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ABSTRACT Experimental data showed that high-speed microsprays can effectively
disrupt biofilms on their support substratum, producing a variety of dynamic reac-
tions such as elongation, displacement, ripple formation, and fluidization. However,
the mechanics underlying the impact of high-speed turbulent flows on biofilm struc-
ture is complex under such extreme conditions, since direct measurements of viscos-
ity at these high shear rates are not possible using dynamic testing instruments.
Here, we used computational fluid dynamics simulations to assess the complex fluid
interactions of ripple patterning produced by high-speed turbulent air jets impacting
perpendicular to the surface of Streptococcus mutans biofilms, a dental pathogen
causing caries, captured by high-speed imaging. The numerical model involved a
two-phase flow of air over a non-Newtonian biofilm, whose viscosity as a function of
shear rate was estimated using the Herschel-Bulkley model. The simulation sug-
gested that inertial, shear, and interfacial tension forces governed biofilm disruption
by the air jet. Additionally, the high shear rates generated by the jet impacts cou-
pled with shear-thinning biofilm property resulted in rapid liquefaction (within milli-
seconds) of the biofilm, followed by surface instability and traveling waves from the
impact site. Our findings suggest that rapid shear thinning under very high shear
flows causes the biofilm to behave like a fluid and elasticity can be neglected. A
parametric sensitivity study confirmed that both applied force intensity (i.e., high
jet nozzle air velocity) and biofilm properties (i.e., low viscosity and low air-
biofilm surface tension and thickness) intensify biofilm disruption by generating
large interfacial instabilities.

IMPORTANCE Knowledge of mechanisms promoting disruption though mechanical
forces is essential in optimizing biofilm control strategies which rely on fluid shear.
Our results provide insight into how biofilm disruption dynamics is governed by ap-
plied forces and fluid properties, revealing a mechanism for ripple formation and
fluid-biofilm mixing. These findings have important implications for the rational de-
sign of new biofilm cleaning strategies with fluid jets, such as determining optimal
parameters (e.g., jet velocity and position) to remove the biofilm from a certain zone
(e.g., in dental hygiene or debridement of surgical site infections) or using antimicro-
bial agents which could increase the interfacial area available for exchange, as well
as causing internal mixing within the biofilm matrix, thus disrupting the localized
microenvironment which is associated with antimicrobial tolerance. The developed
model also has potential application in predicting drag and pressure drop caused by
biofilms on bioreactor, pipeline, and ship hull surfaces.
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During recent years, close attention has been paid to the mechanical behavior of
biofilms when subjected to high shear turbulent flows, because of direct applica-

tions in utilizing such methods for biofilm removal. Fluid-biofilm patterns, such as
formation of migratory ripples and surface instabilities, transition to fluid-like behavior,
and stretching to finally break off the biofilm, have been described (1–5). Furthermore,
the viscoelastic character of biofilms when exposed to turbulent flows has been
reported (6–8), hypothesizing that generated instabilities enhance mass transfer into
biofilms (9, 10).

Several biofilm “constitutive” models, mathematical models which describe the
mechanical properties of material and how a material will respond to mechanical
forces, have been developed with consideration of viscoelastic properties and biofilm-
fluid interaction, as reviewed by different authors (11–14). Biofilm deformation and
detachment under laminar flow conditions have been modeled using the phase field
approach (15, 16) and the immersed boundary method (17). The movement of biofilm
streamers (18) and the deformation of simple-shaped biofilm under high-speed flow
(19) have been described using fluid-structure interaction models, implemented in
commercial software packages (i.e., COMSOL Multiphysics and ANSYS). Small bio-
film deformations have also been modeled considering the biofilm as a poroelastic
material, compressing when exposed to laminar flows (20, 21). The effect of parallel
air-water jets on the surface morphology of very viscous biofilms has been inves-
tigated numerically (3, 22), proposing the characterization of the biofilm rippling as
Kelvin-Helmholtz instability. However, the interactions between biofilm and per-
pendicular impinging turbulent jet flow and how the turbulent impacts disrupt
biofilm properties have not yet been described numerically. Therefore, a numerical
investigation of the biofilm rippling patterns generated by turbulent jets could help
clarify the mechanics behind the observed biofilm disruption. Computational fluid
dynamics (CFD) is a useful tool for predicting the behavior of fluid flow and
fluid-fluid interactions which might not be easily possible through experimentation.
CFD models have been developed to describe air jet impingements into water
vessels (23–25) using the volume of fluid (VOF) method to track the interface
position between fluids. The VOF method has also been used to predict the wall
shear stress produced by turbulent flows over biofilms (26) and to characterize
biofilm removal by impinging water droplets (27). Nevertheless, both the turbu-
lence effect on the growth surface and the biofilm as a distinct dynamic phase have
not been considered. Thus, a CFD model for biofilm rippling under turbulent jets
should include (i) multiphase flow with biofilm and air-water both as moving
phases; (ii) accurate tracking of the biofilm-fluid interface with VOF; (iii) a reliable
treatment of fluid dynamics at the biofilm growth surface (i.e., near-wall treatment)
and at the biofilm-fluid interface (e.g., turbulent damping correction); and (iv) the
biofilm phase as a non-Newtonian fluid, with liquefaction due to shear thinning at
high shear rates.

