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Abstract
Ziziphus spinosa (Bunge) H.H. Hu ex F.H. Chen is a woody plant species of the family 
Rhamnaceae (order Rhamnales) that possesses high nutritional and medicinal value. 
Predicting the effects of climate change on the distribution of Z. spinosa is of great 
significance for the investigation, protection, and exploitation of this germplasm re-
source. For this study, optimized maximum entropy models were employed to predict 
the distribution patterns and changes of its present (1970–2000) and future (2050s, 
2070s, and 2090s) potential suitable regions in China under multiple climate scenarios 
(SSP1-2.6, SSP2-4.5, SSP3-7.0 & SSP5-8.5). The results revealed that the total area 
of the present potential suitable region for Z. spinosa is 162.60 × 104 km2, which ac-
counts for 16.94% of China's territory. Within this area, the regions having low, me-
dium, and high suitability were 80.14 × 104 km2, 81.50 × 104 km2, and 0.96 × 104 km2, 
respectively, with the high suitability regions being distributed primarily in Shanxi, 
Hebei, and Beijing Provinces. Except for SSP-1-2.6-2070s, SSP-5-8.5-2070s, and SSP-
5-8.5-2090s, the suitable areas for Z. spinosa in the future increased to different de-
grees. Meanwhile, considering the distribution of Z. spinosa during different periods 
and under different climate scenarios, our study predicted that the low impact areas 
of Z. spinosa were mainly restricted to Shanxi, Shaanxi, Ningxia, Gansu, Liaoning, Inner 
Mongolia, and Jilin Provinces. The results of core distributional shifts showed that, 
except for SSP1-2.6, the center of the potential suitable region of Z. spinosa exhibited 
a trend of gradually shifting to the northwest.
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1  |  INTRODUC TION

Climate change is considered to be a key factor in altering the geo-
graphical distribution of species in the 21st century (Record et al., 
2013; Santos-Hernández et al., 2021; Waltari et al., 2007). According 
to the Fifth Assessment Report (AR5) of the Intergovernmental Panel 
on Climate Change (IPCC), the average global surface temperature is 
expected to rise by 0.3–4.8°C by the end of the 21st century due 
to the continuous increases in greenhouse gas emissions (Braunisch 
et al., 2013; Cahill et al., 2013; Carroll et al., 2010). In response to 
this warming trend, many studies have suggested that species would 
change their currently suitable habitats in response to changes in en-
vironmental conditions, particularly as species distribution increases 
in elevation and migrates to northern latitudes (Heikkinen et al., 
2006; Kujala et al., 2013; Qiu et al., 2011; Schweiger et al., 2008). In 
addition to changes in spatial habitats, climate change is modifying 
sensitive ecological responses, including flowering periods and the 
duration of growing seasons (Hampe et al., 2013; Wang et al., 2013).

With the emergence of novel computational statistics technol-
ogies and the development of the Global Information System (GIS), 
direct correlations between environmental factors (e.g., climate, to-
pography, meteorological data, species data) have become possible, 
which is extensively used in ecological applications (Ye et al., 2020). 
Ecological niche models (ENMs), also known as species distribution 
models (SDMs) (Brown, 2014; Brown et al., 2017), are employed to 
estimate the relationships between species presence and environ-
mental factors through the extrapolation of multiple algorithms at 
multiple temporal and spatial scales (Conolly et al., 2012), which can 
be used to predict the potential distribution of species (Conolly et al., 
2012). Over the last few decades, ENMs have played an important 
role in predicting the potential geographic distribution of species in 
the context of climate change, and have been broadly used in the 
domains of biology, ecology, biogeography, evolutionary biology, 
and species conservation (Araújo & Guisan, 2006). Among various 
ENM/SDM methodologies, maximum entropy (MAXENT) modeling 
has exhibited a better predictive ability, to become one of the most 
widely used models at present (Phillips et al., 2017; Radosavljevic & 
Anderson, 2014; Zeng et al., 2016). To date, the MAXENT model has 
been used to predict trends in the potential habitats of many plant 
species (particularly endangered species), such as Mimusops laurifolia 
(Forssk.) Friis (Hall et al., 2010) and Semiliquidambar cathayensis H.T. 
Chang (Ye et al., 2020).

