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Arsenic is the most pervasive environmental substance and is classified by the Interna-
tional Agency for Research on Cancer as a Group 1 human carcinogen. Nearly every or-
ganism has resistance pathways for inorganic arsenic, and in bacteria, their genes are
found in arsenic resistance (ars) operons. Recently, a parallel pathway for organic arseni-
cals has been identified. The ars genes responsible for the organoarsenical detoxification
includes arsM, which encodes an As(lll) S-adenosylmethionine methyltransferase, arsl,
which encodes a C—As bond lyase, and arsH, which encodes a methylarsenite oxidase. The
identification and properties of arsM, arsI and arsH are described in this review.

Life arose before the atmosphere became oxidizing, when the
concentrations of dissolved metal ions in primordial oceans
were undoubtedly considerably higher than today [1]. One of
the most important initial challenges of the earliest cells
would have been the ability to detoxify the toxic arsenic. In
response to this, the strong selective pressure, arsenic resis-
tance mechanisms arose early and are present in nearly every
extant organism. Without the arsenic detoxification systems,
life would not exist.

Arsenic, the Group 1 human carcinogen, is the most
prevalent environmental toxin. It ranks top on the Agency for

Toxic Substances and Disease Registry priority list of Haz-
ardous Substances. The Environmental Protection Agency
asserts that arsenic poses a serious threat to our drinking
water, and food supply. In Bangladesh, the arsenic contami-
nated groundwater has been considered the largest
poisoning of a population in human history [2]. Exposure to
arsenic not only leads to the various forms of cancer but also
causes a range of illnesses, including cardiovascular and
peripheral vascular diseases, neurological disorders, diabetes
mellitus, and chronic kidney disease [3—6]. In addition, low
birth rate, fetal death, and delayed infant development are
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closely linked to arsenic exposure during pregnancy [7]. Both
inorganic and organic arsenicals such as monosodium
methylarsenate (MSMA or MAs(V)), and roxarsone (4-
hydroxy-3-nitrobenzene arsenate or Rox(V)) are still used
for agriculture and animal husbandry. The ubiquitous pres-
ence of arsenic in our surroundings means that arsenic will
contaminate our water and food supplies for the foreseeable
future.

To cope with the arsenic toxicity, arsenic resistance (ars)
genes can be found in the genome of nearly every bacterial
species sequenced to date, showing that arsenic must still be
ubiquitous in the environment and must provide a selective
pressure to maintain them in present-day microbes. The
minimal constituents are usually an As(IIl)-responsive
repressor (ArsR) [8], and an As(Ill) efflux permease (ArsB [9]
or ACR3 [10,11]) that functions to extrude trivalent As(III)
from cells. The As(lll)-stimulated ATPase (ArsA) [12], and the
As(III) metallochaperone (ArsD) [13], which are always asso-
ciated in ars operons, appears to be later adaptations that
enhances the ability of ArsB to extrude As(Ill) and increase
resistance. ArsC [14,15] and other arsenate reductases [16] are
required for resistance to arsenate, which became the pre-
dominant arsenic species after oxygen appeared in the at-
mosphere [17].