The present study was aimed at developing a CFD model to characterize the
observed dynamic rippling patterns of Streptococcus mutans biofilms exposed to
high-velocity air jet perpendicular impingements. To this goal, two-dimensional (2D)
axisymmetric CFD simulations were performed to describe the behavior of air-impinged
biofilms, with consideration of turbulence and near-wall treatment. The non-Newtonian
biofilm was examined under high shear rates to reveal the mechanisms driving its
disruption under air jet impacts. The model was used to study the influence of
parameters such as biofilm viscosity at rest and at predicted high shear rates, biofilm
thickness, jet nozzle velocity, and air-biofilm surface tension on biofilm cohesiveness,
deformation, and disruption.
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RESULTS
Experimental results. Figure 1A depicts image frames recorded at different times

(5, 10, 15, and 20 ms) with a high-speed camera during perpendicular air jet impinge-
ment. The movies showed how the air jets first generated a clearing in the biofilm at
the impingement site (which we refer to hereafter as a �cavity� in the biofilm), followed
by the formation of surface instabilities which rapidly spread radially. The disrupted
cavity area grew for approximately 200 ms until it stabilized with a diameter of
approximately 1.5 cm. A movie showing the process is in Video S1 in the supplemental
material. After �350 ms, the ripples died out when the biofilm had flowed to the
cleared space edge (Fig. S2).

Model verification with experimental data. (i) Biofilm viscosity assessments.
The shear-thinning character of S. mutans biofilms has been previously demonstrated
by measuring the complex viscosity (28); however, no data are reported about their
characterization as non-Newtonian fluids. The model development required a deter-
mination of the dynamic viscosity of S. mutans biofilms at much higher shear rates (104

to 106 s�1) than commonly reported for other biofilms (up to 2,000 s�1). Shear rate
measurements in this range are impracticable with normal rheometric systems, which
can achieve shear rates of around 104 s�1. Microchannels containing microelectrome-
chanical systems (MEMS) pressure sensors have been used to achieve a rate of almost
105 s�1 (29); however, even this is still an order of magnitude less than the predicted
shear rate experienced by the biofilm in our experiments. Thus, we were forced to
extrapolate the values used in the model from existing data. The complex viscosity can
be related to the dynamic viscosity by the empirical Cox-Merz rule (30) (i.e., the two
viscosity measures should be identical at comparable observation time scales). How-
ever, some discrepancies in the Cox-Merz rule have been reported in samples with gel
characteristics, such as polysaccharides, and biofilms by obtaining larger values for the
complex viscosities (31–33), probably due to physical and chemical interactions present
in these samples (34).

Assuming that the dynamic viscosity should be lower than the complex viscosity,
parametric sweeps were performed to evaluate the dynamic viscosity model (Equa-
tion 3). As an example, four estimated viscosity curves (EVC1, EVC2, EVC3, and EVC4)
were represented together with the experimental reference values in Fig. 2. EVC1

corresponded to the highest dynamic viscosity, while EVC4 was the lowest viscosity
curve. To reproduce the observed liquefaction behavior (9, 49), the Herschel-Bulkley
curves were adjusted to bend asymptotically to that of water viscosity at very high
shear rates, with the reasoning that water represents the lowest possible limit for a
completely broken-down hydrogel. However, in reality, the biofilm viscosity is expected
to be higher than that of water since even if completely mixed will contain cells and
expolysaccharide (EPS) components. The Herschel-Bulkley parameters and the shear
rate thresholds at which biofilm viscosity reached the viscosity of water are listed in
Table 1.

(ii) Computed results. For the experimental air inlet velocity (uj � 41.7 m·s�1), the
biofilm response was simulated with different viscosity curves (Table 1) and two surface
tension values (�) of the air-biofilm interface (� � 72 mN·m�1 and � � 36 mN·m�1). The
former is for air-water � at 20°C, considering the biofilm matrix to be more than 90%
water (35), and the latter smaller value is from Koza et al. (36) since the amphiphilic
nature of EPS can have a surface-active effect (37), altering the air-water �. The image
frames taken during the biofilm disruption at different times were compared with the
simulation results. The estimated viscosity curve EVC3 with � � 36 mN·m�1 best
matched the experimental data, as illustrated in Fig. 1B, with respect to the distance
reached by the traveling wave front and the position of several ripple maximal and
minimal thicknesses (dark and light areas in the simulation results, respectively). An
animation of the simulated ripple formation is presented in Video S2. Figure 3 depicts
the biofilm surface contours over time for cases simulated with EVC3 and � �

