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Abstract
Ziziphus spinosa	(Bunge)	H.H.	Hu	ex	F.H.	Chen	is	a	woody	plant	species	of	the	family	
Rhamnaceae	(order	Rhamnales)	that	possesses	high	nutritional	and	medicinal	value.	
Predicting	the	effects	of	climate	change	on	the	distribution	of	Z. spinosa	 is	of	great	
significance	for	the	investigation,	protection,	and	exploitation	of	this	germplasm	re-
source.	For	this	study,	optimized	maximum	entropy	models	were	employed	to	predict	
the	distribution	patterns	and	changes	of	its	present	(1970–	2000)	and	future	(2050s,	
2070s,	and	2090s)	potential	suitable	regions	in	China	under	multiple	climate	scenarios	
(SSP1-	2.6,	SSP2-	4.5,	SSP3-	7.0	&	SSP5-	8.5).	The	results	revealed	that	the	total	area	
of	the	present	potential	suitable	region	for	Z. spinosa is 162.60 × 104	km2,	which	ac-
counts	for	16.94%	of	China's	territory.	Within	this	area,	the	regions	having	low,	me-
dium,	and	high	suitability	were	80.14	× 104	km2,	81.50	× 104	km2,	and	0.96	× 104	km2,	
respectively,	with	 the	high	 suitability	 regions	 being	distributed	primarily	 in	 Shanxi,	
Hebei,	and	Beijing	Provinces.	Except	for	SSP-	1-	2.6-	2070s,	SSP-	5-	8.5-	2070s,	and	SSP-	
5-	8.5-	2090s,	the	suitable	areas	for	Z. spinosa	in	the	future	increased	to	different	de-
grees.	Meanwhile,	considering	the	distribution	of	Z. spinosa	during	different	periods	
and	under	different	climate	scenarios,	our	study	predicted	that	the	low	impact	areas	
of	Z. spinosa	were	mainly	restricted	to	Shanxi,	Shaanxi,	Ningxia,	Gansu,	Liaoning,	Inner	
Mongolia,	and	Jilin	Provinces.	The	results	of	core	distributional	shifts	showed	that,	
except	for	SSP1-	2.6,	the	center	of	the	potential	suitable	region	of	Z. spinosa	exhibited	
a	trend	of	gradually	shifting	to	the	northwest.
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1  |  INTRODUC TION

Climate	change	is	considered	to	be	a	key	factor	in	altering	the	geo-
graphical	distribution	of	species	 in	the	21st	century	 (Record	et	al.,	
2013;	Santos-	Hernández	et	al.,	2021;	Waltari	et	al.,	2007).	According	
to	the	Fifth	Assessment	Report	(AR5)	of	the	Intergovernmental	Panel	
on	Climate	Change	(IPCC),	the	average	global	surface	temperature	is	
expected	to	rise	by	0.3–	4.8°C	by	the	end	of	the	21st	century	due	
to	the	continuous	increases	in	greenhouse	gas	emissions	(Braunisch	
et	al.,	2013;	Cahill	et	al.,	2013;	Carroll	et	al.,	2010).	 In	response	to	
this	warming	trend,	many	studies	have	suggested	that	species	would	
change	their	currently	suitable	habitats	in	response	to	changes	in	en-
vironmental	conditions,	particularly	as	species	distribution	increases	
in	 elevation	 and	 migrates	 to	 northern	 latitudes	 (Heikkinen	 et	 al.,	
2006;	Kujala	et	al.,	2013;	Qiu	et	al.,	2011;	Schweiger	et	al.,	2008).	In	
addition	to	changes	in	spatial	habitats,	climate	change	is	modifying	
sensitive	ecological	responses,	 including	flowering	periods	and	the	
duration	of	growing	seasons	(Hampe	et	al.,	2013;	Wang	et	al.,	2013).

With	the	emergence	of	novel	computational	statistics	technol-
ogies	and	the	development	of	the	Global	Information	System	(GIS),	
direct	correlations	between	environmental	factors	(e.g.,	climate,	to-
pography,	meteorological	data,	species	data)	have	become	possible,	
which	is	extensively	used	in	ecological	applications	(Ye	et	al.,	2020).	
Ecological	niche	models	(ENMs),	also	known	as	species	distribution	
models	(SDMs)	(Brown,	2014;	Brown	et	al.,	2017),	are	employed	to	
estimate	the	relationships	between	species	presence	and	environ-
mental	 factors	 through	the	extrapolation	of	multiple	algorithms	at	
multiple	temporal	and	spatial	scales	(Conolly	et	al.,	2012),	which	can	
be	used	to	predict	the	potential	distribution	of	species	(Conolly	et	al.,	
2012).	Over	the	last	few	decades,	ENMs	have	played	an	important	
role	in	predicting	the	potential	geographic	distribution	of	species	in	
the	context	of	climate	change,	and	have	been	broadly	used	 in	 the	
domains	 of	 biology,	 ecology,	 biogeography,	 evolutionary	 biology,	
and	species	conservation	 (Araújo	&	Guisan,	2006).	Among	various	
ENM/SDM	methodologies,	maximum	entropy	(MAXENT)	modeling	
has	exhibited	a	better	predictive	ability,	to	become	one	of	the	most	
widely	used	models	at	present	(Phillips	et	al.,	2017;	Radosavljevic	&	
Anderson,	2014;	Zeng	et	al.,	2016).	To	date,	the	MAXENT	model	has	
been	used	to	predict	trends	in	the	potential	habitats	of	many	plant	
species	(particularly	endangered	species),	such	as	Mimusops laurifolia 
(Forssk.)	Friis	(Hall	et	al.,	2010)	and	Semiliquidambar cathayensis	H.T.	
Chang	(Ye	et	al.,	2020).

