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Abstract: Grains and cassava-based foods serve as major dietary sources for many households in
Nigeria. However, these foods are highly prone to contamination by moulds and aflatoxins owing to
poor storage and vending practices. Therefore, we studied the fungal diversity in maize, cassava-
based flour (pupuru), and rice vended in markets from Ondo state, Nigeria, and assessed their afla-
toxin levels using an enzyme-linked immunosorbent assay. Molecular analysis of 65 representative
fungal isolates recovered from the ground grains and pupuru samples revealed 26 species belonging
to five genera: Aspergillus (80.9%), Penicillium (15.4%), and Talaromyces (1.9%) in the Ascomycota;
Syncephalastrum (1.2%) and Lichtheimia (0.6%) in Mucoromycota. Aspergillus flavus was the predom-
inant species in the ground grains and pupuru samples. Aflatoxins were found in 73.8% of the
42 representative food samples and 41.9% exceeded the 10 µg/kg threshold adopted in Nigeria for
total aflatoxins.

Keywords: aflatoxin; food safety; maize; mycology; Nigeria; pupuru; rice

1. Introduction

Filamentous fungi contaminate food crops worldwide, thereby contributing signif-
icantly to the problem of food safety and food insecurity [1]. In tropical countries, e.g.,
Nigeria, favourable warm-to-hot climatic conditions coupled with poor pre- and post-
harvest agricultural practices encourage widespread filamentous fungal contamination
of grains, such as maize and rice [2–4], and cassava products (e.g., pupuru) [5]. Unlike
maize and rice that are consumed and available worldwide, pupuru is a cassava-based,
traditionally processed staple commonly consumed in south-west Nigeria. Pupuru pro-
cessing includes the steeping of peeled cassava tubers in water for 4–5 days for submerged
fermentation. The wet mash is bagged and dewatered using a mechanical press. The result-
ing fibres are handpicked from the mash prior to heating in an open fire, dry-milled, and
sieved into pupuru flour [5,6]. Maize, rice, and pupuru principally contain carbohydrates
(74 g, 80 g, and 94.6 g) and less amounts of protein (9.4 g, 7.1 g, and 2.9 g) and fibre (7.3 g,
1.3 g, and 0.9 g), respectively [7]. Together, these foods contribute significantly to the calorie
intake of several households in Nigeria, with the specificity of pupuru to the Ondo and
other south-western Nigerian population.

Maize, rice, and pupuru are commonly contaminated by fungal spores during pre-
and post-harvest agricultural processing stages [8,9]. In Nigeria, vending of maize, rice,
and pupuru in open markets could further expose these foods to fungal contamination [9].
Specifically, maize and rice are vended in open basins and plastic bowls, whereas pupuru
is vended in covered basins and plastic bowls. Only a few studies used sequence data for
identification of the fungi present on stored grains in Nigeria. A study of the mycobiota of
maize [3] applied a robust polyphasic approach, and an investigation of vended rice used
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sequences of the internal transcribed spacer (ITS) region [4]. However, ITS sequencing
is less suitable for species-level identification of common food-related genera such as
Aspergillus, Penicillium, and Fusarium [10]. Both studies were conducted in northern Nigeria.
Therefore, there is paucity of fungal diversity data anchored in molecular techniques from
southern Nigeria. Moreover, most of the fungal diversity studies on vended maize, rice,
and pupuru relied on data obtained from morphology and/or microscopy alone [2,5,11–15].
Applying phenotyping methods alone for fungal diversity studies have several drawbacks
such as lack of precision and species misidentification [16,17]. Irrespective of the available
data, there is currently no genera/species-specific based study on the fungal diversity
of pupuru anywhere and reliable data on fungal diversity of maize and rice is limited
in Nigeria. This creates a major knowledge gap for a fungi surveillance database in the
country and, therefore, presents a major hurdle to mitigation efforts.

