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ABSTRACT: Plasma membranes (PMs) contain hundreds of
different lipid species that contribute differently to overall bilayer
properties. By modulation of these properties, membrane protein
function can be affected. Furthermore, inhomogeneous lipid
mixing and domains of lipid enrichment/depletion can sort
proteins and provide optimal local environments. Recent coarse-
grained (CG) Martini molecular dynamics efforts have provided
glimpses into lipid organization of different PMs: an “Average” and
a “Brain” PM. Their high complexity and large size require long
simulations (∼80 μs) for proper sampling. Thus, these simulations
are computationally taxing. This level of complexity is beyond the
possibilities of all-atom simulations, raising the questionwhat
complexity is needed for “realistic” bilayer properties? We constructed CG Martini PM models of varying complexity (63 down to 8
different lipids). Lipid tail saturations and headgroup combinations were kept as consistent as possible for the “tissues’” (Average/
Brain) at three levels of compositional complexity. For each system, we analyzed membrane properties to evaluate which features can
be retained at lower complexity and validate eight-component bilayers that can act as reliable mimetics for Average or Brain PMs.
Systems of reduced complexity deliver a more robust and malleable tool for computational membrane studies and allow for
equivalent all-atom simulations and experiments.

■ INTRODUCTION

Membrane proteins constitute a disproportionately large
fraction of all drug targets,1 as they are often the gate-keepers
of cellular signaling and regulation. As such, detailed under-
standing of membrane protein function is critical for the design
and development of future drug candidates. Working exper-
imentally with membrane proteins is extremely difficult. In order
to retain the correct structure and function of the protein during
ex vivo experiments, one must reconstitute the protein either
into an artificial membrane environment or into a suitable
mimetic (such as a nanolipoprotein particle2−5 or micelle6).
For the most part, the function of these in vitro platforms for

membrane protein study is to provide a hydrophobic environ-
ment that mimics the center of a lipid bilayer to maintain the
secondary structure elements that are specific to integral
membrane proteins (such as long α-helices that either are
amphipathic or have many hydrophobic residues on their
surface). Even many early membrane protein simulation
studies7,8 did not use phospholipids but rather utilized organic
solvents such as octanol, as they were computationally less
complex, were better parametrized, and allowed for faster

relaxation and equilibration of the systeman essential
necessity when computational resources were limited. Recent
advancements in both computational and experimental methods
for studying membrane proteins have revealed that the
membrane is contributing to function and doing far more than
simply acting as a “hydrophobic slab” in which to embed the
protein and stop the secondary structure from collapsing.
The properties of the membrane and the properties of the

embedded membrane protein are intrinsically linked. Mem-
brane proteins are found to preferentially co-localize and
interact with certain lipid types;9−14 the local lipid environment
rearranges based on properties such as lipid charge,12,15−17 lipid
tail order,12,18,19 or hydrophobic thickness.20−22 The notion of
“lipid fingerprints” has recently been explored,23 the idea that
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different proteins can have an identifiable pattern of lipids
around them. Lipids can modulate the behavior of the
protein,9,10,12,15 and indeed, certain lipid types may even be a
requirement for protein function.9,15

The complex nature of the membrane−membrane protein
symbiosis becomes even more intricate when small chemical
drug compounds are introduced. A new category of compounds
has been defined as PAINS (Pan Assay Interference
compoundS), or PAINS-like molecules, that were found to
cause false-positives in many membrane protein assays by
partitioning into the membrane and triggering a change in
protein behavior through modulation of the membrane
properties.24−26 Thus, it is not just the protein but the nature
of the membrane environment that has to be considered when
studying membrane protein function. Consequently, the
outcome of protein−drug interactions may be modulated by
the local lipid environment and ultimately lead to different
tissue-specific outcomes. For more reliable and beneficial
computational contributions to study membrane protein
function, there thus exists the need to use more realistic
mixtures of lipids that can act as good mimetics for plasma
membranes and that are even tissue- and/or disease-state-
specific.
In attempts to more accurately represent biological plasma