72 mN·m�1 (left) or � � 36 mN·m�1 (right) from the early cavity formation (Fig. 3A and
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FIG 1 (A) Image frames at 5, 10, 15, and 20 ms from the high-speed movie. Thicker biofilm ripples and cell clusters
outside the ripple zone are light, and the background slide surface is dark. (B) Comparison of measured and simulated
biofilm displacement (right column) within the marked sector, with EVC3 and � � 36 mN·m�1. The front position of the
advancing ripples is indicated by the white dashed line. The gray scale in the simulations shows the local biofilm
thickness, which is correlated with the wave amplitude. The high-speed recording of the jet impingement experiment
is available in Video S1. The animation of the simulated ripple formation is presented in Video S2.
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D) until the deformation of wave damping (Fig. 3C and F). An animation of the
simulated biofilm rippling can be found in Video S3. A lower surface tension clearly
intensified the disruption and formation of surface instabilities, which were qualitatively
analyzed at 4 and 20 ms (Fig. 3). Ripples began to form from 3 and 5 mm at 4 and 20 ms,
respectively. At early times (4 ms), the cavity width was �2 mm, and the depth reached
�80% of the initial biofilm thickness. Later, at 20 ms, the cavity width extended to
�4 mm, and the depth reached almost to the biofilm substratum, creating a zone
cleared of biofilm with a radius of about 2 mm. The disruption caused a biofilm
deceleration of �0.025 m·s�2.

By tracking the position of the advancing front of the ripples, the biofilm displace-
ment was determined as defined as the maximum distance traveled by the advancing
front of the ripples over the underlying biofilm support at a given time (5). From the
movies, an average displacement was computed from the front positions in eight radial
directions at each time (Fig. 1), whereas the biofilm displacement in the simulations was
computed in one radial direction because of the axial symmetry of the computational
domain. Figure 4 compares the experimental and simulated displacements, where

FIG 2 Dependency of biofilm viscosity on shear rate. Shown is the experimental dynamic viscosity for
the heterotrophic biofilm (squares) function of shear rate (31) and the complex viscosity of the S. mutans
(triangles) as a function of frequency (28). Solid lines represent estimated viscosity curves (EVC) with
different parameter values as shown in Table 1.

TABLE 1 Rheological parameters of Herschel-Bulkley model and shear rate thresholds
at which the biofilm viscosity reached the water viscosity for the four estimated
viscosity curves (EVC)

EVC

Data for parametera:

�y (Pa) K (Pa·s) n (-) �̇w (s�1)

EVC1 5.529 0.0407 0.477 �108

EVC2 1.529 0.0012 0.568 106

EVC3 0.745 0.0010 0.600 2 � 106

EVC4 0.529 0.0013 0.550 2 � 105

a�y, yield stress; K, fluid consistency index; n, flow behavior index; �̇ w, shear rate threshold at which biofilm
viscosity reduced to that of water.
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biofilm responses were computed with EVC3 and two surface tensions. Initially, the
disruption front moved quickly but slowed down and reached a steady value after
about 20 ms, trends reflected in both the experiments and model. It seems that the
lower surface tension allowed for a faster displacement (i.e., less opposing force to the
air stream) and better fit of the experimental data, but the differences were still too
small to be considered significant.

A simulated sequence of the air jet impingement over the biofilm in the lateral view
showing fluid-biofilm interaction is presented in Fig. 5 (for an animation, see Video S4).
Initially, the airflow flowed faster than did the biofilm, forming ripples on the biofilm
surface until a steady state was reached after 20 ms, generating a disrupted zone with
a �13 mm radius. The velocity field shows the high velocity around the air nozzle and
continuously decreasing velocities as the air flows radially along the biofilm surface far

FIG 3 Simulated changes in biofilm thickness in time as a function of radial distance from the point of impingement (from
2 to 20 ms) for the viscosity model EVC3 and two surface tensions, (A to C) � � 72 mN·m�1 and (D to F) � � 36 mN·m�1.
An animation of the simulated biofilm rippling can be found in Video S3.

FIG 4 Experimental (symbols) and simulated data (lines) of biofilm displacement as a function of jet
exposure time. Parameter values for each of the simulation runs are indicated in the legend.
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from the impact zone. The airflow loses its kinetic energy as it expands radially, and at
a certain distance from the center, the shear would be too weak to deform the biofilm
any further; therefore, a steady state was reached.

A sequence of the air shear rate and the biofilm dynamic viscosity distributions is
presented in Fig. 6 (for an animation, see Video S5), and the pressure and velocity
component profiles are depicted in Fig. S3 and S4, respectively. The simulations
showed high shear rates (�106 to 107 s�1), which directly produced high shear stresses
(�104 Pa) and relative pressure (�1,400 Pa) in the air jet impact zone during air jet
exposure. Significantly, the high shear rates generated on the air-biofilm interface
rapidly reduced the biofilm dynamic viscosity from the initial value (7,500 Pa·s) to that
of water (0.001 Pa·s), suggesting that complete liquefaction of the biofilm had occurred.

The velocity component in the radial direction (ur, parallel with the initial biofilm
surface) was dominant over the component in the axial direction (uz), which indicated
the drag direction on the biofilm surface (Fig. S4). These shear forces and the pressure
produced changes in biofilm thickness beginning from �0.7 ms in the impact zone. A
slightly uneven biofilm surface can be observed in the area disrupted by the jet (Fig. 6
and S3); thus, both pressure and shear stress forces initiate biofilm movement. Between
1 and 2 ms, the first biofilm ripples started to form. The ripple formation coincided with
a larger biofilm area being liquefied, from a radius of 5 mm liquefied at 2 ms to about
8 mm at 5 ms. Interestingly, the movement of this part of the fluidized biofilm produced
pressure oscillations within the biofilm (Fig. S3), thus generating the ripples. The largest
gradients of pressure were observed for 5 ms and decreased further when the ripples
were near a steady state (from 15 ms). To characterize the biofilm ripples, the wave-
length, characteristic frequency, and ripple velocity were determined for both experi-

FIG 5 Simulated sequence (5, 10, 15m and 20 ms) of the air jet impingement over the biofilm for � � EVC3 and � � 36 mN·m�1. The
velocity magnitude of the airflow is represented by the colored surface, while the biofilm is the gray area on the top side. Air streamlines
and flow directions are also displayed. (For an interpretation of the references to color in this figure, see the Web version of this article.)
An animation of the simulated biofilm rippling can be found in Video S4.