Arsenate is universally taken into cells by phosphate
transport systems, but, again cells took up As(III) before As(V)
was even present environmentally, so As(IIl) uptake must be
much more ancient. In 1997 As(IIl) was shown to be taken into
Escherichia coli by GlpF, a member of the aquaglyceroporin
(AQP) superfamily [18]. Since then AQPs have been shown to
be a major route of bidirectional movement of As(IIl) into and
out of eukaryotic cells, with human AQP9 the likely pathway
for arsenic uptake into and methylarsenite (MAs(III)) efflux out
of liver [19,20]. AQPs have since been shown to be the uni-
versal route of arsenic uptake [21]. Arsenic uptake by AQPs is
of considerable relevance to human health and disease, and
an understanding of both metalloid chemistry and the mo-
lecular details of metalloid transport systems is essential for
the rational design of new drugs and for treating drug-
resistant cells, and microorganisms. One example is that
AQP9 is the pathway for uptake of the arsenic chemothera-
peutic drug trisenox into leukemia cells [22]. A second
example is a demonstration that LmAQP1, a leishmanial AQP,
takes up the activated form of the drug pentostam from the
macrophage into the amastigote form of the parasite [23].
Moreover, in plants the AQPs were recently shown to take up
the essential metalloids boron [24], and silicon [25]. In present-
day, the seawater contains approximately 0.4 mM borate and
0.1 mM silicate, but only submicromolar arsenic. This sug-
gests that boron and silicon oxyacid might be physiological
substrates of AQPs whereas arsenic might be taken up
adventitiously only when present as high-level contaminants.
Additionally, there is a single instance of an atypical AQPs
called agpS replacing arsB in the ars operon of Sinorhizobium
meliloti. [26] AqpS mediates to the efflux of internally gener-
ated As(Ill). Also As (III) has been shown to be taken up by
glucose permeases, including the yeast transporters [27], and
human GLUT1, and GLUT4 [27—29]. Arsenite in solution is an
inorganic mimetic of polyols, which allows it to be taken up by
glycerol and sugar transporters.

The arsenic methylation cycle

This review will focus on new genes and their functions in ars
operons. The revolution in genomics has provided a wealth of
sequence information about ars genes in thousands of or-
ganisms. New genes have been found in ars operons with
functions that are not obvious. Recently, a global cycle of
arsenic methylation has been identified that includes ArsM
methyltransferases, ArsI C—As bond lyases, and ArsH NADPH-
flavin mononucleotide (FMN) - dependent oxidoreductases.

ArsM, an As(Ill) S-adenosylmethionine
methyltransferase

Members of every kingdom, from bacteria to humans, meth-
ylate arsenite, producing the trivalent species MAs(III), dime-
thylarsenite (DMAs(III)), and volatile trimethylarsine
(TMAS(IIT)) [30,31] catalyzed by As(Ill), S-adenosylmethionine
(SAM) methyltransferases (AsMTs) (EC 2.1.1.137).