Under favourable environmental conditions, toxigenic fungi may produce toxic
metabolites, such as aflatoxins in maize, rice, and pupuru during pre-harvest phase [18].
Moreover, storing these foods for long periods in non-hermetic devices could further en-
courage aflatoxin formation [18]. Chronic exposure to aflatoxins results in adverse human
health effects such as cancers, stunting in children and death [18,19]. Previously, copious
amounts of aflatoxins were quantified in maize from Ondo state, Nigeria [11,20], thus
making the state a likely hot-spot for aflatoxin contamination. Yet, there is a paucity of data
on aflatoxin contents of vended rice and pupuru from the state. Therefore, this study was
carried out to determine the fungal diversity of maize, rice, and pupuru using molecular
markers able to identify fungi at a species level and quantify the aflatoxin levels by ELISA.

2. Materials and Methods
2.1. Study Area

Ondo state is a south-western Nigerian state situated in the Derived savannah agroe-
cological zone. The rainfall pattern is a bimodal distribution averaging between 1000 and
1300 mm per year and the temperature varies from 26 to 38 ◦C [11,21]. Food crops, such as
maize and cassava, are grown mostly by subsistent farmers in the state [22], whereas rice is
mostly imported from other states.

2.2. Sampling of Foods

A total of 106 food samples consisting of maize (n = 46), pupuru (n = 20) and rice
(n = 40) were randomly purchased from major markets (Akure, Ondo, Ore, and Owo) in
Ondo state, Nigeria. Samples were purchased between December 2019 and January 2020.
In each market, 100 g per sample of a food type was randomly collected from three parts
of the vending vessel (basin or bowl) into clean polyethylene bags. The maize and rice
samples were ground into fine powder using an electric blender (MX-AC400, Panasonic,
Haryana, India), whereas pupuru did not require grinding since it is vended as flour.
All ground grains and pupuru were batched in two: batch A for moisture content and
mycological analysis and batch B for aflatoxin analysis. Batch A samples were stored at
4 ◦C and analyzed within 48 h. For batch B, samples of the same food type collected from
the same vendor were mixed and stored at −20 ◦C prior to ELISA analysis. The total
number of composite samples from the batch B samples was 42 (maize = 12; pupuru = 10;
rice = 20).

2.3. Moisture Content Analysis of Ground Grains and Pupuru

The food samples were subjected to moisture analysis by the oven-drying to constant
weight method [23]. Five grams of each sample were weighed and dried in a hot air oven
at 105 ◦C. The weight of the samples was measured every hour until constant weight was
achieved. Weight measurements per sample were taken in triplicate.
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2.4. Isolation of Fungi from Ground Grains and Pupuru

Moulds in the ground grains and pupuru samples were isolated by the dilution plating
technique [24]. Ten grams of a food sample was diluted in 90 mL of sterile distilled water.
The mixture was then homogenized for 2 min on a vortex mixer prior to spread-plating
(100 µL) on malt extract agar (MEA; Oxoid, Hampshire, UK). All inoculated plates were
incubated at 25 ◦C for 3 days. In order to enumerate fungi in the food samples, fungal
colonies on the plates were counted and reported as colony forming units per gram (CFU/g)
of the food sample. Furthermore, distinct colonies on the isolation plates were transferred
to freshly prepared MEA plates and incubated at 25 ◦C for 7 days. Thereafter, pure cultures
were prepared on MEA slants in 4 mL vials, overlayed with sterile distilled water, and
stored at 25 ◦C.

2.5. Characterization of Fungal Isolates

The isolated moulds were characterized based on morphological characteristics and
DNA sequencing. All the strains were cultivated on MEA at 25 ◦C for 7 days and then
assessed for macro- and microscopic character according to the descriptions in appro-
priate keys [10,25–28]. Isolates with similar phenotypic characters were grouped and
representative isolates from each group were subjected to sequence-based identification.