Biofilm Disruption by High-Velocity Jet Impingement ®

January/February 2020 Volume 11 Issue 1 e02813-19 mbio.asm.org 7

https://mbio.asm.org


mental and simulated data (� � EVC3, � � 72 and 36 mN·m�1). The values averaged in
time are listed in Table 2, showing good agreement between the simulated and
experimental results.

Sensitivity analysis. A sensitivity analysis was performed to determine the impli-
cations of the different model parameters on the biofilm disruption strategies, analyz-
ing the biofilm displacement (Fig. 7) and the development of the biofilm-cleared zone
and the surface instabilities (Fig. 8), both over jet exposure time. Parametric simulations
were performed with changes in air velocity, biofilm thickness, biofilm viscosity, and
air-biofilm surface tension.

(i) Biofilm viscosity (�). Biofilms with higher viscosity (� � EVC1, runs 3 and 4)
underwent smaller biofilm displacement due to the higher resistance to flow (Fig. 7).
Values below � � EVC3 (runs 1 and 2) meant a softer structure, disrupting the full
biofilm length after only a few milliseconds of jet exposure, while experimentally, the
biofilm displacement was less than 6 mm for 2 ms. The biofilm with the lowest viscosity
(� � EVC3, run 1) was disrupted over the largest radius, while biofilm residues remained
unremoved in the cavity center for the more viscous biofilm (� � EVC1, run 3) (Fig. 8).

FIG 6 Simulated distributions of biofilm dynamic viscosity (color scale area) and shear rate (gray scale area) in the biofilm-disrupted region at different times
(� � EVC3, � � 36 mN·m�1). Both biofilm viscosity and shear rate are displayed on logarithmic scales. (For an interpretation of the references to color in this
figure, see the Web version of this article.) An animation of the simulated biofilm rippling can be found in Video S5.

TABLE 2 Ripple characterization by average wavelength, frequency, and average velocity

Group

Mean � SDa

�R (mm) f (Hz) uR (mm·s�1)

Experimental 0.9 � 0.3 367 330 � 110
Simulated (� � EVC3, � � 72 mN/m) 1.012 � 0.13 311 315 � 40
Simulated (� � EVC3, � � 36 mN/m) 1.047 � 0.14 383 401 � 54
a�R, average wavelength; f, frequency; uR, average ripple velocity.
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Thus, expectedly, low values of biofilm viscosity lead to greater biofilm displacement
and removal.

(ii) Surface tension (�). A lower surface tension (� � 36 mN·m�1, runs 1 and 3)
allowed for quicker biofilm displacement initially (Fig. 7) than with � � 72 mN·m�1

(runs 2 and 4), until arriving at similar steady-state displacement, possibly explained by
the stabilization effect of surface tension. Moreover, the lower surface tension produced
ripples with higher frequency and higher amplitude, i.e., the biofilm surface was less
unstable (Fig. 8). However, the cavity depth was not affected by the surface tension in
the range of the analyzed values.

(iii) Jet velocity (uj). The largest and fastest displacements were achieved with high
velocity (runs 1 and 3) due to the higher shear rates produced (Fig. 7). For low velocity
(runs 8 and 9), the biofilm started to move 5 ms later than for high velocity because the
slower air jet reached the biofilm with the corresponding delay, generating also a
smaller biofilm cavity (Fig. 8B). Additionally, at uj � 60 m·s�1, the biofilm was removed
much faster with full-length disruption after just 2 ms. In general, as the gas jet velocity
increased, the central biofilm cavity got deeper and wider, with the rim of the rising
above the original biofilm level, while the biofilm surface became more unstable,
suffering larger surface perturbations.

(iv) Biofilm thickness (Lb). The thinner biofilm (Lb � 27.5 �m, run 12) was moved
faster by the air jet and, consequently, reached stationary state sooner, i.e., in less than
8 ms, compared with �20 ms for the thicker film (Lb � 55 �m, run 1) (Fig. 7). The
thinner biofilm appeared to be slightly more stable than the thicker biofilm, displaying
fewer ripples (Fig. 8A) and reaching steady-state more quickly, possibly due to having
less biomass to displace. In addition, the cavity shapes were very similar for the different
biofilm thicknesses analyzed.