To understand on one hand how microorganisms remodel
the environment in arsenic-rich regions and how arsenic
methylation is involved in carcinogenesis, on the other hand,
it is essential to understand the AsMT catalytic cycle. The
enzyme, that catalyzes this reaction in humans and other
mammals has been termed AS3MT [32]. It is found predomi-
nately in the liver, where the intermediates, in particular,
MAs(III) and DMAs(III), are potent toxins and carcinogens
responsible for a majority of arsenic-related human diseases
[30]. Whether the AsMTs detoxify the arsenic or transform it
into more toxic products depends in part on their enzymatic
mechanism. Challenger proposed that the mechanism is an
alternate series of oxidative methylations and reductions,
with the pentavalent species as products [33]. This hypothesis
is supported by the fact that humans excrete MAs(V) and
dimethylarsenate (DMAs(V)) in urine. An alternate proposal by
Hirano is that there is no change in oxidation state during the
catalytic cycle and that products are all trivalent methyl-
arsenicals [34]. If the primary intracellular products of
methylation are the pentavalent species, then arsenic would
have limited carcinogenic potential. On the other hand, if the
trivalent species are the major methylated intracellular
products, then the methylation would increase the carcino-
genicity of arsenic. Whether the oxidized species found in the
urine of mammals or the growth medium of microbes are the
products of the AsMTs, or are the result of non-enzymatic
oxidation of the unstable trivalent species is controversial
[35], but, with careful handling, the trivalent forms have been
detected in urine [36,37]. Thus, a detailed knowledge of the
enzymatic pathway is important. However, AS3MT has
proven difficult to characterize biochemically [38], so micro-
bial AsMTs have been used as models. The first identified
microbial AS3MT ortholog was from an ars operon in Rhodop-
seudomonas palustris and was named arsM [39]. More useful
has been the CmArsM from the Yellowstone thermoacido-
philic eukaryotic alga Cyanidioschyzon merolae. [40] This heat-
stable and highly active enzyme has been invaluable as a
model for biochemical [41], and crystallographic analysis of
AsMTs [42,43]. The apo structure was solved at 1.6 A, as well as
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liganded structures with SAM, with As(IIl) [43] or with the
aromatic arsenicals phenylarsenite (PhAs(III) or PAO), and
trivalent roxarsone (Rox(Ill)), which are methylated by
CmArsM [44]. A model of CmArsM with both the SAM and
As(Ill) binding sites filled is shown in Fig. 1. All AsMTs have
four conserved cysteine residues, which are Cys44, Cys72,
Cys172 and Cys224 in CmArsM, that appears to be involved in
As(Ill) binding and catalysis [44]. All four cysteines are
required for methylation of As(IIl) to MAs(III), but Cys44 and
Cys72 are not required for methylation of MAs(III) to DMAs(III).
Interestingly, in new crystal structures Cys41 and Cys72 are
linked by a disulfide bond while PhAs(III) or Rox(III) are bound
by Cys174 and Cys224. This result implies that the C-terminal
cysteine pair forms the metalloid binding site, while the N-
terminal cysteine pair play a different role in catalysis that has
been postulated to keep arsenic reduced during the methyl-
ation pathway in a new model for the catalytic cycle of AsMTs
that utilizes a disulfide bond cascade to successively reduces
the pentavalent arsenical intermediates [44]. In this model,
the substrates and products are trivalent, but there are tran-
sient pentavalent enzyme-bound intermediates that are
reduced by cysteine residues, creating a disulfide bond
cascade mechanism of alternating oxidations, and reductions
of the bound arsenic. The new proposed pathway considers
the first two methylations in seven steps [Fig. 2]: (1) CmArsM
binds As(Ill) in a series of three thiol transfer reactions from
the As(Ill) triglutathione conjugate (As(GS)s), the preferred
substrate [41]. (2) The methyl group of SAM is attacked by the
arsenic lone pair. (3) A transient positively charged MAs(V)

intermediate is formed. (4) Cys44 (or Cys72) reduces the
enzyme-bound MAs(V) intermediate to MAs(III), allowing the
second round of methylation. Consistent with the postulate of
an enzyme-bound intermediate, most arsenic is enzyme-
bound as MAs(III), and little is released into the medium [41]
within the first 10 min of methylation. (5) Oxidized Cys44
forms a disulfide bond with Cys72, which must be reduced
before the next round of methylation can occur. In vivo thio-
redoxin (Trx) has been suggested to be the reductant for
AsMTs [38], but, in our studies, GSH was used as the reductant
because the thermostable Trx/Trx reductase was not avail-
able. MAs(IIl) remains strongly bound by the thiol pair
Cys174—Cys224. (6) A second methylation forms a transient
positively charged pentavalent DMAs(V) intermediate, (7)
which is reduced to DMAs(Ill) by Cys72, forming a
Cys72—Cys174 disulfide. The disulfide is reduced by Trx,
regenerating the enzyme and releasing DMAs(III), which
nonenzymatically oxidizes in air to DMAs(V). Thus, the four
conserved cysteine residues play two distinct roles, first as the
binding site for arsenicals, and second as the source of elec-
trons to maintain arsenic in the reduced form. This pathway
explains nearly all current results and resolves the differences
between Challenger and Hirano about the oxidation state of
the substrates and products [34]. It is not clear whether the
pentavalent intermediates are obligatory intermediates or
side products. In either case, the arsenic must be reduced
before the reaction can proceed. The electrons to reduce
pentavalent intermediates come from the conserved cysteine
residues, which form disulfide bonds. Trx was proposed to be
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Fig. 2 — Proposed reaction scheme for AsMTs. (The proposed
reaction pathway is a general one for AsMTs, but the
numbering of cysteine residues follows the sequence of
CmArsM. (1) In the first round of methylation AsMT binds
As(IIl) in a series of three thiol transfer reactions; (2) the
methyl group of S-adenosylmethionine is attacked by the
arsenic lone pair; (3) a positively charged pentavalent MAs(V)
intermediate is formed and (4) reduced to an enzyme-bound
MAs(III) intermediate by Cys44 with formation of a Cys44-
Cys72 disulfide; (5) the disulfide is reduced by Trx,
regenerating the enzyme for the second round of
methylation; (6) MAs(Ill), which is tightly bound to the
Cys174-Cys224, is methylated, producing an enzyme-bound
positively charged pentavalent dimethylarsenates(V)
intermediate; (7) which is reduced to dimethylarsenites(III)
by Cys72 with formation of a Cys72-Cys174 disulfide; (8)
dimethylarsenites(IIl), which is weakly bound to the single
Cys224, dissociates from the enzyme and is oxidized
nonenzymatically to dimethylarsenates(V). Finally, the
Cys72-Cys174 disulfide is reduced by Trx, allowing the cycle
to begin over).