membranes, there has been a huge growth in the complexity of
the lipid mixtures used for simulation. There are several recent
reviews on computational modeling of complex mem-
branes.27−29 Work by the authors has also attempted to recreate
the intricacy of different tissue types using ∼60 different lipid
species.30,31 However, in order to reach reasonable relaxation
and equilibration of these massively complex lipidmembranes, it
required systems of ∼20,000 lipids in size and simulations 80 μs
long. Both of these factors necessitated the use of the
Martini32,33 coarse-grained (CG) force field. To set up, run,
and analyze these simulations necessitated considerable
resources (both human and computational). There are many
biological phenomena that require atomistic chemical detail in
order to accurately simulate. Martini proteins need to have their
secondary structure constrained, limiting the model’s use for
studying membrane protein conformational changes. While
Martini has been used extensively to study membrane
domains,34,35 it has been shown that the thermodynamic driving
forces for cholesterol−phospholipid interactions are not
captured with Martini.36 Other limitations include a proper
representation for water, limiting Martini’s applicability to study
detailed interfacial properties that are crucial for phenomena
such as pore formation37 and the electrostatic potential.
However, the length, size, and number of lipids in these large
tissue-mimetic simulations mean that it is currently not feasible
to implement an AA membrane simulation of 60 different
components.
In this study, we demonstrate different levels of reduced

complexity systems that maintain the general “tissue-specific”
properties of each membrane. The reduced complexity of the
system allows for smaller simulations that equilibrate faster. By
validating against the “gold standard” highly complex 60-
component membranes, we provide less complex mimetics that
reproduce most of the membrane properties of their more
complex counterparts. These specific environments are of
importance for studying the behavior of different membrane
proteins, as well as the different membranes themselves.
Ultimately, the complexity of the membranes is reduced to

such a level that it is feasible to convert the system from CG to
AA representations.
Previously, we have shown that the complex (∼60 different

lipid species) mixtures of lipids that represent different “tissue-
like” membranes (an “Average” mammalian plasma mem-
brane30 and a representative “Brain” neuronal membrane31)
have distinct properties that arise from their varying
compositions. Teasing out the precise lipids responsible for
the differing behaviors is challenging, especially as most
properties are a cumulative effect from many different lipid
types. However, there are some general membrane properties
that can be measured and have observable differences between
the two systems. As such, we decrease the complexity of our
systems, while analyzing them to ensure that the general
membrane properties are retained for each membrane type.
Our aim is to illustrate that lipid compositions of reasonable

complexity can recapitulate the tissue-specific behaviors of
plasma membranes, and thus provide robust membrane
mimetics for future studies.

■ METHODS
CGSimulation Setup.The bilayer builder insane38 was used

to construct the membranes. For each bilayer, the number of
lipids in the inner and outer leaflets was adjusted based on an
independent bilayer simulation using symmetrical compositions
of either the inner or outer leaflet. This process was iterated with
changes in the outer/inner leaflet distribution of cholesterol
until the cholesterol distribution did not drift over time. This
protocol is described in more detail in previous publica-
tions.30,31,39 For a complete list of simulations and lipid
compositions, see Table 1 and the spreadsheet in the Supporting
Information.

CG Simulation Parameters. The CG simulations were
performed using the Martini model32,33 The lipid force fields
used were described in Ingoĺfsson et al.31 All of the lipid force
fields can be found at theMartini portal www.cgmartini.nl. All of
the simulations were run using either the GROMACS 4.6 or
5.1.4 simulation packages,40,41 following the same setup
described in Ingoĺfsson et al.31 Briefly, a 20 fs time step was
used for all production simulations with the standard Martini
cutoffs, and the same “common” parameter set described in de
Jong et al.42 The simulations contained either ∼20,000 lipids or
∼6000 lipids with >15 CG waters per lipid (one CG water

Table 1. Simulations Run

tissue type
lipid
species

simulation
name

no. of
lipids simulation time

Average (A) 63 A-63a,b ∼20,000 80 μs
18 A-18 ∼20,000 80 μs
8 A-8 ∼6000 40 μs
8 A-8500 ∼500 15 μs
8 A-8AA ∼500 200 ns

(atomistic)
Brain (B) 58 B-58b ∼20,000 80 μs

16 B-16 ∼20,000 80 μs
8 B-8 ∼6000 40 μs
8 B-8500 ∼500 15 μs
8 B-8AA ∼500 200 ns

(atomistic)
aFrom ref 30. bFrom ref 31. All simulations are Martini CG unless
specified otherwise.
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representing four water molecules), counterions, and 150 mM
NaCl.
Undulations in the simulations were restricted using weak

position restraints on selected lipids in the outer leaflet, as with
previous studies.30,31 The pressure and temperature were
controlled using the Parrinello−Rahman barostat43 (1 bar
semi-isotropic pressure, with τp = 5.0 ps) and the velocity
rescaling thermostat44 (at 310 K, with τT = 1.0 ps). The larger
membranes were simulated for 80 μs, while the smaller systems
were simulated for 40 μs. Due to the smoother interaction
potentials in Martini, the effective time of many processes is
faster; i.e., for single component bilayers, lipid diffusion is
roughly 4-fold faster at the Martini CG level.32 This would
correspond to 320 and 160 μs of effective time diffusion time in
the large and smaller systems, but as this speedup is not
universal, all reported times are unscaled.
Backmapping Protocol. Even the “smaller” CG systems of