DISCUSSION
Disruption dynamics. Three distinct phases were identified during biofilm disrup-

tion by analyzing the development of the biofilm ripple patterns. In the first phase from
1 to 6 ms (Fig. 3A and D), the ripples had a relatively regular wavelength and amplitude
for the first wave formed, followed by a series of smaller waves until total wave decay

FIG 7 Parametric study of the biofilm displacement (in millimeters) over jet exposure time (in millisec-
onds) for different model parameters, as follows: biofilm viscosity � (runs 1 and 2 versus runs 3 and 4),
jet velocity uj (runs 1 and 2 versus runs 8 and 9), and biofilm thickness Lb (run 1 versus run 12). Solid lines
indicate the simulations computed with surface tension � � 72 mN·m�1, and dashed lines indicate the
simulations computed with surface tension � � 36 mN·m�1. Parameter values for each of the runs are
indicated in the legend. (For an interpretation of the references to color in this figure, see the Web
version of this article.)
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at the disruption front. In the second phase from 7 to 14 ms (Fig. 3B and E), the waves
appeared distorted, with a reduced amplitude and a more constant wavelength over
the disruption area (i.e., the initial, smaller waves on the tail grow larger). Finally, from
15 to 20 ms (Fig. 3C and F), there were fewer ripples but with larger wavelengths than
in the previous phases. Particularly, such wavelengths and ripple velocity characterizing
perpendicular impingements (Table 2) were similar to those measured on S. mutans
bacteria exposed to air jets applied parallel to the surface (3).

The ripple dynamics produced by turbulent flow over biofilms has been previously
related to the viscoelastic nature of biofilms (5, 7, 38), suggesting that the biofilm
mechanical response is dominated by the EPS matrix properties (6, 39). Klapper et al. (6)
hypothesized that the EPS matrix responds to stress by exhibiting first an elastic tension
caused by the combination of polymer entanglement and weak hydrogen bonding
forces; second, it exhibits a viscous damping, where energy is absorbed as the biofilm
flows and acts like a shock absorber due to the polymeric friction and hydrogen bond
breakage; and third, it exhibits polymer alignment in the shear direction, possibly
leading to a shear-thinning effect in which the viscosity is lowered as the polymeric
network structure of the biofilm matrix breaks down. The elastic tension may be related
to the first disruption phase, where waves with similar patterns were generated in
response to the initial jet impingement. The viscous damping could correspond to the
second disruption phase with distorted ripples. The polymer alignment could be
associated with the last phase, where the ripples practically stop moving and reach
steady state. Possibly, the wave decay (where the ripples died down) occurred because
the energy transmitted from the air to the biofilm at this distance and time were less

FIG 8 Sensitivity analysis data for the biofilm disruption produced by air jet impingement for different model parameters are as
follows: (A) biofilm viscosity functions EVC (run 1 versus run 3) and biofilm thickness Lb (run 1 versus run 12) and (B) jet velocities uj

(run 1 versus 8 and run 2 versus 9). Parameter values for each of the runs are indicated in the legend. (For interpretation of the
references to color in this figure legend, see the Web version of this article.)
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than the viscous dissipation in the biofilm (40), being balanced by biofilm internal
cohesive forces.

Interestingly, biofilm displacement reached a quasi-steady state as the air jet velocity
also approached steady state. This suggests that the relaxation time of airflow was on the
same order as the plastic relaxation time of the biofilm. However, the relatively slow
continuation of the biofilm movement after the airflow reached the quasi-stationary regime
indicated the continuation of viscous damping within the biofilm.

Some model assumptions may compromise the accuracy of the determined ripple
patterns. Assuming constant properties such as thickness and viscosity on the biofilm
model has an effect on the ripple pattern formation. Further experimental techniques
should be used to reveal heterogeneity in biofilm properties and to include them in
future simulations. In addition, an accurate evaluation of the biofilm disruption should
be done with three-dimensional (3D) models. The difficulty, however, is not only the
definition of 3D geometry and properties into the computational model but, more
significantly, a large increase in computing time.

Conditions promoting disruption. Our model suggests that the air jet exposures
generating high shear rates, coupled with the biofilm shear-thinning behavior, pro-
duced rapid (within milliseconds) biofilm disruption, thus affecting both the biofilm
properties and the applied force intensity. The greatest interfacial instabilities are
produced by the largest forces (i.e., high air jet velocity) and the lowest values of biofilm
properties (i.e., low viscosity and air-biofilm surface tension and thickness).

The similarity between the modeling and the experimental measurements suggests
non-Newtonian fluid behavior of S. mutans biofilms. Biofilm liquefaction, i.e., the
complete breakdown of polymer network interactions in the biofilm matrix, is a
mechanism that can explain the extremely quick disruptive effect induced by high shear
airflows on the biofilms. The Herschel-Bulkley parameters of the estimated biofilm viscosity
curve EVC3 described the required shear-thinning behavior, with the fitted yield stress (�y �

0.745 Pa) in accordance with the viscoelastic linearity limit (� � 3.5 Pa) previously deter-
mined by creep analysis (28). Biofilms in general show mechanically viscoelastic behavior
(38, 39); however, the consistent results obtained considering the biofilm as a non-
Newtonian fluid indicate that under turbulent flows, the biofilms elastic behavior can be
neglected, as recently reported (22). Additionally, biofilm expansion under noncontact
brushing is attributed to its viscoelastic nature (41). Here, there was no evidence that the
biofilm structure was expanded during impingement. Finally, although biofilm grown from
a single species was analyzed here, the literature shows remarkable similarity in the
viscoelastic responses of many different types of biofilms when subject to shear stresses,
even though the magnitude of the elastic and viscous moduli vary over many orders of
magnitude (42); thus, it is reasonable to conclude that biofilms formed from other species
might exhibit flow behavior similar to that described here, as suggested by the ripple
patterns experimentally observed in Pseudomonas aeruginosa and Staphylococcus epider-
midis biofilms exposed to high-velocity shear flows (3).