Ziziphus spinosa (Bunge) H.H. Hu ex F.H. Chen is a woody plant 
within the family Rhamnales (order Rhamnaceae). It is native to 
Liaoning, Hebei, Shandong, Shanxi, Shaanxi, Henan, Inner Mongolia, 
Gansu, Xinjiang, Beijing, and other northern Provinces of China, 
which generally grows in mountainous, hilly, or plain areas with ele-
vations of <1,700 m (Wang et al., 2021). Ziziphus spinosa possesses 
high nutritional, economic, and medicinal value, as its pulp is rich 
in sugars, acids, proteins, and vitamins, has a long flowering period, 
and can be a source of nectar. Moreover, Ziziphi Spinosae Semen 
(i.e., dry mature seeds of Z. spinosa) has such functions as nourishing 
the heart and liver, and treating insomnia (Li et al., 2021; Song et al., 

2020). The past decade has witnessed an increasingly high market 
demand and price for Z. spinosa due to limited yields and supplies; 
thus, it has become urgent to promote its artificial planting and 
development.

To date, previous investigations of Z. spinosa have focused pri-
marily on cultivation technologies and the pharmacological effects 
of Ziziphi Spinosae Semen (Li et al., 2021; Song et al., 2020). The 
present study employed an optimized maximum entropy model to 
predict and analyze the distribution areas of Z. spinosa under both 
present (1970–2000) and future (2050s, 2070s and 2090s) climate 
scenarios (SSP1-2.6, SSP2-4.5, SSP3.70 & SSP5-8.5).

2  |  MATERIAL S AND METHODS

2.1  |  Collection and screening of sample data

Over the last 3 years (2019–2021), our research group conducted 
extensive field surveys in Shaanxi, Shanxi, Gansu, Hebei, Henan, and 
Shandong Provinces, and collected a total of 106 occurrence points. 
In addition, 321 occurrence points were obtained from the previ-
ously published literature and web databases [i.e., China National 
Knowledge Infrastructure/CNKI (https://www.cnki.net); Google 
Scholar (https://schol​ar.google.com); Chinese Virtual Herbarium/
CVH (https://www.cvh.ac.cn); Chinese Field Herbarium/CFH 
(http://www.cfh.ac.cn), Plant Photo Bank of China/PPBC (http://
www.ppbc.iplant.cn), and the Global Biodiversity Information 
Facility/GBIF (https://www.gbif.org)]. To minimize errors caused by 
clustering effects, each grid (2.5 arc-minutes) retained only one oc-
currence point; thus, a final dataset of 406 occurrence points was 
employed for MAXENT modeling (Figure 1).

2.2  |  Variable environment screening and 
data processing

Bioclimatic variables are the major determinants of the ENMs of 
species and are frequently used for the development of plant ENMs 
(Tang et al., 2018). The set of 19 bioclimatic variables used in the pre-
sent study were downloaded from the WorldClim website (https://
www.world​clim.org), which involved a recent (1970–2000) and three 
future periods (2050s, 2070s, and 2090s). Considering the impacts 
of climate change scenarios on the accuracy of model development 
(Santos-Hernández et al., 2021), we selected four shared socioeco-
nomic pathways (SSPs; SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5) for three general circulation models (GCMs; BCC-CSM2-MR, 
CNRM-CM6-1, and MIROC-ES2L) in future climate data (Xu et al., 
2020). Consequently, a total of 37 sets of bioclimatic data were in-
cluded in this study, with one recent, and 36 future sets.

Firstly, the MAXENT pre-model was developed based on species 
occurrence data and 19 bioclimatic factors, where the importance 
of each variable to the model was evaluated using the Jackknife 
method (Yang et al., 2013; Zeng et al., 2016; Zhang et al., 2020). 

https://www.cnki.net
https://scholar.google.com
https://www.cvh.ac.cn
http://www.cfh.ac.cn
http://www.ppbc.iplant.cn
http://www.ppbc.iplant.cn
https://www.gbif.org
https://www.worldclim.org
https://www.worldclim.org
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Secondly, pairwise Pearson correlation coefficients (R) among the 19 
bioclimatic factors were calculated using ENMTools v1.4.4 (Warren 
et al., 2010), and any pair of factors with |R| ≥ 0.8 were considered to 
be significantly correlated (Warren et al., 2010). Finally, for each pair 
of significantly correlated variables, only the ones with higher con-
tributions to the model were retained (Cahill et al., 2013; Václavík & 
Meentemeyer, 2009, 2012; Warren et al., 2011; Wisz et al., 2013; 
Zeng et al., 2016).