∼6000 lipids (simulations A-8 and B-8, Table 1) are unpractical
for simulation using all-atom force fields. Thus, more feasible
and appropriately smaller CG systems of both the A-8 and B-8
compositions were constructed and simulated using the same
protocols as described above. These smaller systems were ∼500
lipids in size and were equilibrated for 15 μs (simulations A-8500
and B-8500, Table 1). The final frames of these simulations were
used as inputs to convert the CG system to AA resolution using
the backmapping procedure described byWassenaar et al.;45 the
initial CG to AAmapping is done by the backward.py script that
places atoms based on defined bead mapping and mapping rules
specified for each lipid type, and the initram.sh script uses the AA
force field to run a number of minimization onMD steps to grow
the initial structure to one that satisfies the AA force field. Due to
the ∼4:1 mapping nature of Martini, multiple lengths of
hydrocarbon tails are condensed into equivalent numbers of CG
beads. The equivalent atomistic representations for saturated
Martini tails of 3, 4, and 5 beads are C12:0−C14:0, C16:0−
C18:0, and C20:0−C22:0, respectively (http://cgmartini.nl/
index.php/force-field-parameters/lipids2/350-lipid-details).
This means that a single CG tail can represent several potential
tails in all-atom representations. Thus, for the CG lipid species in
the A-8 and B-8 mixtures, the most appropriate AA lipid tails
were chosen (Table S1). Missing Martini to CHARMM
mapping files were constructed based on files from similar
lipids and as specified in Wassenaar et al.45 Note that rules were
added to the mapping files to promote correct stereochemistry
in initial structures but tests were not done to verify that those
were maintained in all cases; therefore, these simulations should
only be viewed as proof-of-principle.
All-Atom Simulation Parameters. The all-atom simu-

lations used CHARMM36 lipids46 and TIP3P water47 and were
simulated with GROMACS v5.1.4.40 Simulations used a 2 fs
time step. The Lennard-Jones interactions were cut off after 1.2
nm, with a switch-function from 1.0 to 1.2 nm. The particle mesh
Ewald method48,49 was used to calculate long-range electrostatic
interactions. The pressure and temperature were controlled
using the Parrinello−Rahman barostat43 (1 bar semi-isotropic
pressure, compressibility of 4.5 × 10−5, with τp = 12.0 ps) and
the Nose−́Hoover thermostat50 (at 310 K, with τT = 1.0 ps).
Hydrogens were constrained with LINCS.51

Analysis Tools. For analysis of domains within the CG
systems, the molecular configuration (3D coordinates) of the
bilayer was converted to a surface representation using
MemSurfer52an open-source tool for characterizing and
analyzing membrane surfaces. In particular, smooth surfaces

were computed through optimization to best represent the lipid
headgroups in the inner and outer leaflets of the membrane. The
resulting surfaces were represented as periodic triangulated
meshes, with lipid headgroups forming vertices of the meshes.
Given these membrane surfaces, the probability density of
cholesterol, γ(xl), was estimated using the 2D kernel density
estimation (KDE) approach with a Gaussian kernel, i.e.,

∑γ
π σ

= σ

=

−| − |

N
x( )

1
2

e
c

N

l
x x

l 0

( /2 )c l
c 2 2

where xl represents the position of lipid headgroups and Nl and
Nc are the number of all lipids and cholesterols in the leaflet,
respectively. Here, theNC3 (or equivalent) CG beads were used
to represent the positions of lipid headgroups, and the
smoothing kernel σ = 3 nm was used for KDE. In the limit,
γ(xl) represents the probability of finding a cholesterol at any
given point in the membrane and sums to 1. To obtain the
cholesterol distribution function at any given position, the
p rob ab i l i t y d i s t r i b u t i on wa s no rma l i z ed , i . e . ,