Furthermore, the observed results highlight the importance of considering the
correct representation of forces which mechanically can disrupt biofilms. The numerical
simulations indicated that inertial and interfacial tension forces are governing biofilm
disruption by impacting turbulent air jets, as seen with the fluid dynamic activity
reported for microdroplet sprays and power toothbrushes (27, 41). Specifically, the size
and geometry of the cavity formation depends on a force balance at the free surface
(23), assuming in our case that inertial forces determine the cavity depth, while the
width was determined by both inertia and surface tension, evidenced by the presence
of small-amplitude ripples at the cavity edge. Ripples were produced due to pressure
and shear stress variations in the gas transmitted to the wavy surface (40). For very thin
fluid films, the fluctuations in the fluid have much larger components in the tangential
direction than in the normal direction; consequently, the shear stress is the dominant
mechanism (43), as shown in our case, in which a significant role for pressure variation
was also identified. Therefore, the following two mechanisms were determined to
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produce moving biofilm ripples as a result of air jet impingement: (i) pressure oscilla-
tions generate biofilm ripples, and (ii) friction forces drag the biofilm along the support
surface. Last, the simulation also revealed the important role of interfacial tension
forces in the formation of surface instabilities, with less surface tension leading to more
rippling (i.e., higher frequency and velocity). These results are in agreement with the
possibly lower surface tension for biofilm-air (� � 36 mN·m�1) than for water-air (� �

72 mN·m�1), as measurements for Bacillus subtilis, Pseudomonas fluorescens, and P.
aeruginosa biofilms indicated values within the range of 25 to 50 mN·m�1 (36, 44, 45).
The amphiphilic character and surfactant production are associated as main effects
controlling surface tension in microbial colonies and biofilms (45, 46), being attributed
the surface tension reduction due to the presence of surfactants (36, 39, 45). Biofilm
surface tension differences could also explain the different ripple patterns observed
between S. mutans biofilms and biofilms grown from Pseudomonas aeruginosa and
Staphylococcus epidermidis (3). A lower surface tension intensified the formation of
small-amplitude waves near the impact zone (i.e., the more “flexible” interface was
more wrinkled). This increase in air-biofilm interfacial area could enhance the friction to
flow. Moreover, there could be implications on the mass transfer, in that wavy inter-
faces will distort the diffusion boundary layer, and interfacial waves have been related
to mass transfer enhancement (47, 48).

These results contribute to the existing knowledge of mechanisms promoting
disruption though mechanical forces, opening new ways to optimize biofilm control
strategies which rely on fluid shear. The model can be used to determine optimal
parameters (e.g., jet velocity and position and angle of attack) to remove or predict the
spread of the biofilm in specific applications (e.g., in dental hygiene or debridement of
surgical site infections). The developed model also has potential application in predict-
ing drag and pressure drop caused by biofilms in bioreactors, industrial pipelines, and
ship hull surfaces, as well as predicting how shear might influence the removal or
spread of biofilms associated with medical devices such as orthopedic implants, voice
prostheses, catheters, and vascular stents.

MATERIALS AND METHODS
Biofilm growth. S. mutans UA159 (ATCC 700610) biofilms were grown for 72 h on glass microscope

slides at 37°C and 5% CO2 in brain heart infusion (Sigma-Aldrich, St. Louis, MO) supplemented with 2%
(wt/vol) sucrose (Sigma-Aldrich) and 1% (wt/vol) porcine gastric mucin (type II; Sigma-Aldrich). After the
growth period, the biofilm-covered slides were gently rinsed in 1% (wt/vol) phosphate-buffered saline
solution (Sigma-Aldrich) and placed in petri dishes (49). Biofilm thickness was determined by fixing
untreated samples with 4% (wt/vol) paraformaldehyde and staining with Syto 63 (Thermo Fisher
Scientific, UK). Subsequently, three random confocal images were taken on three independent replicate
biofilm slides, with a thickness of 51.8 � 4.9 �m measured using COMSTAT software; thus, we used a
biofilm thickness (Lb) of 55 �m in the simulations.

Biofilm perpendicular air jet impingement. An air jet generated from a piston compressor
(ClassicAir 255; Metabo, Nürtingen, Germany) impinged on biofilm samples at a 90° angle. Experiments
were performed in triplicate. The compressor tip (internal diameter, 2 mm) was held at a 5 mm distance
from the biofilm. The air jet impingement was recorded at 2,000 frames per second with a high-speed
camera (MotionPro X3; IDT Vision, Pasadena, CA) placed to record the back view of the biofilm-covered
microscope slide. The average air jet velocity exiting the nozzle (uj � 41.7 � 1.5 m·s�1) was measured
with a variable area flow meter. To estimate the Reynolds number for the biofilm (Reb) flowing along the
substratum, the biofilm thickness (Lb) was used as the characteristic length, and the biofilm density (�b)
was assumed to be equal to that of water. The variation of biofilm displacement velocity (ub) and biofilm
viscosity (�) variables had greater effect in the Reb. At the highest shear stresses, the biofilm behaved as
if it was completely liquefied to water, with � � 0.001 Pa·s (see Results and Fig. 2), and moved with a
maximum velocity ub 	 0.2 m·s�1. Under these conditions, Reb � 11 indicates laminar flow. Considering
the viscosity and density of air at 20°C and 1 atm, and the characteristic length equal to the nozzle tip
diameter, an estimated maximum Reynolds number of the air jet (Rea) was 5,600, which is in the
turbulent regime (50).