Ziziphus spinosa	(Bunge)	H.H.	Hu	ex	F.H.	Chen	is	a	woody	plant	
within	 the	 family	 Rhamnales	 (order	 Rhamnaceae).	 It	 is	 native	 to	
Liaoning,	Hebei,	Shandong,	Shanxi,	Shaanxi,	Henan,	Inner	Mongolia,	
Gansu,	 Xinjiang,	 Beijing,	 and	 other	 northern	 Provinces	 of	 China,	
which	generally	grows	in	mountainous,	hilly,	or	plain	areas	with	ele-
vations	of	<1,700	m	(Wang	et	al.,	2021).	Ziziphus spinosa possesses 
high	 nutritional,	 economic,	 and	medicinal	 value,	 as	 its	 pulp	 is	 rich	
in	sugars,	acids,	proteins,	and	vitamins,	has	a	long	flowering	period,	
and	 can	be	a	 source	of	nectar.	Moreover,	Ziziphi	 Spinosae	Semen	
(i.e.,	dry	mature	seeds	of	Z. spinosa)	has	such	functions	as	nourishing	
the	heart	and	liver,	and	treating	insomnia	(Li	et	al.,	2021;	Song	et	al.,	

2020).	The	past	decade	has	witnessed	an	increasingly	high	market	
demand	and	price	for	Z. spinosa	due	to	limited	yields	and	supplies;	
thus,	 it	 has	 become	 urgent	 to	 promote	 its	 artificial	 planting	 and	
development.

To	date,	previous	 investigations	of	Z. spinosa	have	focused	pri-
marily	on	cultivation	technologies	and	the	pharmacological	effects	
of	Ziziphi	 Spinosae	Semen	 (Li	 et	 al.,	 2021;	 Song	et	 al.,	 2020).	The	
present	study	employed	an	optimized	maximum	entropy	model	 to	
predict	and	analyze	the	distribution	areas	of	Z. spinosa	under	both	
present	(1970–	2000)	and	future	(2050s,	2070s	and	2090s)	climate	
scenarios	(SSP1-	2.6,	SSP2-	4.5,	SSP3.70	&	SSP5-	8.5).

2  |  MATERIAL S AND METHODS

2.1  |  Collection and screening of sample data

Over	 the	 last	3	years	 (2019–	2021),	our	 research	group	conducted	
extensive	field	surveys	in	Shaanxi,	Shanxi,	Gansu,	Hebei,	Henan,	and	
Shandong	Provinces,	and	collected	a	total	of	106	occurrence	points.	
In	 addition,	 321	occurrence	points	were	obtained	 from	 the	previ-
ously	 published	 literature	 and	web	 databases	 [i.e.,	 China	National	
Knowledge	 Infrastructure/CNKI	 (https://www.cnki.net);	 Google	
Scholar	 (https://schol	ar.google.com);	 Chinese	 Virtual	 Herbarium/
CVH	 (https://www.cvh.ac.cn);	 Chinese	 Field	 Herbarium/CFH	
(http://www.cfh.ac.cn),	 Plant	 Photo	 Bank	 of	 China/PPBC	 (http://
www.ppbc.iplant.cn),	 and	 the	 Global	 Biodiversity	 Information	
Facility/GBIF	(https://www.gbif.org)].	To	minimize	errors	caused	by	
clustering	effects,	each	grid	(2.5	arc-	minutes)	retained	only	one	oc-
currence	point;	 thus,	a	final	dataset	of	406	occurrence	points	was	
employed	for	MAXENT	modeling	(Figure	1).

2.2  |  Variable environment screening and 
data processing

Bioclimatic	 variables	 are	 the	 major	 determinants	 of	 the	 ENMs	 of	
species	and	are	frequently	used	for	the	development	of	plant	ENMs	
(Tang	et	al.,	2018).	The	set	of	19	bioclimatic	variables	used	in	the	pre-
sent	study	were	downloaded	from	the	WorldClim	website	(https://
www.world	clim.org),	which	involved	a	recent	(1970–	2000)	and	three	
future	periods	(2050s,	2070s,	and	2090s).	Considering	the	impacts	
of	climate	change	scenarios	on	the	accuracy	of	model	development	
(Santos-	Hernández	et	al.,	2021),	we	selected	four	shared	socioeco-
nomic	 pathways	 (SSPs;	 SSP1-	2.6,	 SSP2-	4.5,	 SSP3-	7.0,	 and	 SSP5-	
8.5)	 for	 three	 general	 circulation	models	 (GCMs;	 BCC-	CSM2-	MR,	
CNRM-	CM6-	1,	and	MIROC-	ES2L)	 in	 future	climate	data	 (Xu	et	al.,	
2020).	Consequently,	a	total	of	37	sets	of	bioclimatic	data	were	in-
cluded	in	this	study,	with	one	recent,	and	36	future	sets.

Firstly,	the	MAXENT	pre-	model	was	developed	based	on	species	
occurrence	data	and	19	bioclimatic	 factors,	where	the	 importance	
of	 each	 variable	 to	 the	 model	 was	 evaluated	 using	 the	 Jackknife	
method	 (Yang	 et	 al.,	 2013;	 Zeng	 et	 al.,	 2016;	 Zhang	 et	 al.,	 2020).	

https://www.cnki.net
https://scholar.google.com
https://www.cvh.ac.cn
http://www.cfh.ac.cn
http://www.ppbc.iplant.cn
http://www.ppbc.iplant.cn
https://www.gbif.org
https://www.worldclim.org
https://www.worldclim.org
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Secondly,	pairwise	Pearson	correlation	coefficients	(R)	among	the	19	
bioclimatic	factors	were	calculated	using	ENMTools	v1.4.4	(Warren	
et	al.,	2010),	and	any	pair	of	factors	with	|R|	≥	0.8	were	considered	to	
be	significantly	correlated	(Warren	et	al.,	2010).	Finally,	for	each	pair	
of	significantly	correlated	variables,	only	the	ones	with	higher	con-
tributions	to	the	model	were	retained	(Cahill	et	al.,	2013;	Václavík	&	
Meentemeyer,	2009,	2012;	Warren	et	al.,	2011;	Wisz	et	al.,	2013;	
Zeng	et	al.,	2016).