γ γ* =
γ∑x x( ) ( ) N

l l x( )l
c . The cholesterol distribution function

represents the distribution of cholesterols in the domain and
sums to the total number of cholesterols in the system.
Hereafter, we take the cholesterol distribution function to
represent the density of cholesterol in the system.
Although the density was estimated using 2D coordinates of

lipid headgroups, a key reason to compute membrane surfaces is
to explore the spatial variations of cholesterol distribution in
order to identify domains. To this end, the topology of the
cholesterol distribution fields (defined on triangular meshes)
was analyzed. Connected regions above or below a certain value
were taken to represent as domains, representing enrichment
and depletion, respectively. Suitable thresholds to define such
domains were identified through analysis. Given these thresh-
olds of cholesterol distribution, characteristics of resulting
domains were computed individually for each frame and then
aggregated over all frames for each CG system. To efficiently
explore the impact of different threshold choices as well as to
compute statistics of interest, the topological analysis framework
TALASS53,54 was used to encode the statistics of all possible
domains for all possible thresholds.
The reported average area per lipid (APL) for each lipid

mixture was determined from the APL of flat symmetrical outer/
inner systems for each composition. A force constant of 100 kJ
mol−1 nm−2 was used to keep these flat and the last 300 ns of
each simulation used. All standard errors are all <0.001 nm2.
Lipid tail order parameters (S) were calculated as described in

Ingoĺfsson et al.30 That is, the angles (θ) of each bond from the
linker to the lipid tail with respect to the Z-dimension (an
approximation of the bilayer normal) were evaluated and

θ= ⟨ ⟩ −S (3 (cos ) 1)1
2

2 calculated. Averages of all bonds are

reported as well as S between tail beads 2 and 3. All values are
from 2 μs averaged at the end of each simulation, and when
averaging between lipids, the averages are weighted based on the
number of lipids.
The lipid lateral diffusion coefficients (D) were calculated

using the GROMACS tool g_msd from the membrane plane
mean square displacement (MSD) of the ROH, GL1, or AM1
beads for the cholesterol, glycerol, or ceramide lipids,
respectively. The last 10 μs of each simulation was used for
the analysis and straight line least-squares fitted to the MSD
curve, excluding the first and last 10%, to determineD. Diffusion
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coefficients are reported as is and not scaled due to the faster
effective dynamics of the CG force field55 nor due to finite
system size artifacts.56

Cholesterol flip-flop is defined and measured as described in
Ingoĺfsson et al.,30 where a flip-flop is counted when a lipid
moves from one leaflet to another. Cholesterol flip-flop was
calculated for the last 10 μs of each simulation for each lipid class
using a cutoff length for what is considered within a leaflet to 1.1
nm to removing spurious flip-flop events. Reported errors are
standard errors of the mean estimated by splitting the last 10 μs
of the simulations in three equally sized blocks and analyzed
separately.
Nonideal lipid mixing was evaluated by counting lipid

neighbors for each lipid species as described in Ingoĺfsson et
al.30 For each lipid type, all lipids within 1.5 nm radius in the
bilayer plain were counted. The last 10 μs of each simulation was
averaged and, for each lipid type, the relative enrichment/
depletion reported as compared to a random mixing of each
mixture.

■ RESULTS AND DISCUSSION

Bilayer Compositions. To generate an initial mixture for
the reduction step from ∼60 to ∼15−20 lipid species, a set of
guidelines are followed. The different types of headgroups and
their relative populations should be maintained. Within the
different headgroups, lipid species with similar tails are merged
into a single representative species. These merged lipid species
for the different headgroups should recapture the average
number of unsaturations per tail for that headgroup. For
example, the inner leaflet of A-63 contains ∼1600 phosphati-
dylcholine (PC) lipids (in seven different species), of which
∼500 are POPC,∼800 are PIPC (C16:0/18:2), and the rest are
mainly lipids with one polyunsaturated tail. For the A-18
composition, the seven PC species are down-selected to just
∼500 POPC and ∼1100 PIPC, a ratio that as much as possible
retains average unsaturations per tail for PC lipids, as well as the
distributions of unsaturations per tail. This process is repeated
for all lipid classes with the goal of producing an initial mixture
that reduces the number of lipid species from ∼60 to ∼15−20.
The global tail unsaturation properties (average unsaturations
per tail, distribution of number of unsaturations) for these
mixtures are calculated. To optimize the agreement with the

global tail unsaturation properties of the ∼60 lipid composition,
the type and percentage of the lipid species in the initial 15−20
lipid mixture are then collectively adjusted.
The procedure is repeated to further down-select the

compositions as far as possible while still being able to retain
the global headgroup and lipid tail distributions. Our iterations
reveal that a mixture of eight lipids appears to be an approximate
threshold for making the compositions “reduced”. Attempts to
generate mixtures of fewer lipid species resulted in compositions
that failed to satisfactorily recapture even the basic head/tail
distributions of the ∼60 lipid bilayer; the compositional
flexibility is just not present.
The final distributions of the lipid headgroup classes and lipid