2.3  |  Model establishment, optimization, ​  
and evaluation

Maxent v3.4.1 (Phillips et al., 2017) was used to construct the maxi-
mum entropy model for this study. Considering that the selection of 
general circulation models (GCMs) would lead to the uncertainty of 
the prediction results, we carried out arithmetic average processing 
on the prediction results of the three GCMs for the future periods. 
To ensure the probability of Z. spinosa distribution being close to the 
normal distribution, we selected 70% of the data for model training 
and the remaining data for model testing (Phillips & Dudík, 2008). The 
other major parameters were set as follows: <Maximum Iterations: 
5000; Replicated Run Type: Crossvalidate; No. of Replicates: 10>.

In this study, the R package <kuenm> (Cobos et al., 2019) was em-
ployed to optimize the feature class (FC) and regularization multiplier 
(RM) of the MAXENT model. Firstly, the RM was set to 0.1–4 with each 
interval of 0.1, which resulted in a total of 40 RM values. Subsequently, 
the four FCs [Linear (L), Quadratic (Q), Hinge (H), Product (P)] in the 
MAXENT model were combined to form 15 FC combinations [i.e., L, P, 

Q, H, LP, LQ, LH, LPQ, LPH, LQH, LQH, LQH, LQH, PQ, PH, and QH]. 
Thus, a total of 600 parameter combinations were multiplied by the 
FC and RM. On the basis of optimal model determination, the model 
(OR_AICc) with a statistically significant omission rate that was lower 
than the threshold value (0.05), and a delta AICc value of less than 2 
was selected (Liu et al., 2019; Ye et al., 2018).

2.4  |  Classification of suitable region and reliability 
test of model

The suitability of species habitats is typically represented by the value 
range 0–1, where the higher the value is, the more suitable a certain 
area is for the species to grow. The selection of thresholds has an im-
portant impact on the prediction of suitable regions of different grades, 
which affects the calculation of different suitable areas (Arenas-Castro 
et al., 2020; Hu et al., 2020). Tang et al. (2018) proposed that a maxi-
mum test sensitivity plus specificity (MTSPS) threshold was superior 
to other threshold options in the grade division of suitable regions. 
Thus, MTSPS was employed as the threshold value for this study, and 
those areas with suitability values lower than MTSPS were considered 
unsuitable for the growth of the species. The suitability range between 
the MTSPS and 1 was subdivided into three equal parts, which cor-
responded to the low, moderate, and high suitability regions, respec-
tively (Li et al., 2019; Wang et al., 2017). The area sizes of different 
suitable regions as well as their changes in different future periods 
were calculated by using DIVA-GIS v7.5 (https://diva-gis.org).

Following model construction, the area under the receiver oper-
ating characteristic curve (AUC) was used to evaluate the accuracy 

F I G U R E  1 The occurrence data (406 
points) of Ziziphus spinosa in China

https://diva-gis.org
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of the predictive model (Lobo et al., 2008). The mean AUC value was 
in the range of (0, 1), where AUC > 0.9 indicated that the model re-
sults were excellent and accurate (Warren & Seifert, 2010). Further, 
we considered the difference between the training AUC and the test 
AUC, where the smaller the absolute value of the difference, the 
higher the reliability of the model (Warren & Seifert, 2011).

2.5  |  Analysis of low impact areas

Low impact areas refer to those where species are relatively less af-
fected by climate change, which can be projected by superposing the 
binary prediction maps of suitable regions in different periods and 
taking the completely overlapping parts (Pan et al., 2020). In DIVA-
GIS v7.5, the distribution maps of the potential suitable regions of 
different periods were overlaid to reclass the spatial units with suit-
ability values greater than the MTSPS threshold as the suitable re-
gions (Zhao, Zhang, et al., 2021). Those spatial units with suitability 
values lower than the MTSPS threshold were reclassed as unsuit-
able regions, which established the unsuitable and suitable matrices 
of Z. spinosa. Subsequently, the completely overlapping parts in the 
overlay layers were selected. After processing, the overlaid layers of 
different periods were imported into DIVA-GIS v7.5, and the poten-
tial low impact areas of Z. spinosa were visualized. This study pre-
dicted the low impact areas of four different shared socioeconomic 
pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0 & SSP5-8.5) in current and 
future periods (2050s, 2070s, and 2090s).