2.3  |  Model establishment, optimization,    
and evaluation

Maxent	v3.4.1	(Phillips	et	al.,	2017)	was	used	to	construct	the	maxi-
mum	entropy	model	for	this	study.	Considering	that	the	selection	of	
general	circulation	models	(GCMs)	would	lead	to	the	uncertainty	of	
the	prediction	results,	we	carried	out	arithmetic	average	processing	
on	the	prediction	results	of	the	three	GCMs	for	the	future	periods.	
To	ensure	the	probability	of	Z. spinosa	distribution	being	close	to	the	
normal	distribution,	we	selected	70%	of	the	data	for	model	training	
and	the	remaining	data	for	model	testing	(Phillips	&	Dudík,	2008).	The	
other	major	parameters	were	set	as	follows:	<Maximum	Iterations:	
5000;	Replicated	Run	Type:	Crossvalidate;	No.	of	Replicates:	10>.

In	this	study,	the	R	package	<kuenm>	(Cobos	et	al.,	2019)	was	em-
ployed	to	optimize	the	feature	class	(FC)	and	regularization	multiplier	
(RM)	of	the	MAXENT	model.	Firstly,	the	RM	was	set	to	0.1–	4	with	each	
interval	of	0.1,	which	resulted	in	a	total	of	40	RM	values.	Subsequently,	
the	four	FCs	[Linear	(L),	Quadratic	(Q),	Hinge	(H),	Product	(P)]	 in	the	
MAXENT	model	were	combined	to	form	15	FC	combinations	[i.e.,	L,	P,	

Q,	H,	LP,	LQ,	LH,	LPQ,	LPH,	LQH,	LQH,	LQH,	LQH,	PQ,	PH,	and	QH].	
Thus,	a	total	of	600	parameter	combinations	were	multiplied	by	the	
FC	and	RM.	On	the	basis	of	optimal	model	determination,	the	model	
(OR_AICc)	with	a	statistically	significant	omission	rate	that	was	lower	
than	the	threshold	value	(0.05),	and	a	delta	AICc	value	of	less	than	2	
was	selected	(Liu	et	al.,	2019;	Ye	et	al.,	2018).

2.4  |  Classification of suitable region and reliability 
test of model

The	suitability	of	species	habitats	is	typically	represented	by	the	value	
range	0–	1,	where	the	higher	the	value	is,	the	more	suitable	a	certain	
area	is	for	the	species	to	grow.	The	selection	of	thresholds	has	an	im-
portant	impact	on	the	prediction	of	suitable	regions	of	different	grades,	
which	affects	the	calculation	of	different	suitable	areas	(Arenas-	Castro	
et	al.,	2020;	Hu	et	al.,	2020).	Tang	et	al.	(2018)	proposed	that	a	maxi-
mum	test	sensitivity	plus	specificity	(MTSPS)	threshold	was	superior	
to	other	 threshold	options	 in	 the	grade	division	of	 suitable	 regions.	
Thus,	MTSPS	was	employed	as	the	threshold	value	for	this	study,	and	
those	areas	with	suitability	values	lower	than	MTSPS	were	considered	
unsuitable	for	the	growth	of	the	species.	The	suitability	range	between	
the	MTSPS	and	1	was	subdivided	 into	three	equal	parts,	which	cor-
responded	to	the	low,	moderate,	and	high	suitability	regions,	respec-
tively	 (Li	et	al.,	2019;	Wang	et	al.,	2017).	The	area	sizes	of	different	
suitable	 regions	 as	well	 as	 their	 changes	 in	 different	 future	 periods	
were	calculated	by	using	DIVA-	GIS	v7.5	(https://diva-	gis.org).

Following	model	construction,	the	area	under	the	receiver	oper-
ating	characteristic	curve	(AUC)	was	used	to	evaluate	the	accuracy	

F I G U R E  1 The	occurrence	data	(406	
points)	of	Ziziphus spinosa	in	China

https://diva-gis.org
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of	the	predictive	model	(Lobo	et	al.,	2008).	The	mean	AUC	value	was	
in	the	range	of	(0,	1),	where	AUC	>	0.9	indicated	that	the	model	re-
sults	were	excellent	and	accurate	(Warren	&	Seifert,	2010).	Further,	
we	considered	the	difference	between	the	training	AUC	and	the	test	
AUC,	where	 the	 smaller	 the	 absolute	 value	 of	 the	 difference,	 the	
higher	the	reliability	of	the	model	(Warren	&	Seifert,	2011).

2.5  |  Analysis of low impact areas

Low	impact	areas	refer	to	those	where	species	are	relatively	less	af-
fected	by	climate	change,	which	can	be	projected	by	superposing	the	
binary	prediction	maps	of	suitable	regions	in	different	periods	and	
taking	the	completely	overlapping	parts	(Pan	et	al.,	2020).	In	DIVA-	
GIS	v7.5,	 the	distribution	maps	of	 the	potential	suitable	regions	of	
different	periods	were	overlaid	to	reclass	the	spatial	units	with	suit-
ability	values	greater	than	the	MTSPS	threshold	as	the	suitable	re-
gions	(Zhao,	Zhang,	et	al.,	2021).	Those	spatial	units	with	suitability	
values	 lower	 than	 the	MTSPS	 threshold	were	 reclassed	 as	unsuit-
able	regions,	which	established	the	unsuitable	and	suitable	matrices	
of	Z. spinosa.	Subsequently,	the	completely	overlapping	parts	in	the	
overlay	layers	were	selected.	After	processing,	the	overlaid	layers	of	
different	periods	were	imported	into	DIVA-	GIS	v7.5,	and	the	poten-
tial	 low	 impact	areas	of	Z. spinosa	were	visualized.	This	study	pre-
dicted	the	low	impact	areas	of	four	different	shared	socioeconomic	
pathways	(SSP1-	2.6,	SSP2-	4.5,	SSP3-	7.0	&	SSP5-	8.5)	in	current	and	
future	periods	(2050s,	2070s,	and	2090s).