Data postprocessing. Fast Fourier transform (FFT) was used to determine the dominant period (T)
and dominant frequency (f) of the ripple patterns in the S. mutans biofilm formed during exposure to the
air jet. Frames from the experimental high-speed video and data exported from the simulated results
were postprocessed with a MATLAB script for the FFT analysis.

For the experimental high-speed videos, the ripple wavelength (�R), defined as the distance between
two reverse peaks, was measured using NIH ImageJ, as previously described (49). Briefly, videos were
converted to stacks, and �R was measured with the “plot profile” function. For the simulated data, �R was
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computed by postprocessing the biofilm surface contours using MATLAB. The ripple velocity (uR, the
distance the wave travels in a given time) was calculated as uR � f � �R � �R/T.

Numerical model. The general assumptions made in the development of the numerical model were
(i) the gas (air) and liquid (biofilm) phases are incompressible (Mach number below 0.3 for the gas phase);
(ii) a uniform velocity profile, constant in time, leaves the compressor nozzle; (iii) the flow is symmetric
with respect to the vertical axis (around the nozzle middle); (iv) the free gas jets are in the turbulent
regime (due to calculated Rea); (v) the initial biofilm is a thin layer with constant thickness; and (vi) the
biofilm is characterized by non-Newtonian fluid shear thinning (Herschel-Bulkley model) and density
equal to that of water.

Model geometry. The schematic representation of the experimental setup and the computational
domain used to analyze the air jet impingements over biofilm thin layer are shown in Fig. 9A and B,
respectively. A 2D axisymmetric computational domain represented the lateral view of the jet impact
over biofilm, slicing the actual experimental setup. The domain length and height were Lx � 15 mm and
Ly � 5 mm, respectively, with the biofilm initial thickness Lb � 0.055 mm.

Governing equations. Momentum conservation (Equation 1) is coupled with continuity (Equation
2), as follows:

�
� u

� t
	 ��u 
 ��u �  � p 	 � ��� 	 �T���u 	 � uT�� 	 Fst (1)

� � 
 u � 0 (2)

solved for the local velocity vector u and pressure p. Fst is the force arising from surface tension effects.
The fluid density � and dynamic viscosity � were calculated by the VOF method in each control volume.
�T is the turbulent viscosity, resulting from the k-� turbulence model (see “Turbulence model” below).
The interface between fluids (i.e., air and biofilm) was tracked with a robust coupling between level set
and VOF methods, as implemented in the ANSYS Fluent software (51).

Turbulence model. An examination of Reynolds-averaged Navier-Stokes (RANS) modeling tech-
niques recommends the shear-stress transport (SST) k-� model instead of the standard k-� model since
it can better describe fluid flow in impinging jets within reasonable computational effort (50). The SST
k-� model incorporates a blending function to trigger the standard k-� model in near-wall regions and
the k-� model in regions away from the wall.

The turbulence kinetic energy, k, and the specific dissipation rate, �, are obtained from the transport
equations including the convection and viscous terms, together with terms for production and dissipa-
tion of k and � and cross-diffusion of �. A user-defined source term for �, representing the turbulence
damping correction, was added to correctly model the flows in the interfacial area. Turbulence damping
was needed because otherwise, the large difference in physical properties of biofilm and air phases
would create a large velocity gradient at the interface, resulting in unrealistically high turbulence
generation (52). See section A in File S1 in the supplemental material for more details.

Biofilm viscosity. The Herschel-Bulkley model (34) was used to characterize the dynamic viscosity of
S. mutans biofilms, representing previously observed shear-thinning non-Newtonian behavior. The
dynamic viscosity � (Pa·s) is inversely related to the shear rate �̇ (per second) and proportional to the
shear stress � (in pascals) as shown in Equation 3:

� �
�

�̇
(3)

FIG 9 Experimental setup (A) and two-dimensional axisymmetric model (B) with radial (r) and axial (z)
directions and the boundary conditions. A no-slip and zero-turbulence wall was imposed on the
boundary AI, representing the glass microscope slide, the substratum on which the biofilm was grown.
The air inlet was established on DE, and a pressure outlet condition was set on the boundary FI. A
symmetry axis was used along on the boundary AD, and the boundary EF was open to the atmosphere.
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while the shear stress depends on the shear rate, shown in Equation 4:

� � �y 	 K 
 �̇n (4)

with �y representing the yield stress (in pascals), K representing the consistency index (Pa·s), and n
representing the flow behavior index.

