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Introduction: Up to 84% of prematurely born infants suffer hypoxic, anoxic, and ischemic insults. Those
infants with subsequent behavioral, motor or cognitive dysfunction represent 8–11% of all live births. Yet,
no interventions employed during pregnancy attenuate risk of morbidity in those at-risk infants. Dietary
supplementation with omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been shown to reduce
stroke-induced neuropathology in rat models emulating this adverse clinical event. To extend those
studies we sought to determine whether maternal dietary supplementation with ω-3 PUFAs would
confer neuroprotection against hypoxia-induced neurochemical dysfunction in newborn rat pups ex-
posed to repetitive hypoxic insults.
Methods: We provided pregnant rats with either a ω-3 PUFA enriched diet or else a standard rat chow
diet. At postnatal day 7, pups were assigned randomly to either repetitive hypoxic insults or repetitive
bursts of room air. On postnatal day 12, pups were sacrificed and brain dopamine levels characterized.
Results: Baseline brain dopamine levels did not differ between rat pups born to dams who received ω-3
PUFA enriched versus standard rat chow diets. Rat pups born to dams maintained on normal diets, who
were exposed to five days of repetitive hypoxic insults, experienced a 57% reduction in striatal dopamine
levels accompanied by significant apoptosis. In contrast, ω-3 PUFA-enriched newborn pups experienced
no loss in striatal dopamine levels, and only minimal apoptosis.
Conclusions: Our findings suggest that it may be feasible to confer neuroprotection against hypoxia-
induced dopamine dysfunction to newborns likely to experience hypoxic insults. This could significantly
improve the outcomes of those 8–11% of newborns who would otherwise experience hypoxia-induced
behavioral, motor and cognitive dysfunction.

& 2016 Brazilian Association of Sleep. Production and Hosting by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hypoxic insults occurring during the perinatal period are
among the leading causes of permanent brain dysfunction and
remain a serious public health concern [1–3]. Most hypoxic insults
typically occur in the setting of unambiguous clinical compromise,
such as placental dysfunction, prolonged labor, or cardior-
espiratory resuscitation [4,5]. However, other more insidious
duction and Hosting by Elsevier B
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mechanisms, such as apnea of prematurity, which is a common
occurrence in prematurely born infants [6–9], can induce re-
petitive hypoxic insults. Between 10% and 13% of all infants are
born prematurely [10,11]. Apnea with concomitant hypoxic insults
will afflict 78% of those born at 26–27 weeks gestation, 54% born at
30–31 weeks, and 7% born at 34–35 weeks [6].

Regardless of whether children who are born prematurely or at
term, perinatal hypoxic insults are associated with diminished
academic performance and other manifestations of executive
dysfunction [12–16]. Perturbed function within neural networks
subserving arousal and/or vigilance is also seen; infants with a
history of apnea of prematurity require more intensive stimuli to
be awakened from sleep [17]. Dampened autonomic dysfunction,
manifesting as higher resting heart rates with reduced heart rate
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variability, has also been reported [18]. Yet despite these adverse
outcomes attributed to perinatally-occurring hypoxic insults, there
has been little progress towards developing clinical interventions
that can be initiated during pregnancy to confer neural resiliency
to at-risk newborns [19]. The absence of such interventions un-
dermines progress towards mitigating the morbidity and mortality
associated with these adverse perinatal events.

An emerging body of literature suggests that omega-3 poly-
unsaturated fatty acids (ω-3 PUFAs) confer neural resiliency
against a number of insults [20–23]. Yet, there remains a paucity of
data describing whether dietary supplementation with ω-3 PUFAs
can confer neuroprotection against hypoxic insults occurring in
their newborns. To overcome this barrier, this study was designed
to characterize the extent that maternal prenatal dietary supple-
mentation with ω-3 PUFAs will confer neuroprotective resiliency
to the newborn against hypoxia-induced dopamine dysfunction,
one neurotransmitter system that is exquisitely vulnerable to such
insults [24,25].
2. Material and methods

All studies were performed at Emory University under an IACUC
approved protocol (170-2003). Pregnant rats received dietary sup-
plementation with ω-3 PUFAs by adding menhaden fish oil 15%
weight by weight (w/w) (Sigma-Aldrich) into standard rat chow
mix, to achieve a total daily dose of 3.5–4.0 g. The ω-3 PUFA en-
riched diet was initiated on day 1 of pregnancy (confirmed by
presence of vaginal plug) and continued through 12 days post-
delivery of their pups. Therefore, ω-3 PUFA enriched pups received
both pre- and postnatal (via maternal colostrum) dietary enrich-
ment with ω-3 PUFAs. Control rats pups were born to dams that
were maintained on a standard rat chow diet during pregnancy
and thereafter.

Beginning on postnatal (PN) day 7 and continuing through PN
12, both ω-3 PUFA-enriched and control newborn pups were as-
signed randomly to receive either repetitive hypoxic insults or
bursts of compressed room air, as described below, for 2 h blocks
of time. At the conclusion of each 2 h period, all pups were re-
turned to the dam for a 45 min interval, for feeding and grooming.
This sequence was repeated 2 more times each day, totaling three
2-hour sessions of repetitive hypoxic insults or bursts of com-
pressed air. During PN 7–12, pups were exposed to either a total
daily dose of 6 h of repetitive bursts of hypoxia or normoxia. On
PN 12, at the conclusion of the protocol, pups were euthanized for
neurochemistry. Our protocol for inducing repetitive hypoxic in-
sults has been previously validated (23) to insure that it does not
induce maternal separation-induced stress in newborn rat pups,
which can evoke changes in neurochemistry [26–30].