Molecular analysis was conducted by extracting DNA from the representative isolates
grown on MEA at 25 ◦C for 3–5 days. Parts of the β-tubulin (BenA) and/or calmodulin
(CaM) genes were amplified and subsequently sequenced for the Aspergillus, Penicillium,
and Talaromyces isolates and an ITS barcode sequence was generated for the other fun-
gal isolates. Procedures were as previously described by Houbraken et al. [16,29] and
Samson et al. [10]. The generated sequences were compared with sequences present in the
National Center for Biotechnology Information (NCBI) database and the curated database
of Food and Indoor Mycology department (DTO) housed at the Westerdijk Fungal Biodiver-
sity Institute (WI). All molecularly identified isolates are maintained in the DTO working
culture housed at the WI. The newly generated sequences were deposited in GenBank
under accession number MZ014549–MZ028006. The potential of the isolates belonging
to Aspergillus section Flavi to biosynthesize aflatoxins was tested in vitro on neutral red
desiccated coconut agar (NRDCA) as described by Ezekiel et al. [30].

2.6. Aflatoxin Analysis of Ground Grains and Pupuru by Enzyme-Linked Immunosorbent Assay

The concentration of aflatoxins (sum of aflatoxins B and G) present in the ground
grains and pupuru samples was determined using a quantitative ELISA kit assay (R4701;
RIDASCREEN, Inc., Darmstadt, Germany) following the manufacturer’s instructions.
Briefly, all reagents and food samples were allowed to reach ambient temperature. Of
each sample, 20 g was mixed with 100 mL 70% methanol extraction solvent. The mixture
was homogenized in a shaker (UNISCOPE SM101, Surgifriend, England) for 10 min. The
supernatant was carefully decanted and filtered through Whatman No. 1 filter paper. The
obtained filtrate (100 µL) was subsequently diluted with distilled water (600 µL).

Exactly 50 µL of aflatoxin standards (0, 0.05, 0.15, 0.45, 1.35, and 4.05 µg/kg) and
diluted filtrate was dispensed in duplicates and 50 µL of conjugate was added into each well.
Antibody (50 µL) was added to each well, mixed gently by shaking the plate manually prior
to incubation for 30 min at ambient temperature. Following incubation, the content of each
well was disposed, and the wells washed thrice with wash buffer (250 µL) before drying on
an absorbent paper. Aliquots (100 µL) of the substrate/chromogen was added to each well
prior to mixing by gently shaking the plates manually and incubated for 15 min at ambient
temperature. Thereafter, 100 µL of stop solution was added to each well and the optical
densities of the solution in the microtiter plates was read at 450 nm within 30 min using
the Microplate reader (LABTRON LMPR-A30, Surrey, UK) [20]. Aflatoxin concentration
in each well was calculated from a standard curve plotted using the percentage binding
against the total aflatoxin standards. The recovery and limit of detection (LOD) of the
ELISA method were 85% and 1.75 µg/kg, respectively.
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2.7. Data Analysis

All data from this study were analyzed by descriptive statistics using the SPSS Statis-
tics package version 21.0 (SPSS Inc. Chicago, IL, USA). Means for the data on moisture
content as well as for the total aflatoxin concentrations in the food types were calculated
and tested for significance using the one-way ANOVA (α = 0.05). Duncan’s multiple range
test was used to separate means. Additionally, Pearson’s correlation coefficient was deter-
mined for the relationship between fungal load and moisture content in the ground grains
and pupuru.

3. Results
3.1. Moisture Contents of Ground Grains and Pupuru

The moisture content of the ground grains and pupuru samples ranged between 3.51%
and 16.1%. Pupuru has the highest mean moisture level (mean: 11.28 ± 0.35%; range:
9.09–14.6%) followed by rice (mean: 9.44 ± 0.46%; range: 5.08–16.07%) and then maize
(mean: 7.72 ± 0.30%; range: 3.51–12.28%) (Table 1). The mean moisture level of pupuru
(11.28 ± 0.35%) was significantly (p < 0.05) higher than the mean levels recorded for the
ground grains.

Table 1. Moisture contents of maize, pupuru and rice vended in Ondo state, Nigeria.