2.6  |  Analysis of spatial pattern changes

Spatial	pattern	changes	refer	to	those	of	potential	suitable	regions	of	
species	across	different	periods,	which	could	be	obtained	by	super-
posing	binary	prediction	maps	of	 suitable	 regions	during	different	
periods	(Santos-	Hernández	et	al.,	2021;	Wu	et	al.,	2021;	Zurell	et	al.,	
2020).	For	 this	 study,	we	created	a	prediction	chart	of	 the	 spatial	
pattern	changes	of	 four	different	SSPs	 (SSP1-	2.6,	SSP2-	4.5,	SSP3-	
7.0,	and	SSP5-	8.5)	during	current	and	future	periods	(2050s,	2070s,	
and	2090s),	resulting	in	a	total	of	12	pattern	change	predictions.	This	
was	 used	 to	 analyze	 the	 change	 rule	 of	 potential	 suitable	 regions	
of	Z. spinosa	 in	 the	 recent	 period	 and	 three	 different	 future	 peri-
ods	under	various	SSPs.	In	DIVA-	GIS	v7.5,	the	distribution	maps	of	
potential	 suitable	 regions	of	different	periods	were	superposed	to	
establish	both	the	unsuitability	and	suitability	matrices	of	Z. spinosa. 
Based	on	the	matrix	table,	the	changes	in	spatial	patterns	of	the	suit-
able	 distribution	 regions	 under	 current	 and	 future	 climate	 change	
scenarios	were	further	analyzed.

2.7  |  Core distributional shifts

SDMToolbox	 V2.4	 toolkit	 (Brown,	 2014;	 Brown	 et	 al.,	 2017)	 of	
ArcGIS	 v10.2	 was	 employed	 to	 calculate	 the	 variation	 trend	 of	

different	suitable	regions	for	Z. spinosa,	and	the	central	points	of	dif-
ferent	 regions	were	compared.	We	considered	 the	 suitable	 region	
of	Z. spinosa	as	a	whole,	simplified	it	to	a	vector	particle,	and	used	
the	change	of	the	centroid	position	to	reflect	the	size	and	direction	
of	the	suitable	region	of	Z. spinosa.	Finally,	the	SDMToolbox	toolkit	
was	used	to	track	the	centroid	of	Z. spinosa,	to	investigate	the	dis-
tribution	of	the	centroid	during	different	periods	and	under	various	
climate	conditions,	and	to	evaluate	the	migration	distance	of	suitable	
regions	 via	 longitude	 and	 latitude	 coordinates	 (Smith	 et	 al.,	 2019;	
Zurell	et	al.,	2020).

3  |  RESULTS

3.1  |  Analysis of model accuracy and classification 
of suitable regions

Based	on	406	distribution	points	and	five	bioclimatic	variables,	the	
MAXENT	model	was	 used	 to	 predict	 the	 distribution	 of	 potential	
suitable	 regions	 for	Z. spinosa.	 The	model	 optimization	 suggested	
that	the	optimal	FC	and	RM	were	LQ	and	0.1,	respectively.	The	train-
ing	AUC	(AUCTRAIN)	value	of	the	model	was	0.9526	±	0.0019,	and	the	
test	AUC	(AUCTEST)	value	was	0.9500	±	0.0052.	The	absolute	value	
(|AUCDIFF|)	 of	 the	difference	between	AUCTRAIN	 and	AUCTEST	was	
0.0026.	All	of	these	results	suggested	an	excellent	model	prediction	
accuracy.

Based	on	the	MTSPS	threshold	(0.1613),	the	spatial	units	were	
subdivided	as	follows:	0–	0.1613	Unsuitable	region;	0.1614–	0.4409	
Low	 suitable	 region;	 0.4410–	0.7204	 Moderate	 suitable	 region;	
0.7204–	1	High	suitable	region.

3.2  |  Contribution analysis of environmental   
variables

Following	model	optimization,	five	bioclimatic	factors	were	used	for	
the	final	model	construction,	i.e.,	temperature	seasonality	(BIO04),	
mean	temperature	of	warmest	quarter	(BIO10),	mean	temperature	
of	coldest	quarter	(BIO11),	precipitation	of	warmest	quarter	(BIO18),	
and	precipitation	of	coldest	quarter	(BIO19).	Their	percentage-	wise	
contributions	to	model	construction	were	BIO11	 (65.2%)	> BIO18 
(13.6%)	>	BIO19	(10.3%)	>	BIO10	(5.9%)	>	BIO04	(5.0%)	(Table	1).

3.3  |  Current potential suitable region

The	current	potential	suitable	regions	of	Z. spinosa	covered	a	total	
area	 of	 162.60	× 104	 km2,	 and	were	mostly	 restricted	 to	 Beijing,	
Tianjin,	 Hebei,	 Shanxi,	 Inner	 Mongolia,	 Shaanxi,	 Ningxia,	 Henan,	
and	 Shandong	 Provinces.	 Additionally,	 fragmented	 distributions	
were	 also	 predicted	 in	 Gansu,	 Qinghai,	 Xinjiang,	 Hubei,	 Sichuan,	
Guizhou,	 Jilin,	 Jiangsu,	 and	 Anhui	 Provinces	 (Figure	 2).	 The	 pre-
dicted	areas	of	high,	moderate,	and	low	potential	suitability	regions	
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were 0.96 × 104	km2,	81.50	× 104	km2,	and	80.14	× 104	km2,	respec-
tively.	The	highly	suitable	regions	were	mainly	distributed	in	Shanxi	
(Changzhi	and	Jincheng),	Hebei	(Xingtai,	Handan,	and	Baoding),	and	
Beijing	Provinces	(Table	2).