tail unsaturations for the six different membrane compositions
are displayed in Figure 1 (full details of the exact compositions
are included in the Supporting Information). A challenging task
when attempting to use fewer types of lipids to reproduce the
distributions seen in the most complex (∼60 lipid species)
membranes is the reduced specificity in the lipid types available.
One could pick lipid species that precisely reproduce the
headgroup distributions but are unable to recapture the
spectrum of lipid tail unsaturations. This leads to an iterative
process of adjusting the composition of the ∼16 and 8 lipid
mixtures to find a compromise and balance between accurately
recapitulating both the headgroup and lipid tail distributions.
When reducing the lipid species from ∼60 to ∼16, the

proportions of the major headgroup classes can be maintained
almost exactly, with only relatively minor changes to the number
of lipid tail unsaturations. Indeed, the pattern of lipid tail
unsaturations remains clearly distinct between the A-18 and B-
16 compositions. However, when the number of lipids is
reduced further to just eight in the A-8 and B-8 compositions,
concessions have to be made. For instance, the “other” category
of lipid headgroup (such as PI and PA lipids and ceramides)
completely disappears, as there simply are not enough different
lipid types. Furthermore, not even all of the main headgroup
classes can be maintained and selection of which to keep should
be based on what is the target application for that mixture; e.g.,
the outer leaflet glycolipid component in the A-63 and A-16
compositions (which comprises only ∼5% of the lipids in the
leaflet) can no longer be accommodated in the A-8 mixture.

Figure 1. Lipid distributions of the different lipid compositions. Pie charts show the distribution of different headgroup classes between the inner and
outer leaflets. The level of tail saturation for each leaflet is also illustrated.
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However, replicating the average distribution of categories of
lipids does not guarantee replication of how the lipids will
behave together within the membrane. For instance, a
membrane of 80% POPC and 20% cholesterol would have the
same average unsaturations per lipid tail (0.5 unsaturations per
tail) as a membrane of 40% DOPC, 40% DPPC, and 20%
cholesterol, but their behavior would be drastically different. In
order to compare the behavior of the systems, global membrane
and leaflet analysis is required.

General Bilayer Properties. Multiple general bilayer
properties are calculated and compared for all six of the CG
simulation systems (Figure 2). The twomost significant features
that we want to determine are (a) if these properties are
maintained as much as possible compared to the “gold
standard”, highly complex ∼60 lipid species simulation and
(b) if the properties begin to deviate, there is still a distinct
difference between the membranes of different tissue type.

Figure 2. Global membrane properties. For both the inner and outer leaflets of the six membrane systems, the average number of unsaturations per
lipid tail (A), cholesterol fraction in each leaflet (B), average area per lipid (C), average lipid order parameter at position 3 of the lipid tails (D), and
average lipid diffusion rates (E) are calculated. Where applicable, the standard error is shown. All of the data plotted is also reported in Tables S2 and
S3.

Table 2. Membrane Properties

system A-63 A-18 A-8 B-58 B-16 B-8

bilayer thickness (nm) ± SD 4.109 ± 0.064 4.105 ± 0.026 3.942 ± 0.019 4.137 ± 0.143 4.182 ± 0.047 4.131 ± 0.026
CHOL flip-flop (106 s−1) 7.290 7.700 5.910 4.820 4.373 4.374

Figure 3. Local enrichment and depletion of different lipid classes. The normalized number of lipids of a specific class (columns) within 1.5 nm of other
lipid classes (rows). The data is grouped by lipid headgroup type. Enrichment is indicated with blue colors, while depletion is highlighted in red.
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Several properties are found to be extremely consistent for the
different simulations of each tissue type. For both leaflets, both
tissue types, and both the ∼16 and 8 lipid complexity, the
cholesterol fraction (Figure 2B) and average area per lipid
(Figure 2C) display <3% deviation when compared to the ∼60
lipid simulations. This also importantly means that these
properties remain distinct between the “Average” and “Brain”
simulations even when the lipid complexity is reduced to∼16 or
8 lipids. In fact, almost all of the properties measured remain
different between the average and brain simulation types. The
only exception to this is the average tail order parameter for the
inner leaflet of the B-16/8 and A-18/8 systems. Here, the B-16/8
order parameters are more consistent with the A-63 system,
while the A-18/8 order parameters are more consistent with the
B-58 system. Despite this overlap of order parameters, the
equivalent areas per lipids for these leaflets are almost identical
to their comparative ∼60 lipid tissue simulations, and the order
parameters for the outer leaflets of these simulations remain
dissimilar from each other. One may attribute this deviation in
order parameter to themarked drop in average unsaturations per
tail of the chosen B-16 inner leaflet composition (Figure 1 and
Figure 2A, pale red line). However, the order parameter has
contributions from many other properties such as the
cholesterol fraction and the lateral spatial distribution of the
lipids. This again highlights that balance that must be achieved
when attempting to reproduce the overall behavior of a bilayer,
rather than specifically overfitting to a single property.
Additional properties are calculated for the membrane as a