Food Type N Mean (%) ± SE
Range (%)

Min Max

Maize 46 7.72 ± 0.30 c 3.51 12.3
Pupuru 20 11.3 ± 0.35 a 9.10 14.6

Rice 40 9.44 ± 0.46 b 5.08 16.1
Total 106 9.04 ± 0.26 3.51 16.1

N = number of samples. Means with same superscript alphabet (a–c) in a column do not differ significantly
(α = 0.05).

3.2. Incidence of Fungi in Ground Grains and Pupuru
3.2.1. Distribution of Fungi

The fungal load, expressed as Log10 colony forming units (CFU)/g, in the foods
ranged 2.0–4.8 log10 CFU/g, with specific ranges and mean values for each food type
as: maize (2.0–4.8 log10 CFU/g; 3.90 ± 0.11 log10 CFU/g), pupuru (2.0–4.5 log10 CFU/g;
2.68 ± 0.20 CFU/g) and rice (2.0–4.6 log10 CFU/g; 2.64% ± 0.10 CFU/g). In total, 162 fungal
isolates were recovered from 93 (87.7%) of the 106 food samples. The foods were predom-
inated by members of the phylum Ascomycota to which Aspergillus (80.9%), Penicillium
(15.4%), and Talaromyces (1.9%) belong. The other isolates belong to the Mucoromycota
(Syncephalastrum 1.2%, Lichtheimia 0.6%). The occurrence frequency of the isolated fungi is
shown in Figure 1.
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Figure 1. Incidence of fungal genera in ground grains and pupuru vended in markets in Ondo state,
Nigeria. Inner ring to outer ring represent maize, pupuru, rice and all foods, respectively.

3.2.2. Species Diversity

Overall, 26 species were recovered from the ground grains and pupuru samples.
Maize and rice both contained 13 different fungal species and 10 different fungal species
were recovered from pupuru. Aspergillus was the predominant genus and the following
species were detected (listed per section, according their prevalence): section Flavi (n = 101;
A. aflatoxiformans, A. flavus, A. tamarii and A. pseudonomiae), Nigri (n = 7; A. brasiliensis,
A. brunneoviolaceus, A. luchuensis, A. neoniger, A. piperis and A. welwitschiae), Fumigati (n = 3;
A. fischeri and A. fumigatus), Clavati (n = 2; A. giganteus), Circumdati (n = 1; A. melleus),
Nidulantes (n = 10; A. sydowii), Terrei (n = 1; A. terreus), Candidi (n = 2; A. tritici), Usti
(n = 2; A. calidoustus) and Aspergillus (n = 2; A. chevalieri). Other species included Penicillium
citrinum (n = 24), P. cinnamopurpureum (n = 1), Talaromyces funiculosus (n = 2), Talaromyces
sayulitensis (n = 1), Lichtheimia ramosa (n = 1), and Syncephalastrum racemosum (n = 1).
Aspergillus flavus was the predominant species occurring in 50% of the food samples. The
species diversity of filamentous fungi in the foods is shown in Figure 2 and Supplementary
Table S1.

Figure 2. Species diversity of filamentous fungi in ground grains and pupuru vended in markets in
Ondo state, Nigeria.
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3.2.3. Incidence of Aflatoxigenic and Non-Aflatoxigenic Species of Aspergillus Section Flavi

Of the 101 isolates belonging to Aspergillus section Flavi, 80.2%, 10.9%, 7.9%, and
1.0% were A. flavus, A. tamarii, A. aflatoxiformans, and A. pseudonomiae, respectively. About
59% of the 101 isolates were toxigenic on NRDCA, whereas 41% were non-toxigenic. The
incidences of aflatoxigenic and non-aflatoxigenic species in the foods are shown in Figure 3
and Supplementary Table S2.

Figure 3. Incidence of aflatoxigenic and non-aflatoxigenic Aspergillus section Flavi members in
foods vended in markets in Ondo state, Nigeria. Tox: aflatoxigenic Aspergillus section Flavi; Atox:
non-aflatoxigenic Aspergillus section Flavi.