2.6  |  Analysis of spatial pattern changes

Spatial pattern changes refer to those of potential suitable regions of 
species across different periods, which could be obtained by super-
posing binary prediction maps of suitable regions during different 
periods (Santos-Hernández et al., 2021; Wu et al., 2021; Zurell et al., 
2020). For this study, we created a prediction chart of the spatial 
pattern changes of four different SSPs (SSP1-2.6, SSP2-4.5, SSP3-
7.0, and SSP5-8.5) during current and future periods (2050s, 2070s, 
and 2090s), resulting in a total of 12 pattern change predictions. This 
was used to analyze the change rule of potential suitable regions 
of Z. spinosa in the recent period and three different future peri-
ods under various SSPs. In DIVA-GIS v7.5, the distribution maps of 
potential suitable regions of different periods were superposed to 
establish both the unsuitability and suitability matrices of Z. spinosa. 
Based on the matrix table, the changes in spatial patterns of the suit-
able distribution regions under current and future climate change 
scenarios were further analyzed.

2.7  |  Core distributional shifts

SDMToolbox V2.4 toolkit (Brown, 2014; Brown et al., 2017) of 
ArcGIS v10.2 was employed to calculate the variation trend of 

different suitable regions for Z. spinosa, and the central points of dif-
ferent regions were compared. We considered the suitable region 
of Z. spinosa as a whole, simplified it to a vector particle, and used 
the change of the centroid position to reflect the size and direction 
of the suitable region of Z. spinosa. Finally, the SDMToolbox toolkit 
was used to track the centroid of Z. spinosa, to investigate the dis-
tribution of the centroid during different periods and under various 
climate conditions, and to evaluate the migration distance of suitable 
regions via longitude and latitude coordinates (Smith et al., 2019; 
Zurell et al., 2020).

3  |  RESULTS

3.1  |  Analysis of model accuracy and classification 
of suitable regions

Based on 406 distribution points and five bioclimatic variables, the 
MAXENT model was used to predict the distribution of potential 
suitable regions for Z. spinosa. The model optimization suggested 
that the optimal FC and RM were LQ and 0.1, respectively. The train-
ing AUC (AUCTRAIN) value of the model was 0.9526 ± 0.0019, and the 
test AUC (AUCTEST) value was 0.9500 ± 0.0052. The absolute value 
(|AUCDIFF|) of the difference between AUCTRAIN and AUCTEST was 
0.0026. All of these results suggested an excellent model prediction 
accuracy.

Based on the MTSPS threshold (0.1613), the spatial units were 
subdivided as follows: 0–0.1613 Unsuitable region; 0.1614–0.4409 
Low suitable region; 0.4410–0.7204  Moderate suitable region; 
0.7204–1 High suitable region.

3.2  |  Contribution analysis of environmental   
variables

Following model optimization, five bioclimatic factors were used for 
the final model construction, i.e., temperature seasonality (BIO04), 
mean temperature of warmest quarter (BIO10), mean temperature 
of coldest quarter (BIO11), precipitation of warmest quarter (BIO18), 
and precipitation of coldest quarter (BIO19). Their percentage-wise 
contributions to model construction were BIO11 (65.2%) > BIO18 
(13.6%) > BIO19 (10.3%) > BIO10 (5.9%) > BIO04 (5.0%) (Table 1).

3.3  |  Current potential suitable region

The current potential suitable regions of Z. spinosa covered a total 
area of 162.60 ×  104  km2, and were mostly restricted to Beijing, 
Tianjin, Hebei, Shanxi, Inner Mongolia, Shaanxi, Ningxia, Henan, 
and Shandong Provinces. Additionally, fragmented distributions 
were also predicted in Gansu, Qinghai, Xinjiang, Hubei, Sichuan, 
Guizhou, Jilin, Jiangsu, and Anhui Provinces (Figure 2). The pre-
dicted areas of high, moderate, and low potential suitability regions 
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were 0.96 × 104 km2, 81.50 × 104 km2, and 80.14 × 104 km2, respec-
tively. The highly suitable regions were mainly distributed in Shanxi 
(Changzhi and Jincheng), Hebei (Xingtai, Handan, and Baoding), and 
Beijing Provinces (Table 2).