whole, rather than individual leaflets (Table 2). As cholesterol
can flip-flop between the two leaflets during the simulation time
scale, a transition rate can be calculated. The cholesterol flip-flop
rate is shown to be consistently higher for the A-63/18/6
membranes (∼(6−8) × 106 s−1) than for the B-58/16/8 system
(∼(4−5)× 106 s−1).With A-8 somewhat surprisingly lower than
A-63 and A-18. There is a clear difference between the
cholesterol flip-flop behavior of the different tissue types,
regardless of the complexity of the membrane. The bilayer
thickness, however, is not as clear, with the Brain mixtures
tending to be marginally thicker. Relatively large fluctuations
within the thickness of the membrane (as well as potential in
precisely calculating the thickness) mean that any trends are
challenging to identify, with all systems within (or close to)
standard deviation.
Lipid Neighbor Analysis.Having quantified that the tissue

simulations of different complexity have very comparable global
behavior, we sought to investigate some of the more local
properties. The nonideal mixing of lipids with different
headgroups is classified by calculating the local enrichment or
depletion of different lipid species (Figure 3). The local lipid
analysis reveals a complex pattern of behavior, for which parsing
out information can be difficult. There are some general trends
seen within the Martini force field that are consistent between
different tissue mixtures and are maintained throughout the
differing levels of complexity; glycolipids (where present) and
PIPs both self-associate, while PIPs also have decreased
interactions with the other anionic lipids (PS), and sphingo-
myelins (SM) show decreased association around PE headgroup
lipids. Mutual coordination of counterions mediates the
aggregation of PIPs,57 while electrostatic repulsion likely
accounts for the decreased association between the different
anionic species. The decreased interaction of SM around PE
headgroup lipids appears to be due to the distinct differences in
the tail saturations of these lipids. The SM lipids consist mainly

of saturated hydrocarbon tails, such as palmitoyl (C16:0),
arachidoyl (C20:0), or lignoceroyl (C24:0). In contrast, the PE
lipid tails have a high proportion of polyunsaturated tails, such as
arachidonoyl (C20:4) and docosahexaenoyl (C22:6). Con-
versely, due to the more saturated nature of their tails, SM lipids
consistently show enrichment of cholesterol around them
(particularly in the inner leaflets). There are also some subtle
differences in enrichment patterns between the tissue types;
there is a stronger self-interaction between PE headgroup lipids
in the Brain mixtures than the Average ones (specifically in the
outer leaflet), and Brain glycolipids display significantly reduced
interactions with PE headgroup lipids. This difference may be
due to the Brain glycolipids containing a substantial fraction of
cerebrosides, whereas all of the Average glycolipids are
gangliosides. The glycolipid behavior is quite consistent within
the different levels of Brain tissue complexity, as are most of the
predominant trends. However, while the trends remain similar,
some of the local enrichments/depletions become enhanced in
the B-8 system. This is likely due to the reduced spectrum of
lipids available, particularly with respect to the lipid tails. Again,
using the PE headgroups as an example, the B-58 mixture has a
wide array of six different PE tails, with various combinations of
1, 3, 4, 5, and 6 total unsaturations (a mean value of 4.29
unsaturations per lipid). While the B-16 mixture can still span
most of this range with 1, 4, and 5 unsaturations (and a mean of
4.11 unsaturations per lipid), B-8 only has a single PE lipid with
4 total unsaturations to best match the mean unsaturations per
lipid. A further example is the reported enhancement in SM−SM
enrichment seen in the B-8mixture compared to the B-58 and B-
16 mixtures. The SM lipids in B-58 are actually a mixture of
DPSM (d18:1/18:0), POSM (d18:1/18:1), PNSM (d18:1/
24:1), and PBSM (d18:1/C22:0); B-16 is DPSM and PNSM.
However, B-8 contains only DPSM. Given that the SM lipids of
B-58 and B-16 contain a mixture of completely saturated and
monounsaturated lipid species, it is perhaps unsurprising that
they exhibit lower SM−SM association than the B-8 SM
category, which is entirely DPSM.

