local control. In day-to-day clinical
routine, isodose curves, target coverage, dose prescription,
and detailed information about radiotherapy are often not
available to (neuro)radiologists, which is a relevant practical
issue for response assessment according to the RANO crite-
ria outside of clinical trials. Neuroradiologists are strongly
encouraged to discuss potential radiation-induced changes
with radiation oncologists to correctly assess CEL.

Modern image analysis strategies combining PET and
MRI have shown promise in the differentiation of tumor
progression from BBD or RN. In the future, computational
image analysis including automated tumor segmentation
and classification might further improve this [65, 66].

Correlation of diagnostic images and CEL patterns with RT
treatment plans

Correlation of diagnostic images with the radiotherapy
treatment plan (offline or online after fusion in the treat-
ment planning system) is one of the main pillars of the
diagnostic procedure and should be performed by an expe-
rienced radiation oncologist. Regarding RT, several factors
should be considered, such as (cumulative) radiation dose,
fractionation, prescription (homogeneously vs. inhomoge-
neously), and treatment technique (IMRT, 3D-CRT, SRS,
particle therapy).

Special considerations of radiation-inducedCEL accord-
ing to RT technique, typical localization, shape, and appear-
ance:

� BBD after radiotherapy with association to the subven-
tricular zone of the ventricular system can be seen fre-
quently after photon and proton RT with doses that are
below the TD5/5 in the marginal area of the RT volume.
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This may be due to the location of neural stem cells in the
ventricular subependymal region [67, 68] that are proba-
bly more sensitive to irradiation. In particle therapy, ac-
cording to the beam arrangement, on the marginal treat-
ment field where an increased RBE (and therefore higher
dose with exceedance of the TD5/5) due to the distal edge
of Bragg peak is expected, BBD occur more frequently
[69–71]. This can often be seen in the temporal lobes
and also near the ventricular system. BBD usually occurs
within the first 6 months after RT, although BBD asso-
ciated with the ventricular system can appear later (up
to 18 months after treatment), and transition into RN is
possible if not diagnosed and treated correctly.

� Typical RN can appear on axial contrast-enhanced T1-
weighted MR images as a so-called Swiss cheese or
spreading wavefront enhancement pattern [33, 72]. The
pattern can be similar to the appearance of a cut pep-
per, especially in large brain metastases or gliomas with
central tumor necrosis.

� Growing CEL often appear after SRS or hypofraction-
ated RT and appearance is clearly dose–volume corre-
lated [1, 32, 73]. These CEL, which start as BBD, can
occur quite fast after the end of RT due to the high dose
of SRS and may progress rapidly and may easily merge
into progressing RN if there is relevant brain tissue dam-
age. Central necrosis of tumor tissue in BM therapy is ex-
actly the effect that is desired in treatment with SRS. To
distinguish between the desired necrosis of tumor tissue
and an unwanted BBD or RN of the surrounding brain is
often not possible, due to the close proximity of tumor
and healthy cells.

� RN may appear ubiquitously when exceeding the TD5/5,
often in cases of Re-RT with photons, high-single-dose
radiosurgery, or particles. They often show a strong CEL
with tumor-like and rapid growth patterns with large per-
ifocal edema [21, 22].

CEL in typical loci after RT of extracranial head and
neck malignancies or intracranial extraaxial tumors: pa-
tients with extracranial tumors such as chordomas or chon-
drosarcomas or (recurrent) head and neck cancers (HNC)
frequently receive a total cumulative dose that is above the
maximum dose constraints for organs-at-risk (OARs) such
as the temporal lobe. In these cases, a risk–benefit trade-
off is inevitable due to an unfavorable tumor location near
OARs.