3.4  |  Future potential suitable regions

The distribution and changes in potential suitability regions for Z. 
spinosa during the three future periods differed under various cli-
mate scenarios; however, there were some similarities in the trends 
of changes (Figures 3–5; Tables 2 and 3). Under different climate 
scenarios, the area of low suitability regions increased significantly 
compared with its current value, while that of the moderate suitabil-
ity regions decreased significantly. Conversely, the changing trends 

of total and highly suitable regions were not completely consistent 
under different climate scenarios (Tables 2 and 3).

Under the SSP1-2.6 scenario, the total area of the potential suit-
able region for Z. spinosa changed slightly (98.86%–104.62% of the 
current corresponding value), and showed only a small contraction in 
the 2070s. The area of the high suitability region increased to vary-
ing degrees. Notably, the area of high suitability region in the 2090s 
was 2.89 × 104 km2, with an increase of 201.26% compared with the 
current area.

Under the SSP2-4.5 scenario, the total area of the suitable re-
gion for Z. spinosa showed a slight increase (102.03%–107.46% of 
the current corresponding value). The area of the highly suitable re-
gion initially increased, contracted, and then finally increased. The 
values during the three future periods were 1.55 × 104 km2 (2050s), 
0.94 ×  104  km2 (2070s), and 1.85 ×  104  km2 (2090s), accounting 

Code Bioclimatic factors
Percent 
contribution (%)

BIO04 Temperature seasonality (standard 
deviation × 100)

5.0

BIO10 Mean temperature of warmest quarter (°C) 5.9

BIO11 Mean temperature of coldest quarter (°C) 65.2

BIO18 Precipitation of warmest quarter (mm) 13.6

BIO19 Precipitation of coldest quarter (mm) 10.3

TA B L E  1 Bioclimatic factors used for 
the final model development and their 
contributions

F I G U R E  2 Predicted distribution of Ziziphus spinosa in China under current climate condition
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for 161.55%, 98.19%, and 192.78% of their current corresponding 
value, respectively.

Under the SSP3-7.0 scenario, the total area of the suitable region 
for Z. spinosa increased to different degrees during the three future 
periods, and the total area of the suitable region (179.51 × 104 km2) 
increased most significantly in the 2070s, which increased by 10.40% 
compared with the current value. The area with the high suitability 
region showed a trend of contraction-expansion-contraction, ac-
counting for 161.55% (2050s), 98.19% (2070s), and 192.78% (2090s) 
of the current value, respectively.

Under the SSP5-8.5  scenario, the total area of the suitable 
region of Z. spinosa initially increased and then contracted, and 
the area of the suitable region was only 139.53 ×  104  km2 in the 
2090s. In the 2090s, the area of the moderate suitability region was 
31.16 × 104 km2 (only 38.23% of the current corresponding value). 
Except for the 2050s, the area of the high suitability region showed 
a gradual contraction trend. In the 2090s, the high suitability region 
was only 0.12 × 104 km2 in area (12.82% of the current correspond-
ing value).

3.5  |  Low impact area

The prediction of the low impact area differed under various climatic 
scenarios (Figure 6, Figure S1; Table 4). With increased climatic se-
verity (SSP1-2.6→SSP5-8.5), the distribution of the low impact area 
for Z. spinosa decreased continuously (134.33 × 104 km2→76 .38 × 1
04 km2). However, Shanxi, Ningxia, Central and Northern Shaanxi, 
Central and Eastern Gansu, Northern Hebei, Central and Western 
Liaoning, and Southern Inner Mongolia were always predicted to be 
low impact areas for the growth of Z. spinosa (Figure 6). Furthermore, 
the Jiaodong Peninsula of Shandong Province, Central and Western 
Liaoning Province, Northern Tianjin, Northern Ningxia Province, 

and Southern Shaanxi Province were classified as low impact areas 
under three climatic scenarios.

3.6  |  Shift in the distribution center of the 
suitable region

The potential suitable region for Z. spinosa showed a trend of gradu-
ally shifting to the northwest under all climatic scenarios, except 
SSP1-2.6. For example, under the SSP5-8.5 scenario, the center of 
the potential suitable region shifted to the northwest by 183.64 km 
(2050s), 106.79 km (2070s), and 106.91 km (2090s) over time. The 
central point moved from Yushe County (Shanxi Province) currently, 
to the Ejin Horo Banner (Inner Mongolia) in the 2090s. Under the 
SSP1-2.6 scenario, the center of the potential suitable region initially 
shifted to the northeast by 155.39 km (2050s), then to the north-
west by 66.31 km (2070s), and finally to the northeast by 78.26 km 
(2090s) over time. The central point transitioned from Yushe County 
(Shanxi Province) to Wutai County (Shanxi Province).