3.4  |  Future potential suitable regions

The	distribution	 and	 changes	 in	 potential	 suitability	 regions	 for	Z. 
spinosa	 during	 the	 three	 future	periods	differed	under	various	 cli-
mate	scenarios;	however,	there	were	some	similarities	in	the	trends	
of	 changes	 (Figures	 3–	5;	 Tables	 2	 and	 3).	 Under	 different	 climate	
scenarios,	the	area	of	low	suitability	regions	increased	significantly	
compared	with	its	current	value,	while	that	of	the	moderate	suitabil-
ity	regions	decreased	significantly.	Conversely,	the	changing	trends	

of	total	and	highly	suitable	regions	were	not	completely	consistent	
under	different	climate	scenarios	(Tables	2	and	3).

Under	the	SSP1-	2.6	scenario,	the	total	area	of	the	potential	suit-
able	region	for	Z. spinosa	changed	slightly	(98.86%–	104.62%	of	the	
current	corresponding	value),	and	showed	only	a	small	contraction	in	
the	2070s.	The	area	of	the	high	suitability	region	increased	to	vary-
ing	degrees.	Notably,	the	area	of	high	suitability	region	in	the	2090s	
was	2.89	× 104	km2,	with	an	increase	of	201.26%	compared	with	the	
current	area.

Under	 the	SSP2-	4.5	scenario,	 the	total	area	of	 the	suitable	 re-
gion	 for	Z. spinosa	 showed	 a	 slight	 increase	 (102.03%–	107.46%	of	
the	current	corresponding	value).	The	area	of	the	highly	suitable	re-
gion	 initially	 increased,	contracted,	and	then	finally	 increased.	The	
values	during	the	three	future	periods	were	1.55	× 104	km2	(2050s),	
0.94	× 104	 km2	 (2070s),	 and	 1.85	× 104	 km2	 (2090s),	 accounting	

Code Bioclimatic factors
Percent 
contribution (%)

BIO04 Temperature	seasonality	(standard	
deviation	×	100)

5.0

BIO10 Mean	temperature	of	warmest	quarter	(°C) 5.9

BIO11 Mean	temperature	of	coldest	quarter	(°C) 65.2

BIO18 Precipitation	of	warmest	quarter	(mm) 13.6

BIO19 Precipitation	of	coldest	quarter	(mm) 10.3

TA B L E  1 Bioclimatic	factors	used	for	
the	final	model	development	and	their	
contributions

F I G U R E  2 Predicted	distribution	of	Ziziphus spinosa	in	China	under	current	climate	condition
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for	161.55%,	98.19%,	and	192.78%	of	 their	current	corresponding	
value,	respectively.

Under	the	SSP3-	7.0	scenario,	the	total	area	of	the	suitable	region	
for	Z. spinosa	increased	to	different	degrees	during	the	three	future	
periods,	and	the	total	area	of	the	suitable	region	(179.51	× 104	km2)	
increased	most	significantly	in	the	2070s,	which	increased	by	10.40%	
compared	with	the	current	value.	The	area	with	the	high	suitability	
region	 showed	 a	 trend	 of	 contraction-	expansion-	contraction,	 ac-
counting	for	161.55%	(2050s),	98.19%	(2070s),	and	192.78%	(2090s)	
of	the	current	value,	respectively.

Under	 the	 SSP5-	8.5	 scenario,	 the	 total	 area	 of	 the	 suitable	
region	 of	 Z. spinosa	 initially	 increased	 and	 then	 contracted,	 and	
the	 area	of	 the	 suitable	 region	was	only	 139.53	× 104	 km2	 in	 the	
2090s.	In	the	2090s,	the	area	of	the	moderate	suitability	region	was	
31.16 × 104	km2	(only	38.23%	of	the	current	corresponding	value).	
Except	for	the	2050s,	the	area	of	the	high	suitability	region	showed	
a	gradual	contraction	trend.	In	the	2090s,	the	high	suitability	region	
was	only	0.12	× 104	km2	in	area	(12.82%	of	the	current	correspond-
ing	value).

3.5  |  Low impact area

The	prediction	of	the	low	impact	area	differed	under	various	climatic	
scenarios	(Figure	6,	Figure	S1;	Table	4).	With	increased	climatic	se-
verity	(SSP1-	2.6→SSP5-	8.5),	the	distribution	of	the	low	impact	area	
for	Z. spinosa	decreased	continuously	(134.33	× 104	km2→76 .38	× 1
04	km2).	However,	Shanxi,	Ningxia,	Central	and	Northern	Shaanxi,	
Central	and	Eastern	Gansu,	Northern	Hebei,	Central	and	Western	
Liaoning,	and	Southern	Inner	Mongolia	were	always	predicted	to	be	
low	impact	areas	for	the	growth	of	Z. spinosa	(Figure	6).	Furthermore,	
the	Jiaodong	Peninsula	of	Shandong	Province,	Central	and	Western	
Liaoning	 Province,	 Northern	 Tianjin,	 Northern	 Ningxia	 Province,	

and	Southern	Shaanxi	Province	were	classified	as	low	impact	areas	
under	three	climatic	scenarios.

3.6  |  Shift in the distribution center of the 
suitable region

The	potential	suitable	region	for	Z. spinosa	showed	a	trend	of	gradu-
ally	 shifting	 to	 the	 northwest	 under	 all	 climatic	 scenarios,	 except	
SSP1-	2.6.	For	example,	under	the	SSP5-	8.5	scenario,	the	center	of	
the	potential	suitable	region	shifted	to	the	northwest	by	183.64	km	
(2050s),	106.79	km	(2070s),	and	106.91	km	(2090s)	over	time.	The	
central	point	moved	from	Yushe	County	(Shanxi	Province)	currently,	
to	 the	Ejin	Horo	Banner	 (Inner	Mongolia)	 in	 the	2090s.	Under	 the	
SSP1-	2.6	scenario,	the	center	of	the	potential	suitable	region	initially	
shifted	to	the	northeast	by	155.39	km	(2050s),	 then	to	the	north-
west	by	66.31	km	(2070s),	and	finally	to	the	northeast	by	78.26	km	
(2090s)	over	time.	The	central	point	transitioned	from	Yushe	County	
(Shanxi	Province)	to	Wutai	County	(Shanxi	Province).