Since the calculated shear rates from CFD were so high that experimental data could not be obtained
(orders of magnitude higher than obtainable with ordinary rheometers), we extrapolated using data from
dynamic viscosity sweeps to determine the complex viscosity of S. mutans biofilms (28) and the dynamic
viscosity of heterotrophic biofilms determined in reference 31, by modifying Herschel-Bulkley model
parameters and evaluating numerically several viscosity curves from Equation 3. See the Results for more
details.

Boundary and initial conditions. In the computational domain (Fig. 9B), a symmetry axis was used
on the boundary AD, with radial velocity component and normal gradients equal to zero. The boundary
EF was open to the atmosphere, depending on the mass balance. A zero gauge pressure outlet condition
was set on FI. The air inlet was on DE (half-nozzle size), with a fully developed velocity profile. The inlet
turbulent energy, k, was computed as shown in Equation 5:

k �
3

2�UI�2 (5)

with U indicating the mean flow velocity and I the turbulence intensity defined as I � 0.16 � Re�1/8 (23),
and Reynolds number Re defined with velocity U and nozzle diameter. The specific turbulent dissipation
rate, �, was calculated as shown in Equation 6:

� � C�
1⁄4

�k

l
(6)

with the empirical constant C� � 0.09 and l the turbulent length scale, assuming 7% of the nozzle
diameter.

A no-slip and zero-turbulence wall was imposed on the biofilm substratum (boundary AI), with
near-wall formulation to represent precisely the wall-bounded turbulent flow in the region, including the
buffer layer and viscous sublayer. The y
-insensitive near-wall treatment (51) was used here, where
based on the dimensionless wall distance of the first grid cell (y
), the linear and logarithmic law-of-
the-wall formulations were blended. To resolve the viscous sublayer, the first grid cell needed to be at
about y
 	 1, also near the free surface (52). In the two-phase flow, the biofilm phase was initialized as
a thin layer with constant thickness over the substratum, being several orders of magnitude more viscous
than the air. The biofilm behaved initially like a solid, requiring resolving the viscous sublayer from the
air-biofilm interface instead of from the wall as usually done.

In the initialization step, the values for k and � were computed using Equations 5 and 6, with velocity
U equal to the inlet velocity (uj) and characteristic length l � 1 mm, and the volume fraction of the biofilm
phase was set to 1 in the region ABHI (Fig. 9B).

Model solution. (i) Meshing. A uniform mesh of prism cells was defined in the domain, with
maximum size hx by hy of 50 �m by 17 �m, with a refined mesh in the region ACGI (minimum size, 15 �m
by 0.4 �m) to satisfy the requirement y
 	 1 near walls and in the free surface. A mesh growth rate no
higher than 1.2 (51) was used between the refined subdomain and the remaining computational domain,
leading to �450,000 mesh cells. Mesh details are shown in Fig. S1.

(ii) Solvers. The mathematical model was implemented into the commercial fluid dynamics software
ANSYS Fluent (Academic Research, release 17.2). The governing equations were discretized using a
second-order upwind scheme in space and first-order implicit in time, with pressure staggering option
interpolation (PRESTO) and pressure-implicit splitting of operators (PISO) for the pressure-velocity
coupling. The free surface deformation was tracked with the georeconstructed scheme. Transient
simulations ran with a maximum time step set to 10�7 s for stable transient solutions. A total time of
20 ms was simulated in each run to reach a quasistationary solution.

(iii) Simulation plan. Two sets of simulations were carried out with the two-phase model. The first
set (runs 1 to 7) was performed for model calibration, where the biofilm viscous properties were
evaluated according to the experimental data. Experimental parameters, such as the measured jet
velocity (uj) and biofilm thickness (Lb), were used in this set with different non-Newtonian viscosities (�)
(i.e., estimated viscosity curves [EVC]) and two surface tensions (�). The second set (runs 8 to 12) was
performed for sensitivity analysis, evaluating the effects of the inlet jet velocity and the biofilm thickness
on the biofilm rippling response. Table 3 shows an overview of the numerical simulations.

TABLE 3 Overview of numerical simulations parameters

Data for runa

Run:

1 2 3 4 5 6 7 8 9 10 11 12

� (Pa·s) EVC3 EVC3 EVC1 EVC1 EVC2 EVC2 EVC4 EVC3 EVC3 EVC3 EVC3 EVC3

� (mN·m-1) 36 72 36 72 36 72 36 36 72 36 72 36
Lb (�m) 55 55 55 55 55 55 55 55 55 55 55 27.5
uj (m·s-1) 41.7 41.7 41.7 41.7 41.7 41.7 41.7 20 20 60 60 41.7
a�, biofilm viscosity; �, surface tension; Lb, biofilm thickness; uj, jet velocity.
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SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02813-19.
FILE S1, DOCX file, 0.1 MB.
FIG S1, TIF file, 0.2 MB.
FIG S2, TIF file, 0.2 MB.
FIG S3, TIF file, 0.4 MB.
FIG S4, TIF file, 1.2 MB.
VIDEO S1, AVI file, 13 MB.
VIDEO S2, AVI file, 12.1 MB.
VIDEO S3, AVI file, 14.6 MB.
VIDEO S4, AVI file, 2.3 MB.
VIDEO S5, AVI file, 4.3 MB.
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