the reductant of pentavalent arsenic [38], but in this model, it
serves in the classical role of Trxs in disulfide bond reduction
[45]. Thus, AsMTs employs a basic catalytic mechanism
similar to that of O-, N-, C-, and S-methyltransferases. What
differentiates AsMTs from other members of the methyl-
transferase superfamily is the necessity to bind trivalent ar-
senicals and to maintain them in the reduced form, for which
they utilizes the four conserved cysteine residues.

Arsl, a C—As bond lyase

If microbes expressing As(Ill) SAM methyltransferases are
common, why isn't most of the arsenic in the environment
methylated? Inorganic arsenic continuously enters the envi-
ronment from geothermal sources, and some methylated
species are degraded abiotically, but there is still much less
environmental methylarsenicals than would be expected. The
answer may lie in the identification of the ArsI C—As lyase,
which cleaves the C—As bond, converting MAs(III) into As(III)

[46]. Although the microbial degradation of environmental
organoarsenicals has been documented [47—50], molecular
details of the reaction were unknown. Microbial communities
in Florida golf course soil were shown to carry out a two-step
pathway of MSMA reduction and demethylation [51]. An
environmental MAs(II)-demethylating bacterium Bacillus sp.
MD1 was isolated from Florida golf course soil and the arsl
gene was cloned by selection for MAs(III) [46]. Arsl, is non-
heme iron-dependent dioxygenase with C-As lyase activity.
A thermophilic ArsI was cloned from Thermomonospora curvata
and crystallized [52]. A model of the Arsl structure built on
related dioxygenase is shown in Fig. 3.

Arsl also cleaves the C—As bond in aromatic arsenicals. In
addition to the microbial generation of methylated arsenicals,
massive amounts of organic arsenicals are introduced into the
environment anthropogenically as herbicides, growth pro-
moters, and from industrial activities. Arsenicals, both inor-
ganic and organic, have been utilized in agriculture in the
United States for over a century [53]. Historically the use of
inorganic arsenical pesticides/herbicides have been largely
replaced by methylated arsenicals such as MSMA (Mas(III)),
which is still in use today as an herbicide for turf maintenance
on golf courses, sod farms, highway rights of way, and weed
control in cotton fields [53]. Pentavalent aromatic arsenicals
including roxarsone (Rox(V)), nitarsone (Nit(V), 4-
nitrophenylarsonic acid), and p-aminophenyl arsonic acid
(p-ASA) have been used since the 1940s as an antimicrobial
growth promoters for poultry, and swine to control Coccidioides
infections, improve weight gain, feed efficiency, and meat
pigmentation [47,50]. While Pfizer has voluntarily suspended
the production of roxarsone, and p-ASA, they still make and
sell Nit(V), which is the only known treatment for blackhead,
or histomoniasis, in turkeys. In addition, roxarsone is