4  |  DISCUSSION

4.1  |  Accuracy of model prediction

Using	 the	MAXENT	model	 to	 predict	 the	distribution	of	 potential	
suitable	regions	for	species	has	become	one	of	the	commonly	used	
research	 methods	 across	 the	 domains	 of	 biology,	 ecology,	 bioge-
ography,	 biological	 evolution,	 and	 species	 conservation	 (Araújo	 &	
Guisan,	2006).	However,	previous	studies	often	neglected	the	opti-
mization	of	model	parameters,	or	involved	inadequate	optimization,	
which	 could	 affect	 the	accuracy	of	 the	predictive	model	 (Li	 et	 al.,	
2020;	 Yan,	 Feng,	 Zhao,	 Feng,	Wu,	 et	 al.,	 2020;	 Yan,	 Feng,	 Zhao,	

TA B L E  2 Predicted	suitable	areas	under	current	and	future	climatic	conditions

Decades

Predicted area (×104 km2) and % of the corresponding current area

Total suitable region Lowly suitable region Moderately suitable region Highly suitable region

1970–	2000 162.60 — 80.14 — 81.50 — 0.96 — 

SSP1-	2.6 2050s 170.12 104.62% 102.49 127.88% 66.39 81.46% 1.24 128.88%

2070s 160.76 98.86% 100.48 125.38% 58.96 72.34% 1.32 137.00%

2090s 174.84 107.52% 106.14 132.44% 65.80 80.74% 2.89 301.26%

SSP2-	4.5 2050s 174.74 107.46% 106.74 133.19% 66.44 81.53% 1.55 161.55%

2070s 174.56 107.36% 113.37 141.46% 60.25 73.93% 0.94 98.19%

2090s 165.91 102.03% 107.57 134.22% 56.49 69.31% 1.85 192.78%

SSP3-	7.0 2050s 170.61 104.92% 107.44 134.06% 62.33 76.48% 0.83 86.82%

2070s 179.51 110.40% 118.23 147.53% 59.64 73.18% 1.63 169.68%

2090s 165.42 101.73% 115.10 143.62% 49.62 60.88% 0.70 72.92%

SSP5-	8.5 2050s 176.54 108.57% 111.25 138.82% 62.69 76.92% 2.60 270.76%

2070s 149.88 92.17% 97.94 122.21% 51.09 62.68% 0.85 88.45%

2090s 139.53 85.81% 108.25 135.07% 31.16 38.23% 0.12 12.82%
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Feng,	 Zhu,	 et	 al.,	 2020).	 Previous	 studies	 revealed	 that	 the	 qual-
ity	control	of	species	occurrence	points,	screening	of	environment	
variables,	selection	of	GCMs	and	SSPs,	threshold	selection,	and	the	
optimization	 of	 RM	 and	 FC	 all	 had	 significant	 effects	 on	 the	 pre-
dictive	results	of	the	model	(Wei	et	al.,	2021;	Yang	et	al.,	2021;	Ye	
et	al.,	2020;	Zeng	et	al.,	2016).	For	this	study,	these	parameters	were	
systematically	optimized	so	as	to	ensure	predictive	accuracy	to	the	
maximum	extent.

4.2  |  Effects of environmental variables on species 
distribution

The	 geographical	 distribution	 of	 plants	 is	 restricted	mainly	 by	 cli-
matic	variables,	where	hydrothermal	conditions	play	a	 leading	role	
in	their	distribution	patterns	(Sun	et	al.,	2020).	Precipitation	is	likely	
to	 increase	or	decrease	as	 the	climate	changes	and	will	 affect	 soil	
moisture,	which	can	cause	plants	to	fail	to	reproduce,	grow,	and	sur-
vive	(Feng	et	al.,	2020).	Our	study	revealed	that	the	main	bioclimatic	
variables	that	affected	the	potential	distribution	of	Z. spinosa were 
the	mean	temperature	of	the	coldest	quarter	and	the	precipitation	

of	the	warmest	quarter	(Table	1).	The	mean	temperature	of	coldest	
quarter	for	Z. spinosa	is	−9.1—	5.8°C;	it	is	much	more	likely	to	affect	
survival	or	cause	a	mismatch	between	phenology	and	season.	The	
suitable	range	of	the	precipitation	of	the	warmest	quarter	for	Z. spi-
nosa	 is	93–	675	mm,	which	 implies	 that	Z. spinosa	may	prefer	 rela-
tively	dry	environments.	This	was	evidenced	by	our	 field	 surveys:	
Z. spinosa	prefers	arid	and	mild	soil,	and	generally	grows	on	sunny	
or	semi-	sunny	slopes,	with	little	requirement	for	water	or	fertilizers.	
Furthermore,	 it	 is	more	suitable	 for	 temperate	monsoon	and	 tem-
perate	continental	climates;	thus,	it	appears	that	Z. spinosa	is	more	
suitable	for	planting	in	Northern	China.

Under	the	SSP2-	4.5	and	SSP3-	7.0	scenarios,	the	total	area	of	
the	potential	suitable	regions	for	Z. spinosa	 increased	by	varying	
degrees.	This	indicated	that	within	a	certain	range,	the	rising	tem-
peratures	and	increased	rainfall	caused	by	the	greenhouse	effect	
were	more	conducive	for	the	growth	of	Z. spinosa.	However,	when	
the	effects	of	global	warming	exceed	the	optimal	tolerance	range	
of	species,	the	potential	distribution	region	would	also	contract	to	
varying	 degrees.	 For	 example,	 under	 the	 SSP5-	8.5	 scenario,	 the	
potential	 suitable	 region	 of	 Z. spinosa	 decreased	 significantly	 in	
the	2070s	and	2090s.