4  |  DISCUSSION

4.1  |  Accuracy of model prediction

Using the MAXENT model to predict the distribution of potential 
suitable regions for species has become one of the commonly used 
research methods across the domains of biology, ecology, bioge-
ography, biological evolution, and species conservation (Araújo & 
Guisan, 2006). However, previous studies often neglected the opti-
mization of model parameters, or involved inadequate optimization, 
which could affect the accuracy of the predictive model (Li et al., 
2020; Yan, Feng, Zhao, Feng, Wu, et al., 2020; Yan, Feng, Zhao, 

TA B L E  2 Predicted suitable areas under current and future climatic conditions

Decades

Predicted area (×104 km2) and % of the corresponding current area

Total suitable region Lowly suitable region Moderately suitable region Highly suitable region

1970–2000 162.60 — 80.14 — 81.50 — 0.96 —

SSP1-2.6 2050s 170.12 104.62% 102.49 127.88% 66.39 81.46% 1.24 128.88%

2070s 160.76 98.86% 100.48 125.38% 58.96 72.34% 1.32 137.00%

2090s 174.84 107.52% 106.14 132.44% 65.80 80.74% 2.89 301.26%

SSP2-4.5 2050s 174.74 107.46% 106.74 133.19% 66.44 81.53% 1.55 161.55%

2070s 174.56 107.36% 113.37 141.46% 60.25 73.93% 0.94 98.19%

2090s 165.91 102.03% 107.57 134.22% 56.49 69.31% 1.85 192.78%

SSP3-7.0 2050s 170.61 104.92% 107.44 134.06% 62.33 76.48% 0.83 86.82%

2070s 179.51 110.40% 118.23 147.53% 59.64 73.18% 1.63 169.68%

2090s 165.42 101.73% 115.10 143.62% 49.62 60.88% 0.70 72.92%

SSP5-8.5 2050s 176.54 108.57% 111.25 138.82% 62.69 76.92% 2.60 270.76%

2070s 149.88 92.17% 97.94 122.21% 51.09 62.68% 0.85 88.45%

2090s 139.53 85.81% 108.25 135.07% 31.16 38.23% 0.12 12.82%
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Feng, Zhu, et al., 2020). Previous studies revealed that the qual-
ity control of species occurrence points, screening of environment 
variables, selection of GCMs and SSPs, threshold selection, and the 
optimization of RM and FC all had significant effects on the pre-
dictive results of the model (Wei et al., 2021; Yang et al., 2021; Ye 
et al., 2020; Zeng et al., 2016). For this study, these parameters were 
systematically optimized so as to ensure predictive accuracy to the 
maximum extent.

4.2  |  Effects of environmental variables on species 
distribution

The geographical distribution of plants is restricted mainly by cli-
matic variables, where hydrothermal conditions play a leading role 
in their distribution patterns (Sun et al., 2020). Precipitation is likely 
to increase or decrease as the climate changes and will affect soil 
moisture, which can cause plants to fail to reproduce, grow, and sur-
vive (Feng et al., 2020). Our study revealed that the main bioclimatic 
variables that affected the potential distribution of Z. spinosa were 
the mean temperature of the coldest quarter and the precipitation 

of the warmest quarter (Table 1). The mean temperature of coldest 
quarter for Z. spinosa is −9.1—5.8°C; it is much more likely to affect 
survival or cause a mismatch between phenology and season. The 
suitable range of the precipitation of the warmest quarter for Z. spi-
nosa is 93–675 mm, which implies that Z. spinosa may prefer rela-
tively dry environments. This was evidenced by our field surveys: 
Z. spinosa prefers arid and mild soil, and generally grows on sunny 
or semi-sunny slopes, with little requirement for water or fertilizers. 
Furthermore, it is more suitable for temperate monsoon and tem-
perate continental climates; thus, it appears that Z. spinosa is more 
suitable for planting in Northern China.

Under the SSP2-4.5 and SSP3-7.0 scenarios, the total area of 
the potential suitable regions for Z. spinosa increased by varying 
degrees. This indicated that within a certain range, the rising tem-
peratures and increased rainfall caused by the greenhouse effect 
were more conducive for the growth of Z. spinosa. However, when 
the effects of global warming exceed the optimal tolerance range 
of species, the potential distribution region would also contract to 
varying degrees. For example, under the SSP5-8.5  scenario, the 
potential suitable region of Z. spinosa decreased significantly in 
the 2070s and 2090s.