Fig. 3 — Model of the Arsl structure. (ArsI was modeled on the
structure of the C-terminal domain of the related catechol-
2,3-dioxygenase (PDB ID 3HPY) with a root-mean square
deviation (RMSD) of 2.7 A. Atoms are colored as in Fig. 1.
Fe(Il) (orange sphere) is bound to GIn8, His65 and Glu117. The
blue spheres are oxygen atoms. The organoarsenic binding
site is composed of Cys98 and Cy99, with PhAs(1ll) filling the
site).
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produced worldwide and used in poultry farms in many
countries. These aromatic arsenicals are largely excreted un-
changed and introduced into the environment when chicken
litter is applied to crops as fertilizer [47]. Pentavalent organo-
arsenicals are relatively benign, and less toxic than inorganic
arsenicals, however, both aromatic [47,50,54] and methyl
[49,55] arsenicals are activated by reduction [56], and then
degraded into more toxic inorganic forms in the environment,
where they contaminate foods and water supplies. Arsl
cleavage of the C—As bond in a wide range of trivalent orga-
noarsenicals strongly suggests that the environmental
pentavalent aromatic arsenicals such as Rox(V) also undergo
two-step pathway of sequential reduction and Arsl-catalyzed
C—As bond cleavage by microbial communities such as the
MSMA demethylation pathway.

ArsH, a methylarsenite oxidase

The global arsenic biotransformation is composed of the
interaction of redox and methylation cycles. Until recently, a
third cycle of arsenic biotransformation, an organoarsenical
redox cycle, has grown in importance. Pentavalent organo-
arsenicals, such as herbicides, and antimicrobial growth pro-
moters, are largely harmless. However, microbial
communities carry out organoarsenical reduction [51], and
reduced methylated, and aromatic arsenicals are toxic [56].
How bacteria survive the formation of toxic MAs(III) or Rox(I1I)
was not clear until the identification of the arsH and arsI genes.
As described above, Arsl catalyzes the cleavage of the C-As
bond, and the microbes that have an arsl escape killing by
trivalent organoarsenicals. How the arsH gene contributed to
the tolerance to trivalent organoarsenicals was not clear until
the recent functional characterization of arsH in S. meliloti and
Pseudomonas putida. [57].

The ars operon of Yersinia enterocolitica was shown to
contain a novel gene that was termed arsH, but its function
was not clear, conferring only a very slight increase in the
resistance to both arsenite and arsenate [58|, and it was
difficult to understand how a single gene could confer
resistance to both the pentavalent and trivalent forms of
inorganic arsenic. Deletion of arsH in Serratia marcescens
marcescens [59] and S. meliloti [26] also led to slight increases
in arsenic sensitivity. Arsenic resistance in Thiobacillus fer-
rooxidans [60] and the cyanobacterium Synechocystis [61] was
unaffected by either a loss of function mutation in or over-
expression of arsH. Thus, the data on the physiological role
of arsH were not easily interpreted until recently. Currently,
there are approximately 9000 ArsH-related protein se-
quences deposited in the NCBI database. A vast majority of
ArsH sequences are found in bacteria (97.7%), mostly gam-
maproteobacteria, whereas only a few are found in eukary-
otes, mostly in fungi (2.2%). A few mammalian ArsH
sequences are present in the NCBI database, but it is not
clear whether these sequences are valid.

Purified ArsH from S. meliloti exhibits NADPH-dependent
FMN reductase activity, reducing azo dyes and generating
hydrogen peroxide, but this enzyme did not catalyze the
oxidation of As(IIl) or reduction of As(V) [62]. Synechocystis
ArsH has been identified as a quinone reductase [63] and is

capable of reducing chromate and ferric iron, but no arsenic-
associated activity was observed [64]. One the one hand, arsH
genes would not be in ars operons, if it were not related to
arsenic metabolism. On the other hand, there is no clear
phenotype associate with the arsH gene in vivo, and purified
ArsH has no activity with inorganic arsenicals. A reasonable
deduction of the absence of arsenic-associated activity with
the purified S. meliloti ArsH [62] is that the physiological role
of ArsH involves arsenic species other than inorganic
arsenicals.