3.3. Aflatoxin Levels in Ground Grains and Pupuru Samples

ELISA analysis revealed that 31 (73.8%) of the 42 composite food samples were
contaminated with aflatoxins (Table 2). Overall, the total aflatoxin levels in the food samples
were in the range of 1.75 to 173.3 µg/kg (mean: 43.1 µg/kg). The intra-assay and inter-assay
coefficients of variations were 2.67% and 6.77%. The incidence and levels in each food
type were: maize (incidence: 100%; range: 3.50–173.3µg/kg; mean: 100.6 ± 19.3 µg/kg),
pupuru (incidence: 40%; range: 1.75–21 µg/kg; mean: 7.9 ± 4.4 µg/kg), and rice (incidence:
75%; range: 1.75–22.8 µg/kg; mean: 6.5 ± 1.6 µg/kg). Only 29.0% of the food samples
contained aflatoxins below the EU threshold of 4 µg/kg for total aflatoxins, while 41.9% of
the samples exceeded the 10 µg/kg threshold adopted in Nigeria for total aflatoxins.

Table 2. Incidence of aflatoxins in 42 ground grains and pupuru from Ondo state, Nigeria.

Food Type N %
Incidence (%) of Contaminated Food Samples Mean (µg/kg)

± SE

Range
(µg/kg)

≤4 µg/kg * ≤ 10 µg/kg ≤20 µg/kg ** >20–<100 µg/kg ≥100 µg/kg Min Max

Maize 12 100 8.3 16.7 25.0 16.7 58.3 101 ± 19.3 3.5 173.3
Pupuru 10 40.0 50.0 75.0 75.0 25.0 0.00 7.9 ± 4.4 1.75 21

Rice 20 75.0 40.0 86.7 93.3 6.7 0.00 6.5 ± 1.6 1.75 22.8
Total 42 73.8 29.0 58.1 64.5 12.9 22.6 43.1 ± 11.1 1.75 173.3

N = number of samples; % = percentage contaminated samples; * European Union regulatory limit for total aflatoxins in foods; ** United
States Food and Drug Administration regulatory limit for total aflatoxins in foods.
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4. Discussion

Post-harvest fungal growth in food is largely influenced by the moisture levels in the
foods [9,31]. Generally, the mean moisture contents of the food samples were low (≤11),
suggesting they were stored under safe conditions [31,32]. Significantly (p < 0.05) higher
mean moisture levels were reported in the cassava-based flour (pupuru) compared to the
grains (maize and rice). This observation could be attributed to the high-water content in
cassava (the raw ingredient of pupuru) when compared to grains as well as the pupuru
production process, which involves addition of water. The mean moisture levels recorded
for maize and rice (10.4% and 12.5%, respectively) were lower than the values previously
reported for maize and rice in Nigeria [2,33] and maize from Ethiopia [34]. Conversely, the
mean moisture level in pupuru was similar to the value (11.8%) previously reported in
pupuru in Nigeria [7]. There was a weak negative correlation (r = −0.245, p < 0.05) between
the moisture content in the ground grains and pupuru samples and the fungal load therein.
Thus, the low moisture levels in the three sample types examined in the present study
suggest that the recovery of fungal propagules from the sample types is rather influenced
by contamination along the production chain and during storage of the foods as well as
by open vending of unpackaged grains, and not primarily by moisture level [9,35]. To put
this into proper context, the food samples were collected from major markets, which are
characterized by increased human activities and vehicular movements, such that diverse
fungal spores become disseminated and are carried over into the foods.