Domain Formation and Behavior. A further important
property of a membrane that is simultaneously a combination of
both global and local behavior is the partial demixing of lipids
into laterally heterogeneous regions, or domains. We have
previously demonstrated that the tissue-specific membrane
simulations (A-63 and B-58) have notably different behaviors in
terms of the size, number, and composition of their cholesterol-
enriched and cholesterol-depleted domains.31 The domain sizes
are affected by bilayer undulations31 and the domain register
between leaflets is affected by cholesterol flip-flip.64 The very
generalized difference between the tissue types is that the A-63
system has larger domains, while the B-58 system has domains
that are smaller, more numerous, and generally contain higher
cholesterol density.
Due to cholesterol being the most consistent single factor

between all levels of membrane complexity, it is again used as the
metric for defining domains. The local cholesterol distribution
function in the leaflet is calculated (as described in theMethods)
and used to define the regions with either a “depleted” or
“enriched” cholesterol density (i.e., domains). In order to define
these domains, we determined a depleted and enriched
threshold of cholesterol density (cholesterol distribution
function) using the same methodology as that in Ingoĺfsson et
al.,31 where the distribution of the number of domains with
respect to the density threshold was noted (Figure S1). If the
choice of the enriched threshold is too high, then this stricter
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criterion will result in some enriched regions not qualifying as
domains. If the choice is too low, then several distinct regions of
enrichment may merge into a single domain. The reverse
argument is also true for the choice of the depleted cholesterol
threshold (choose too high and regions will merge, choose too
low and domains will be missed). As such, the thresholds are
chosen as the peak values of the distributions of domain counts
(Figure S1). The calculated thresholds (per leaflet) to determine
the cholesterol-enriched and cholesterol-depleted domains for
each simulation system are shown in Figure 4, with a visual
example of the domains illustrated in Figure S2.

As to be expected, due to their inherently higher cholesterol
content, the three Brain systems have thresholds that are higher
than those of the Average systems. Furthermore, as the inner
leaflets have a greater fraction of the cholesterol, they also have
slightly higher thresholds. The threshold levels themselves are
extremely consistent within the Brain systems. While more
variability is seen within the Average systems, they still exhibit
behavior much closer A-63 than any of the Brain compositions.
Using these system-specific thresholds, each simulation is

analyzed to produce the distribution of the number of domains
(per μm2) with respect to the mean cholesterol distribution

Figure 4. Cholesterol-enriched and -depleted domain thresholds. The thresholds for the cholesterol-enriched and cholesterol-depleted domains are
shown for the six simulation systems. The orange/gray boundary indicates the depleted-cholesterol threshold, and the gray/purple boundary indicates
the enriched-cholesterol threshold. The bars above the dashed line are the outer leaflet thresholds, while the ones below the dashed line are the inner
leaflet thresholds.

Figure 5.Distribution of domain cholesterol densities. The distribution of depleted (left) and enriched (right) domains for the various Brain (top) and
Average (bottom) systems. The solid lines represent the outer leaflet, and the dashed lines represent the inner leaflets. Due to the different system sizes,
the number of domains has been normalized per μm2.
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within that domain (Figure 5). There are two noticeable trends
within the distribution of the number of domains. First, all
domains for the Brain systems have higher mean cholesterol
density than the equivalent Average systems (again, as to be
expected, given the increased cholesterol fraction in the Brain
compositions). Second, there is strong internal uniformity
within each separate category (tissue type, enriched and
depleted domains, inner and outer leaflets), emphasizing a
consistency in the domain behavior across tissue simulations of
differing lipid complexity. Additionally, there are steady trends
in the mean domain size (in terms of area; nm2), whereby the
domains for the Average systems are larger than the domains for
the Brain systems (Figure S3). As with the domain density, there
is also strong internal consistency in domain size between the
tissue systems of different lipid complexity (with A-8 being the
only outlier, though this may be related to finite size effects).
There is one further interesting feature of note that was quite

consistent between all levels of complexity; there appears to be
overlap (or approaching overlap) between the cholesterol
density in the enriched domains of the Average compositions and
the depleted domains of the Brain compositions (Figure S4).
This leads to a potentially fascinating hypothesis, that, despite
their differing lipid mixtures, there may be subregions within the
Average and Brain membranes that actually have remarkably
similar compositions (as governed by the cholesterol density).
This overlap of lipid compositions (and thus local membrane
behavior) would allow the same membrane protein to exist
within both tissue bilayers and experience similar lipid
environments/properties.
All-Atom Simulations. The previous analysis establishes

that most of the global bilayer properties, local lipid enrich-
ments/depletions, and domains of differing cholesterol density
are quite well maintained as the variety of different lipid species
is reduced from ∼60 to 8. While not every feature is preserved
from their parent A-63 and B-58 mixtures, the A-8 and B-8
systems are significantly distinct in their behavior and retain an
individual character that identifies them as one tissue type or the
other. Given that this tissue-specific behavior can be observed
using eight lipid species at the CG level, converting (“back-
mapping”45) the systems to AA representations acts as a proof-
of-principle test and verifies at a high level that these systems are
stable and retain the broad features of the membrane.
The ∼6000 lipids of the A-8 and B-8 systems are still quite