ArsH confers resistance to trivalent
organoarsenicals

The physiological role of ArsH was recently demonstrated to
be the oxidation of toxic MAs(IIl) and other trivalent organo-
arsenicals [57]. It was noted that P. putida and S. meliloti are
naturally arsRCH and agpS of S. meliloti, two ars operon resis-
tant to MAs(III), PhAs(Ill) and Rox(IlI), particularly P. putida,
which is 10-fold more resistant to these organoarsenicals than
E. coli. While there is a single arsH gene in the ars operons, each
containing an arsH gene, (arsRBCH) is found in the chromo-
some of P. putida. Deletion of both ars operons in P. putida led
to the loss of resistance to MAs(III) and PhAs(III) (but not to
Rox(IIl) because P. putida takes up Rox(IIl) only poorly). In S.
meliloti, deletion of the ars operon, or only the arsH gene
resulted in sensitivity to these organoarsenicals, indicating
that arsH gives the resistance to trivalent organoarsenicals.
Heterologous expression of P. putida arsH from the first ars
operon (arsl) in the arsenic hypersensitive E. coli strain
AW3110, in which the ars operon was deleted [65] conferred
the resistance to MAs(III), PhAs(Ill) and Rox(Ill). This finding
suggests that arsH expression alone is sufficient to detoxify
the activated trivalent forms of the herbicide MSMA as well as
the poultry antimicrobial growth promoter roxarsone in the
absence of any other ars genes.

Purified ArsH is a trivalent organoarsenical
oxidase

It was originally anticipated that ArsH would be an arsenical
reductase, perhaps by reducing MAs(V) to MAs(III), or even
MAs(III) to MAs(0). Yet, it is unclear how reduction of nontoxic
MAs(V) to toxic MAs(III) could be physiological. Purified ArsH
from either S. meliloti or P. putida are yellow in appearance and
display a typical flavoprotein absorption spectrum [57,62].
Although P. putida ArsH possesses NADPH-dependent FMN
reductase activity, this activity is not stimulated by inorganic
arsenicals, and no reduction of MAs(V), or other pentavalent
organoarsenicals was observed. In contrast, using high per-
formance liquid chromatography coupled inductively coupled
plasma-mass spectrometry, in the presence of NADPH and
FMN, P. putida ArsH oxidized MAs(III), PhAs(III), and Rox(III)
(but not As(Ill)) to their pentavalent forms [57]. The fact that
ArsH confers resistance to the organoarsenicals by the
oxidation indicates that ArsH is a trivalent organoarsenical
oxidase.
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Fig. 4 — Structure of ArsH. (The cartoon diagram demonstrates the X-ray crystal structure of S. meliloti ArsH. (A) The tetrameric
form of ArsH with each monomer (A, red; B, green; C, blue; D, yellow). (B) ArsH monomer with secondary structures (helices,
cyan; strands, magenta; loops, yellow) shown in ribbon representation.

How two reductants, NADPH and MAs(III), could result in
substrate oxidation was not obvious. The answer is that O, is a
co-substrate and serves as the oxidant. It is proposed that
ArsH catalyzes a coupled oxidation of MAs(IIl) with reduction
of O, to H,0 [57]. In the reductive half-reaction of the proposed
scheme, oxidation of NADPH-FMN complex causes the hy-
dride transfer from NADPH to FMN, forming FMNH, and
releasing NADP*. In the oxidative half-reaction, when a
trivalent organoarsenical substrate is located near the FMNH,,
the reduced flavin is oxidized by O, followed by the oxidation
of the trivalent organoarsenical substrate to its pentavalent
form. Without a physiological substrate, ArsH nonspecifically
reduces azo dyes, metals, and quinines as well as H,0,, which
is regarded as in vitro artifacts. Thus ArsH confers resistance to
toxic trivalent organoarsenicals by oxidizing them to nontoxic
pentavalent species.