There was a marked difference in the diversity of species in the three sample types,
with higher species diversity (13 species) occurring in maize and rice compared to 10 species
found in pupuru. The obvious reason for the lower species diversity in the processed
pupuru compared to the grains (maize and rice) is the application of heat during pupuru
processing, which has the capacity to eliminate fungal propagules in foods. Aspergillus was
the predominant genus in the grains and cassava-based flour, occurring in more than three
quarter of all the food samples examined. This is consistent with previous reports on the
Aspergillus dominance in Nigerian foods, such as maize [21,36], rice [4], and garri, a cassava-
based product from Nigeria [35]. These data are in contrast to reports on fungal profiles
from maize in South Africa [37] and China [38], where Fusarium was the predominant
genus. In this study, Fusarium was not recovered from any of the food samples, which
agrees with findings from two previous studies conducted in Nigeria on rice [2] and
pupuru [12]. Conversely, this finding from the present study contradicts other available
reports [3,34,39,40] indicating several Fusarium species in grains, including rice and maize.
Penicillium was the second most predominant genus in the food samples, occurring in all
the sample types and mostly in maize and pupuru. High incidence of Penicillium was
previously reported in maize from Ethiopia [34] and pupuru from Nigeria [12]. Other
fungal genera recovered from the sample types include Talaromyces (only recovered from
the grains) as well as Syncephalastrum (from pupuru and rice) and Lichtheimia (found only
in maize). The latter genus was previously known as Absidia and has been reported in
Chinese and Brazilian maize [41] but is, to the best of our knowledge, reported for the first
time in Nigerian maize.

In this study, A. flavus was the predominant species in the grains and pupuru sam-
ples, occurring in 50% of all the samples. The predominance of A. flavus in the foods is
supported by previous reports from Nigeria [4,42,43] and elsewhere [44,45]. Aspergillus afla-
toxiformans was recovered from all the sample types, but mostly in the grains. This agrees
with a previous report from Nigeria, wherein A. aflatoxiformans predominated in grains
including maize and rice [3]. Aspergillus aflatoxiformans (previously, wrongly classified as
A. parvisclerotigenus) has been reported in cassava from neighbouring Benin Republic [46],
as well as dried mushroom and peanuts from Nigeria [47,48]. However, the occurrence
of A. aflatoxiformans from any Nigerian cassava-based food has not been documented
until now. Two other members of Aspergillus section Flavi (A. tamarii and A. pseudonomiae)
were only found in maize, which is consistent with previous reports [3,45,49]. Of the
Aspergillus section Flavi isolates tested for toxigenicity in vitro on NRCDA, more than one



J. Fungi 2021, 7, 635 8 of 12

half of the A. flavus strains and all of the A. aflatoxiformans and A. pseudonomiae exhibited
toxigenic potential on NRDCA. Aflatoxin production is a chemotaxonomic signature in
the Aspergillus section Flavi group, especially among strains of A. flavus, A. aflatoxiformans,
and A. pseudonomiae [50]. Consequently, the recovery of toxigenic strains in the present
study may imply that frequent ingestion of these foods is a contributory factor to the high
aflatoxin exposure recorded in Nigeria [51–55].

The fungal species belonging to Aspergillus section Nigri recovered from the food
samples include A. neoniger, A. brasiliensis, A. brunneoviolaceus, A. luchuensis, A. piperis,
and A. welwitschiae [56]. Aspergillus brunneoviolaceus was only recovered from pupuru.
This observation agrees with the report on A. brunneoviolaceus in garri, another cassava-
based product, in Nigeria [35] and suggests an association of this species with cassava
(products). Other members of the section Nigri were recovered only from the grains.
Aspergillus welwitschiae was only recovered from maize, which is in agreement with a
previous report from USA and Italy [57]. Similarly, A. brasiliensis and A. neoniger were
recovered from maize, whereas A. luchuensis and A. piperis were found in rice. Aspergillus
fumigatus (section Fumigati), a notorious opportunistic pathogen [58], was only recovered
from pupuru. The other member of the Aspergillus section Fumigati, A. fischeri, was found in
rice. Other members of the Aspergillus genera found only in pupuru include A. calidoustus
in Aspergillus section Usti [59], A. giganteus in Aspergillus section Clavati [60], and A. melleus
in Aspergillus section Circumdati [61], which are reported for the first time in Nigerian dried
cassava-based food.