F I G U R E  3 Predicted distribution of Ziziphus spinosa in China under future (2050s-2090s) climatic scenarios
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F I G U R E  4 Changes of potential suitable areas of Ziziphus spinosa from current to future climatic conditions

F I G U R E  5 Areas (a) and changes (b) of habitats of different suitability for Ziziphus spinosa at different times in China
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4.3  |  Changes in spatial patterns of potential 
suitable regions

In general, over time, the potential suitable regions for Z. spinosa 
gradually migrated to high-latitude areas (Figures 4 and 7). For ex-
ample, under the SSP1-2.6 scenario, the suitable region of Z. spinosa 
increased, except for the 2070s; however, the distribution area 
changed. Jiangsu, Guizhou, Hubei, Anhui, southern Henan, and ad-
jacent regions were close to being no longer suitable for its growth. 
Meanwhile, there was an expansion of potentially suitable areas in 

Jilin, Liaoning, Inner Mongolia, Gansu, Qinghai, Xinjiang, and adja-
cent regions. Under the SSP5-8.5  scenario, the suitable regions 
were further transferred to the north by the 2070s. Northeastern 
Qinghai, central and southern Shaanxi, southwestern Shanxi, cen-
tral and southern Hebei, most parts of Henan, central and western 
Shanxi were predicted to no longer be suitable for Z. spinosa. By the 
2090s, with the further intensification of the greenhouse effect, 
Shandong and Tianjin became unsuitable for the growth of Z. spi-
nosa, whereas the area of potential suitable regions in Hebei, Beijing, 
and adjacent regions were also greatly reduced.

Scenarios
Unchanged 
rate (%)

Expansion 
rate (%)

Contraction 
rate (%)

Current→2050s SSP1-2.6 83.87 20.76 16.13

SSP2-4.5 83.49 23.97 16.51

SSP3-7.0 84.56 20.36 15.44

SSP5-8.5 80.33 28.24 19.67

Current→2070s SSP1-2.6 82.98 15.89 17.02

SSP2-4.5 78.97 28.39 21.03

SSP3-7.0 75.47 34.93 23.92

SSP5-8.5 60.33 31.85 39.67

Current→2090s SSP1-2.6 83.53 23.99 16.47

SSP2-4.5 73.45 28.59 26.56

SSP3-7.0 60.31 41.43 39.70

SSP5-8.5 46.97 38.84 53.03

TA B L E  3 Change rates of Ziziphus 
spinosa suitable regions in different 
periods

F I G U R E  6 Composite prediction of low impact areas supported by varying numbers of shared socio-economic pathways (SSP1-2.6, 
SSP2-4.5, SSP3-7.0 & SSP5-8.5)
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Compared with previous studies (Zhao et al., 2021), we also pre-
dicted the distribution of potential suitable areas in 2090s and the 
shift in the distribution center of the suitable region in different ages. 
We found that during the period of SSP5-8.5-2090s, the potential 
suitable area of Z. spinosa would shrink by 14.19%; this indicated that 
with the intensification of the greenhouse effect, when the average 
temperature line exceeded the tolerance limit of Z. spinosa, the distri-
bution area of Z. spinosa would gradually decrease and move to higher 
latitude. Therefore, by using the prediction results of the model, it is 
possible to take reasonable protection measures to Z. spinosa as soon 
as possible, which would alleviate the impact of climate change. In ad-
dition, the total area of potential suitable areas of Z. spinosa tends to 
increase, and the expansion area is mainly located in middle and high 
latitudes, while the decrease area is mainly located in low latitudes, 
which is consistent with the view of Zhao, Zhang, et al. (2021).

4.4  |  Development and protection of 
germplasm resources

Ziziphus spinosa is a woody plant with high economic value that can tol-
erate cold and dry environments, and is suitable for planting in north-
ern China (Li et al., 2021; Song et al., 2020). Furthermore, particularly 
in the Loess Plateau area, it can also be employed as a shelter forest 

species. Our study predicted that Shanxi, central and northern Shaanxi, 
eastern Gansu, central and southern Liaoning, northern Hebei, cen-
tral and southern Ningxia, southern Inner Mongolia, and eastern Jilin 
would be less affected by climate change (Figure 6, Figure S1); thus, 
these areas would be suitable for increased Z. spinosa planting.