F I G U R E  3 Predicted	distribution	of	Ziziphus spinosa	in	China	under	future	(2050s-	2090s)	climatic	scenarios
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F I G U R E  4 Changes	of	potential	suitable	areas	of	Ziziphus spinosa	from	current	to	future	climatic	conditions

F I G U R E  5 Areas	(a)	and	changes	(b)	of	habitats	of	different	suitability	for	Ziziphus spinosa	at	different	times	in	China
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4.3  |  Changes in spatial patterns of potential 
suitable regions

In	 general,	 over	 time,	 the	 potential	 suitable	 regions	 for	Z. spinosa 
gradually	migrated	to	high-	latitude	areas	(Figures	4	and	7).	For	ex-
ample,	under	the	SSP1-	2.6	scenario,	the	suitable	region	of	Z. spinosa 
increased,	 except	 for	 the	 2070s;	 however,	 the	 distribution	 area	
changed.	Jiangsu,	Guizhou,	Hubei,	Anhui,	southern	Henan,	and	ad-
jacent	regions	were	close	to	being	no	longer	suitable	for	its	growth.	
Meanwhile,	there	was	an	expansion	of	potentially	suitable	areas	in	

Jilin,	 Liaoning,	 Inner	Mongolia,	Gansu,	Qinghai,	Xinjiang,	 and	adja-
cent	 regions.	 Under	 the	 SSP5-	8.5	 scenario,	 the	 suitable	 regions	
were	further	 transferred	to	the	north	by	the	2070s.	Northeastern	
Qinghai,	 central	 and	 southern	Shaanxi,	 southwestern	Shanxi,	 cen-
tral	and	southern	Hebei,	most	parts	of	Henan,	central	and	western	
Shanxi	were	predicted	to	no	longer	be	suitable	for	Z. spinosa. By the 
2090s,	 with	 the	 further	 intensification	 of	 the	 greenhouse	 effect,	
Shandong	and	Tianjin	became	unsuitable	 for	 the	growth	of	Z. spi-
nosa,	whereas	the	area	of	potential	suitable	regions	in	Hebei,	Beijing,	
and	adjacent	regions	were	also	greatly	reduced.

Scenarios
Unchanged 
rate (%)

Expansion 
rate (%)

Contraction 
rate (%)

Current→2050s SSP1-	2.6 83.87 20.76 16.13

SSP2-	4.5 83.49 23.97 16.51

SSP3-	7.0 84.56 20.36 15.44

SSP5-	8.5 80.33 28.24 19.67

Current→2070s SSP1-	2.6 82.98 15.89 17.02

SSP2-	4.5 78.97 28.39 21.03

SSP3-	7.0 75.47 34.93 23.92

SSP5-	8.5 60.33 31.85 39.67

Current→2090s SSP1-	2.6 83.53 23.99 16.47

SSP2-	4.5 73.45 28.59 26.56

SSP3-	7.0 60.31 41.43 39.70

SSP5-	8.5 46.97 38.84 53.03

TA B L E  3 Change	rates	of	Ziziphus 
spinosa	suitable	regions	in	different	
periods

F I G U R E  6 Composite	prediction	of	low	impact	areas	supported	by	varying	numbers	of	shared	socio-	economic	pathways	(SSP1-	2.6,	
SSP2-	4.5,	SSP3-	7.0	&	SSP5-	8.5)
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Compared	with	previous	studies	(Zhao	et	al.,	2021),	we	also	pre-
dicted	 the	 distribution	 of	 potential	 suitable	 areas	 in	 2090s	 and	 the	
shift	in	the	distribution	center	of	the	suitable	region	in	different	ages.	
We	 found	 that	 during	 the	 period	 of	 SSP5-	8.5-	2090s,	 the	 potential	
suitable	area	of	Z. spinosa	would	shrink	by	14.19%;	this	indicated	that	
with	the	 intensification	of	 the	greenhouse	effect,	when	the	average	
temperature	line	exceeded	the	tolerance	limit	of	Z. spinosa,	the	distri-
bution	area	of	Z. spinosa	would	gradually	decrease	and	move	to	higher	
latitude.	Therefore,	by	using	the	prediction	results	of	the	model,	it	is	
possible	to	take	reasonable	protection	measures	to	Z. spinosa	as	soon	
as	possible,	which	would	alleviate	the	impact	of	climate	change.	In	ad-
dition,	the	total	area	of	potential	suitable	areas	of	Z. spinosa	tends	to	
increase,	and	the	expansion	area	is	mainly	located	in	middle	and	high	
latitudes,	while	 the	decrease	area	 is	mainly	 located	 in	 low	 latitudes,	
which	is	consistent	with	the	view	of	Zhao,	Zhang,	et	al.	(2021).

4.4  |  Development and protection of 
germplasm resources

Ziziphus spinosa	is	a	woody	plant	with	high	economic	value	that	can	tol-
erate	cold	and	dry	environments,	and	is	suitable	for	planting	in	north-
ern	China	(Li	et	al.,	2021;	Song	et	al.,	2020).	Furthermore,	particularly	
in	the	Loess	Plateau	area,	it	can	also	be	employed	as	a	shelter	forest	

species.	Our	study	predicted	that	Shanxi,	central	and	northern	Shaanxi,	
eastern	Gansu,	 central	 and	 southern	 Liaoning,	 northern	Hebei,	 cen-
tral	and	southern	Ningxia,	southern	Inner	Mongolia,	and	eastern	Jilin	
would	be	less	affected	by	climate	change	(Figure	6,	Figure	S1);	thus,	
these	areas	would	be	suitable	for	increased	Z. spinosa	planting.