large for AA simulations. As such, the equilibrated coordinates
from A-8500 and B-8500 (the same compositions as A-8 and B-8
but only ∼500 lipids in size) are used to generate the starting
configurations for the equivalent AA simulations, A-8AA and B-
8AA (Figure 6).
Density profiles comparing the peaks of various components

of the membranes (such as lipid headgroups, linker regions, and
tails) for both the A-8500/A-8AA and B-8500/B-8AA systems show
equivalent patterns for both sets of simulations (Figure S5), as
well as comparable differences between the Average and Brain
systems. Consistent with our earlier work,31 both B-8 systems
show slight broadening of the lipid headgroup peaks compared
to the A-8 systems, while cholesterol density is also increased
within the middle of the B-8 bilayers. Notably, the AA systems
are slightly thicker (∼2 Å) than their CG equivalent simulations.
This difference is consistent with the specific choice of
representative lipid tails for the AA systems (see Methods and
Table S1) compared to the CG building block approach where
each tail represents a range of AA lengths. For instance, many of
the palmitoyl tails (C16:0−C18:0 in Martini) in B-8500 are

converted to the more biologically common and slightly
longer58 stearoyl tails (C18:0) in B-8AA.
The A-8500 and B-8500 simulations were extended a further 25

ns from the frame that was used to generate the A-8AA and B-8AA
systems. Due to the approximate 4-fold increase in CG
dynamics,32 these 25 ns of CG simulation were evaluated
against the first 100 ns of A-8AA and B-8AA where the lateral 2D
density of cholesterol, saturated tail regions, and unsaturated tail
regions were compared (Figure S6). The enrichment/depletion
patterns of these density plots indicate a spatial consistency of
the lateral distributions between both the AA systems and CG
simulations they were generated from. Thus, these relatively
short, detailed atomistic simulations act as a proof-of-principle
to demonstrate the analogous representation of their eight-
component CG counterparts and, by extension, comparable to
their highly complex ∼60-component CG systems.

■ CONCLUSIONS
This work has shown that many composition-dependent, tissue-
specific properties of CG bilayers, both general and specific, can
be retained when the complexity of that composition is reduced.
Furthermore, we can approximate the behavior of the CG
membrane with reasonably reduced number of components to
allow for detailed AA simulations. However, not all properties
are retained, especially with the A-8 and B-8 systems that only
contain eight components. There are trade-offs and concessions
that have to be made when the dynamic plasticity of the
membrane elements is reduced to just eight different lipid
species (and really just seven, if cholesterol is not counted).
Thus, if wanting to use a reduced eight-component system,

one should take into account what is the focus/purpose of those
simulations. Are there certain membrane properties of interest?
Or is the membrane being used to study a specific protein? The
composition of the system may have to be adjusted depending
on the type of scientific question being asked. Unfortunately,
there does not appear to be a formula or algorithm to determine
which mixture will be most appropriate. In the A-8 mixture, the
absence of glycolipids is conceded, as they only account for∼5%
of the headgroups in the A-63 outer leaflet. However, if the goal
of the study is to investigate the behavior of a specific membrane
protein that may interact with glycolipids, then evidently the
composition would have to be reassessed. Indeed, PIPs are
included in system A-8. While only accounting for ∼2% of the
inner leaflet, PIPs are known to be key lipids for interacting with

Figure 6.Coarse-grained and all-atom snapshots. The equilibrated final
coordinates from the CG simulations and the equivalent generated
starting configurations for the AA systems. The headgroup and tail
colors are as in the pie charts in Figure 1.
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certain proteins, and system A-8 was designed with that in
mind.59 Conversely, by limiting ourselves to just eight lipid types
and deciding to include a glycolipid species in B-8 (as there are
>10% glycolipids in the B-58 outer leaflet), it means
compromising elsewhere by only having a single type of PE
lipid. What is gained in terms of richness of headgroup diversity
is relinquished in range of lipid tails.
There have been “complex” (asymmetric bilayers with greater

than five different lipid species) mammalian membrane model
systems that have been utilized to study several aspects of
membrane and membrane protein behavior to great
effect.17,60−63 However, through direct comparison with systems
of varying complexity, we are able to validate our two different
eight-component bilayers that can act as reliable mimetics for
our biologically complex Average or Brain membranes. Using
systems of reduced complexity and smaller size significantly
lessens both the computational costs and the complexity of
analysis. These systems also allow for equivalent study using all-
atom simulations and even artificial membrane experiments.
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