ArsH structure, interactions between subunits
and FMN binding site

The structure of ArsH from S. meliloti [Fig. 4] has been deter-
mined at 1.8 A resolution by X-ray crystallography [62]. ArsH
crystallizes with eight molecules in the asymmetric unit in
two identical tetramers. Each monomer belongs to the global
o/f protein with the flavodoxin-like architecture as core
domain with a five-stranded parallel B-sheet. The structure of
ArsH resembles other flavoproteins.

Based on the fact that S. meliloti ArsH is a tetramer in so-
lution, and two tetramers are in the asymmetric unit, S.
meliloti ArsH is thought to function as a tetramer. This is
consistent with the recent structure of ArsH from Synechocystis
sp. strain PCC 6803 [66]. Within the S. meliloti ArsH structure,
the monomers A and B form a typical flavodoxin-like dimer,
whereas the monomers C and D form another dimer. The N-
terminal a-helices (a1, o4, o5) and the C-terminal helices (26,

o7) participate in the dimer—dimer interaction. Also, the ex-
tensions of N- and C-terminus are crucial for the interactions
between subunits as well as the formation of the tetramer [62].

The predicted FMN binding site of S. meliloti and P. putida
ArsH contains amino acid sequence G;sSLRTVSYS, and
G4oSTRERSFS, respectively. In P. putida ArsH, the substitution
of Arg45, and Ser48 with alanine leads to sensitivity to PhA-
s(II) [57]. Likewise, substitution of Glu108, which is predicted
to bind FMN with alanine, reduces the resistance to trivalent
organoarsenicals. Compared with the yellow wild type P.
putida ArsH, the purified E108A mutant protein is colorless.
While the typical FMN absorption maxima at 373 and 455 nm
are absent in E108A mutant protein, the addition of FMN
largely recovers the activity of E108A mutant protein. These
findings suggest a role for Glu108 in FMN binding.

In summary, the genes/enzymes described in this review
form a new cycle of arsenic methylation, demethylation, and
detoxification [Fig. 5]. ArsM transforms inorganic arsenicintoa
highly toxic organoarsenical species that kills off by competing
the bacterial species and may also be responsible for carcino-
genesis in animals. Competing microbial species have
responded to this environmental pressure by evolving detox-
ification mechanisms for MAs(IlI). Some produces Arsl that
demethylates MAs(III) to less toxic inorganic As(III) while other
produces ArsH that oxidizes MAs(III) to nontoxic pentavalent
MAs(V). Itis likely that all of these processes are taking place in
environmental microbial communities as bacteria, archaea,
fungi, and protozoans constantly fight for dominance.
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Fig. 5 — ArsM, ArsH and Arsl: Enzymes of organoarsenical production and detoxification. (Pentavalent inorganic arsenate (As(V))
is reduced by the ArsC arsenate reductase to trivalent arsenite (As(III)). Arsenate is relatively nontoxic compared with arsenite.
Some microbes have arsM genes that encode ArsM As(Ill) S-adenosylmethionine methyltransferases that transform As(III) into
the considerably more toxic (and, for humans, carcinogenic) organoarsenical MAs(III). Other microbes have an arsl gene
encoding the Arsl C-As lyase, a dioxygenase that cleaves off the methyl group, forming inorganic As(Ill). Since As(Ill) is less
toxic than MAs(III), this reaction detoxifies the organoarsenical. Other bacteria have an arsH gene encoding the ArsH NADPH-
FMN oxidoreductase that oxidizes MAs(III) to relatively nontoxic pentavalent MAs(V), also a detoxification process.
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