Due to anthropogenic destruction of habitat and climate change, 
wild Z. spinosa resources are gradually shrinking. According to the pre-
diction results of the model, the potential suitable area of Z. spinosa 
will gradually shift to the north in the future. This means that future 
artificial planting area of Z. spinosa should be preferably established 
in the north of the Qinling Mountains (Figure 6), so as to alleviate the 
impact of climate change on the growth of Z. spinosa. In addition, with 
the aggravation of climate severity, the distribution of Z. spinosa in 
Shandong Province will gradually reduce, which may pose a challenge 
to the protection of local wild Z. spinosa resources. It may be necessary 
to establish a local germplasm bank of Z. spinosa in time.

Jujuboside A & B and Spinosin are the main medicinal ingredients of 
Ziziphi Spinosae Semen, and their content has become one of the stan-
dards through which to measure the quality of Z. spinosa. The current 
highly suitable regions for Z. spinosa growth are primarily restricted to 
Shanxi (Changzhi and Jincheng), Hebei (Xingtai, Handan and Baoding), 
Beijing, and adjacent regions (Figure 2). These regions are generally 
considered as the traditional and authentic production areas of Z. spi-
nosa (Li et al., 2021). However, under the climate change, the quality 

LIA statistics

Shared socio-economic pathways (SSPs)

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Geographic area (×104 km2) 134.33 119.42 98.06 76.38

Percentage of current suitable area (%) 82.61 73.44 60.30 46.97

Percentage of SSP1-2.6 area (%) 100.00 88.90 73.00 56.86

TA B L E  4 Low impact areas (LIAs) under 
different shared socio-economic pathways 
(SSPs)

F I G U R E  7 Core distribution shifts 
under 12 climate scenarios/years. Arrows 
indicate the magnitude and direction of 
predicted change over time
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of Z. spinosa may be negatively impacted in these areas. Therefore, the 
investigation, collection, and management of high-quality germplasm 
and the establishment of core germplasm resource banks may play a 
key role in the protection of high-quality Z. spinosa resources.

4.5  |  Study limitations

For this study, we considered only the effects of bioclimatic vari-
ables on species distribution, which was also practically influenced 
by a variety of biological factors (e.g., interspecific competition, pre-
dation, and disease) and abiotic factors (e.g., soil, topography, and 
anthropogenic activities) (Sun et al., 2020). Moreover, our study 
assumed that species would have a sufficient dispersal capacity 
to migrate to any climatically suitable area under climate change. 
However, we did not consider factors such as the species migration 
rate, as well as geographical and ecological isolation, all of which can 
lead to potential discrepancies between predicted and actual dis-
tributions. Elucidating the influences of all these factors requires a 
more comprehensive niche modeling approach, which has yet to be 
done in future studies (Wilting et al., 2010).

ENMs/SDMs make important assumptions about the relation-
ship between species distributions and their environment that may 
limit their ability to accurately predict future species distributions. In 
particular, SDMs in theory assume stable fundamental niches, but in 
practice, they assume stable realized niches. The assumption of a fixed 
realized niche relative to climate variables remains unlikely for various 
reasons, particularly if novel future climates open up currently unavail-
able portions of species' fundamental niches (Veloz et al., 2012).

5  |  CONCLUSION

An optimized MAXENT model was employed to predict the dis-
tribution patterns and changes of potentially suitable Z. spinosa 
regions in China under different climate scenarios (SSP1-2.6, 
SSP2-4.5, SSP3-7.0, and SSP5-8.5) in recent (1970–2000) and 
future periods (2050s, 2070s, and 2090s). The potential future 
suitable area of Z. spinosa would expand except SSP-1–2.6-2070s, 
SSP-5–8.5-2070s, and SSP-5–8.5-2090s. Meanwhile, considering 
the distribution of Z. spinosa during different time periods and 
under variable climate change scenarios, the low impact areas 
were primarily distributed in Shanxi, Shaanxi, Ningxia, Gansu, 
Liaoning, Inner Mongolia, and Jilin Provinces. Furthermore, except 
for SSP1-2.6, the center of the potential suitable region of Z. spi-
nosa showed a trend of gradually shifting to the northwest. The 
findings of this study provide important references for the investi-
gation and protection of germplasm resources and the promotion 
of artificial cultivation of Z. spinosa.
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