Due	to	anthropogenic	destruction	of	habitat	and	climate	change,	
wild Z. spinosa	resources	are	gradually	shrinking.	According	to	the	pre-
diction	results	of	the	model,	the	potential	suitable	area	of	Z. spinosa 
will	gradually	shift	to	the	north	in	the	future.	This	means	that	future	
artificial	planting	area	of	Z. spinosa	 should	be	preferably	established	
in	the	north	of	the	Qinling	Mountains	(Figure	6),	so	as	to	alleviate	the	
impact	of	climate	change	on	the	growth	of	Z. spinosa.	In	addition,	with	
the	 aggravation	 of	 climate	 severity,	 the	 distribution	 of	Z. spinosa	 in	
Shandong	Province	will	gradually	reduce,	which	may	pose	a	challenge	
to	the	protection	of	local	wild	Z. spinosa	resources.	It	may	be	necessary	
to	establish	a	local	germplasm	bank	of	Z. spinosa	in	time.

Jujuboside	A	&	B	and	Spinosin	are	the	main	medicinal	ingredients	of	
Ziziphi	Spinosae	Semen,	and	their	content	has	become	one	of	the	stan-
dards	through	which	to	measure	the	quality	of	Z. spinosa.	The	current	
highly	suitable	regions	for	Z. spinosa	growth	are	primarily	restricted	to	
Shanxi	(Changzhi	and	Jincheng),	Hebei	(Xingtai,	Handan	and	Baoding),	
Beijing,	 and	 adjacent	 regions	 (Figure	 2).	These	 regions	 are	 generally	
considered	as	the	traditional	and	authentic	production	areas	of	Z. spi-
nosa	(Li	et	al.,	2021).	However,	under	the	climate	change,	the	quality	

LIA statistics

Shared socio- economic pathways (SSPs)

SSP1- 2.6 SSP2- 4.5 SSP3- 7.0 SSP5- 8.5

Geographic	area	(×104	km2) 134.33 119.42 98.06 76.38

Percentage	of	current	suitable	area	(%) 82.61 73.44 60.30 46.97

Percentage	of	SSP1-	2.6	area	(%) 100.00 88.90 73.00 56.86

TA B L E  4 Low	impact	areas	(LIAs)	under	
different	shared	socio-	economic	pathways	
(SSPs)

F I G U R E  7 Core	distribution	shifts	
under	12	climate	scenarios/years.	Arrows	
indicate	the	magnitude	and	direction	of	
predicted	change	over	time
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of	Z. spinosa	may	be	negatively	impacted	in	these	areas.	Therefore,	the	
investigation,	collection,	and	management	of	high-	quality	germplasm	
and	the	establishment	of	core	germplasm	resource	banks	may	play	a	
key	role	in	the	protection	of	high-	quality	Z. spinosa resources.

4.5  |  Study limitations

For	 this	 study,	we	 considered	only	 the	 effects	 of	 bioclimatic	 vari-
ables	on	species	distribution,	which	was	also	practically	influenced	
by	a	variety	of	biological	factors	(e.g.,	interspecific	competition,	pre-
dation,	 and	disease)	and	abiotic	 factors	 (e.g.,	 soil,	 topography,	and	
anthropogenic	 activities)	 (Sun	 et	 al.,	 2020).	 Moreover,	 our	 study	
assumed	 that	 species	 would	 have	 a	 sufficient	 dispersal	 capacity	
to	migrate	 to	 any	 climatically	 suitable	 area	 under	 climate	 change.	
However,	we	did	not	consider	factors	such	as	the	species	migration	
rate,	as	well	as	geographical	and	ecological	isolation,	all	of	which	can	
lead	 to	 potential	 discrepancies	 between	 predicted	 and	 actual	 dis-
tributions.	Elucidating	the	influences	of	all	these	factors	requires	a	
more	comprehensive	niche	modeling	approach,	which	has	yet	to	be	
done	in	future	studies	(Wilting	et	al.,	2010).

ENMs/SDMs	 make	 important	 assumptions	 about	 the	 relation-
ship	 between	 species	 distributions	 and	 their	 environment	 that	may	
limit	their	ability	to	accurately	predict	future	species	distributions.	In	
particular,	SDMs	in	theory	assume	stable	fundamental	niches,	but	in	
practice,	they	assume	stable	realized	niches.	The	assumption	of	a	fixed	
realized	niche	relative	to	climate	variables	remains	unlikely	for	various	
reasons,	particularly	if	novel	future	climates	open	up	currently	unavail-
able	portions	of	species'	fundamental	niches	(Veloz	et	al.,	2012).

5  |  CONCLUSION

An	optimized	MAXENT	model	was	 employed	 to	predict	 the	dis-
tribution	 patterns	 and	 changes	 of	 potentially	 suitable	Z. spinosa 
regions	 in	 China	 under	 different	 climate	 scenarios	 (SSP1-	2.6,	
SSP2-	4.5,	 SSP3-	7.0,	 and	 SSP5-	8.5)	 in	 recent	 (1970–	2000)	 and	
future	 periods	 (2050s,	 2070s,	 and	 2090s).	 The	 potential	 future	
suitable	area	of	Z. spinosa	would	expand	except	SSP-	1–	2.6-	2070s,	
SSP-	5–	8.5-	2070s,	and	SSP-	5–	8.5-	2090s.	Meanwhile,	considering	
the	 distribution	 of	 Z. spinosa	 during	 different	 time	 periods	 and	
under	 variable	 climate	 change	 scenarios,	 the	 low	 impact	 areas	
were	 primarily	 distributed	 in	 Shanxi,	 Shaanxi,	 Ningxia,	 Gansu,	
Liaoning,	Inner	Mongolia,	and	Jilin	Provinces.	Furthermore,	except	
for	SSP1-	2.6,	the	center	of	the	potential	suitable	region	of	Z. spi-
nosa	 showed	a	 trend	of	gradually	 shifting	 to	 the	northwest.	The	
findings	of	this	study	provide	important	references	for	the	investi-
gation	and	protection	of	germplasm	resources	and	the	promotion	
of	artificial	cultivation	of	Z. spinosa.
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