Penicillium citrinum, a known citrinin producer [62], was recovered from all the sample
types. Recent reports found this fungus in cocoa and dried ready-to-eat foods from Nige-
ria [35,63], with the strains producing copious amounts (up to 372 mg/kg) of citrinin [63].
Furthermore, high levels (16,800 µg/kg and 51,195 µg/kg) of citrinin were previously
quantified in Nigerian maize [64,65]. Citrinin is a nephrotoxic mycotoxin [66]. Putting
findings from the aforementioned reports together with the high incidence of P. citrinum in
this study, there is an urgent need for mitigation efforts targeted at reducing P. citrinum,
which indirectly reduces citrinin levels, in Nigerian foods. Other notable fungal species
include P. cinamopurpureum, L. ramosa, T. funiculosus, and T. sayulitensis recovered only from
the grains and Syncephalastrum racemosum found only in pupuru. Talaromyces sayulitensis
is mostly associated with maize [67], which agrees with findings of the present study.
Lichtheimia ramosa is a soil fungus that causes mucormycosis especially in immunocom-
promised individuals [68]. Syncephalastrum racemosum can cause onychomycosis [69] and
this fungus has been previously reported in cocoa seeds in Nigeria [70], but its occurrence
in pupuru was not yet been documented to date. Major limitations of this study are the
use of MEA for fungal isolation and the incubation of fungal culture plates for three days,
thus precluding the recovery of slow growing fungi during isolation. However, the main
focus was to enumerate mostly toxigenic fungi (Aspergillus and Penicillium) from the food
samples as such data from the study is relevant.

In order to ascertain the aflatoxicological safety of the grains and cassava-based flour,
the levels of aflatoxin in the foods were determined. The focus on aflatoxin determination
amidst many other mycotoxins emanated from its status as the most toxicologically impor-
tant mycotoxin due to its categorization as Class 1 carcinogen [71]. In the present study,
73.8% of the examined composite food samples contained aflatoxins. This is consistent
with previous reports from Nigeria [20,72] and Kenya [73] that applied ELISA protocols in
food analysis and reported high aflatoxin incidence > 70%. The detection of aflatoxin in the
pupuru samples agrees with a previous report from a market in a town close to the study
locations, where aflatoxins were detected in 70% of pupuru samples albeit at very low
concentrations [74]. About 71% of the food samples exceeded the 4 µg/kg threshold set by
the European Union (EU) for total aflatoxins [75]. The proportion of samples exceeding the
EU limit is high and calls for more caution and the need to set in place critical intervention
measures to limit aflatoxin levels in the foods. This is crucial for cereals such as maize and
rice, which have the potential to be aggregated at the local market and exported to the EU.
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Overall, the high levels of aflatoxins quantified in the food samples agree with the data
obtained for the high incidence of toxigenic Aspergillus species recovered from the food
samples in the present study. It is likely that poor storage practices, which are very common
in Nigeria [9], contributed to the high aflatoxin levels in the food samples. Nevertheless, a
more robust mycotoxin surveillance study anchored in aa liquid chromatography-based
method is required to understand the actual extent of aflatoxin contamination in the foods
vended in Nigeria.

5. Conclusions

This study provides snapshot data on the fungal diversity and aflatoxin contents
of grains and pupuru vended in open markets in Ondo state, Nigeria. Diverse fungal
species and high aflatoxin levels were found in the examined foods, suggesting the possible
influence of poor handling, processing, and storage on the contamination of the foods.
Urgent mitigation efforts are required to limit toxigenic fungal and aflatoxin contamination
of these foods in the country. We therefore recommend proper storage of foods in hermetic
devices, such as Purdue Improved Crop Storage (PICS) bags and metal silos, as detailed by
Ayeni et al. [9]. In addition, households are advised to properly sort and filter bad grains
before preparing foods.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jof7080635/s1, Table S1: Numerical values for fungal species diversity in the ground grains
and pupuru samples, and Table S2: Numerical values for toxigenicity of members of Aspergillus
section Flavi in the foods.
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