� Advances in radiotherapy technique and the availability
of particle therapy enable radiation oncologists to de-
liver high doses to the target volume. In the (curative)
treatment of HNCs like nasopharyngeal cancer, adenoid
cystic carcinomas, esthesioneuroblastoma, and chordo-
mas and chondrosarcomas, with close proximity to the

healthy brain tissue, radiation-induced frontal and tempo-
ral lobe necrosis (TL-RN) is a common complication [26,
74–76]. QUANTEC data reveal a dose–response rela-
tionship in the brain where the incidence of RN increases
from 3% with a Dmax <60Gy to 5% at Dmax= 72Gy
[22]. The total dose needed to gain tumor control usually
exceeds 60Gy and radiation oncologists therefore hazard
the consequences of a potential RN. Multiple studies
have reported on the dose–volume relationship for tem-
poral lobe necrosis using both photons and protons [73,
77–80]. BBD or RN usually occurs in typical loci at the
frontotemporal region or the temporal lobe, depending
on the radiation field. The risk for (TL-)RN rises with the
use of re-irradiation and in patients with infiltration of
the skull base or brain [81]. CEL can easily be misinter-
preted as tumor progression, which can lead to harmful
consequences for the patients. Therefore, HNC patients
with high-dose RT of the skull base or the temporal lobe
should be monitored closely by radiation oncologists.
Prospective and retrospective data show that treatment
with bevacizumab leads to quick symptom relief and
radiographic improvement in this setting [26, 82].

CEL in patients undergoing immunotherapy and targeted
therapies:

� Checkpoint inhibitors (CPI) and targeted therapies have
significantly improved prognosis of patients with vari-
ous malignancies including those with CNS metastases
of melanoma and lung cancer. As part of their multidis-
ciplinary treatment, many patients will be treated with
high-dose radiotherapy (RT) to CNS metastases and re-
ceive CPI either concurrently or within short time inter-
vals both before or after RT; this combination has been
observed to beneficially decrease the incidence of new
CNS metastases [83]. On the contrary, CPI have been
demonstrated to enhance the risk for symptomatic RN
[84]. Most RN occur within the first year after RT [85]

Diagnosis ex juvantibus

To the present day, there is no single modality to accurately
differentiate between BBD/RN and tumor recurrence, and
even when considering the previous points, in some cases,
diagnosis can only be made retrospectively. Shortly after
beginning treatment with corticosteroids, a decrease in the
T2-FLAIR edema can be seen, whereas CE only declines
slowly. In patients treated with bevacizumab, a reduction of
T2-FLAIR edema as well as CE can be seen quite rapidly.
Nevertheless, the central necrotic zone, which represents the
damaged brain tissue, is irreversible and remains a gliotic/
cystic zone. Treatment with bevacizumab can also reveal
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or unmark progressive tumor tissue which can be further
treated.

Conclusion

Due to the increasing use of SRS and Re-RT, high-dose
treatment at the skull base, and other dose-escalating radio-
therapy approaches, detection of new or progressing CEL
is encountered more frequently. We therefore propose a de-
tailed nomenclature of treatment-related changes post radio-
therapy. We describe the difference between BBD and RN
and the pathogenic interplay of both, explaining the possible
transition from BBD to RN, if the positive feedback loop is
not disrupted early enough. Since there is currently no diag-
nostic modality to distinguish reliably between brain tissue
necrosis, tumor necrosis, and tumor progression, a multi-
step approach with interdisciplinary consultation to obtain
diagnostic accuracy is needed. Because CEL often repre-
sents a mixture of tumor cells and radiation injury, the goal
may also be to identify the predominant component. Not all
CEL require treatment and it is therefore very important to
distinguish between posttherapeutic effects (like BBD and
RN) and tumor progression.

Disclaimer

Our recommendations are a resource for professionals in-
volved in the management of RN. The implementation of
this guideline requires multidisciplinary structures of care,
and defined processes of diagnosis and treatment. These
recommendations are a guide and not meant to be prescrip-
tive; ultimately, each physician will need to make treatment
decisions based on discussions with the patient. Adherence
to this practical guideline will not ensure successful treat-
ment in every situation. This guideline was prepared on the
basis of information available at the time the panel was
conducting its research and discussions on this topic.
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