2.1. Hypoxia-inducing system

Our hypoxia-inducing system consists of a clear Plexiglas
chamber, solenoid valves, and compressed gas [24,25]. The inter-
nal environment within the system is warmed and humidified to
the appropriate level for each postnatal day of age [31,32]. At-
tached to the hypoxia-inducing chamber is one gas cylinder con-
taining 10% oxygen, 3% carbon dioxide, and nitrogen and a second
gas cylinder containing only compressed air. After placing the rats
into the chamber, a programmable timer opens the solenoid valve
between the hypoxic gas cylinder and hypoxic chamber for a 20 s
period, allowing introduction of the hypoxic gas mixture at a flow
rate of 10 liters per minute, which provides 18.5 complete air
exchanges per minute within the chamber. As the solenoid valve
closes, the second solenoid valve, attached to the gas cylinder
containing only compressed air, opens for 40 s. These alternate on
and off to expose the rats to 20 s bursts of hypoxia, followed by
40 s bursts of room air, thereby inducing 60 hypoxic events per
hour. This novel system allows for a user-selected frequency and
duration of hypoxic insults, thereby permitting us to determine
the specific hypoxic “doses” delivered. In addition to the hypoxia-
inducing chambers, we also use identically constructed normoxic
chambers. Solenoid valves of these chambers are attached to cy-
linders containing only compressed air, which cycled through the
chambers at the same flow rates and frequency as gas flowed
through the hypoxia-inducing chamber. The normoxia chamber
acted as a control for rats receiving hypoxic gas and for any po-
tential impact associated with maternal separation [26–29]. Ad-
ditionally, the duplicate use of solenoid valves and a compressed
gas source on the normoxia chamber allow further control of other
factors such as sound, pressure changes, or temperature fluctua-
tions, all of which are intrinsic to compressed gas sources.

2.2. HPLC assessment of brain tissue content of dopamine

Briefly, rats were decapitated and neural tissue was dissected
from the precommissural striatum at coordinates previously de-
scribed [24]. Dissected neural tissue was homogenized, cen-
trifuged at 10,000 rpm for 10 min, and then filtered through a
0.22 mm filter. Samples were then placed in our refrigerated au-
tosampler which injected them into our high performance liquid
chromatography (HPLC) system. Chromatography. Homogenates
were assayed for dopamine using HPLC with electrochemical de-
tection as previously described [25]. Twenty microliter samples
were injected from the autosampler onto a C18 reversed phase
column maintained at 30 °C. De-gassed mobile phase was deliv-
ered at a flow rate of 0.3 mL/min. The electrochemical detection
was performed by a GBC Antec Leyden VT03 electrochemical flow
cell with a glassy carbon working electrode maintained at a po-
tential of þ0.60 V, relative to the reference electrode.

2.3. Immunohistochemistry for apoptosis

Rat pups were deeply anesthetized with a lethal dose of so-
dium pentobarbital, perfused transcardially with 0.9% hepar-
inized-saline followed by a fixative of 4% paraformaldehyde. Brains
are removed, equilibrated overnight in 30% sucrose, and sectioned
on a freezing microtome at a thickness of 50 mm. Sections were
collected in 0.05 M Tris-buffered saline containing 1% sodium
azide. Adjacent series are processed for TH or Nissl substance
using neutral red or thionin. For caspase-3 processing, sections
were incubated 24–48 h at 4 °C with primary antibody polyclonal
rabbit-anti-caspase 3 in diluent of normal goat serum, triton X-100
and TBS. Following incubation and three 5 min rinses in TBS,
sections were incubated for 1.5–2 h in secondary biotinylated goat-
anti-rabbit, rinsed in TBS and incubated in avidin-biotin-perox-
idase complex in TBS and Triton X-100. Sections were then in-
cubated in 0.05% 3,3 diaminobenzidine tetrachloride (DAB) and
0.01% hydrogen peroxide in 0.05 M Tris buffer for 5–10 min. The
reaction was stopped by extensive rinses in TBS. Brain sections
were mounted onto gelatin-coated slides, air dried, dehydrated in
ethanol, cleared in xylene and coverslipped with DPX mountant
using procedures employed within our laboratory [33].

2.4. Statistical approach and sample sizes

As our laboratory has recently observed male-female differ-
ences in hypoxia-induced dopamine cell dysfunction (unpublished
findings), with males appearing to be more vulnerable than fe-
males, we used only male rat pups in this study. Power calcula-
tions that were based upon our preliminary studies suggested that
no less than five male ω-3 PUFA enriched rats and five male
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control rats were required within each group to detect a mean
minimum difference in dopamine levels of 25715%, with a power
of 0.80 and α¼0.05. Between group comparisons of dopamine
levels were performed with an independent samples t-test, IBM
SPSS version 20.
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Fig. 2. Striatal dopamine levels, as measured by HPLC, within PN12 rats born to
dams maintained on standard rat chow or (grey bar) or ω-3 PUFA enriched rat chow
(black bar). All pups were exposed to repetitive hypoxic insults between PN 7-12.
Rat pups born to dams maintained on standard rat chow showed significantly re-
duced striatal dopamine levels when compared with the ω-3 PUFA enriched pups.
Striatal dopamine is preserved within ω-3 PUFA enriched, post-hypoxic pups.
3. Results

To determine if maternal dietary supplementation with ω-3
PUFAs changed baseline dopamine levels, we measured striatal
dopamine content within brain homogenates derived from PN 12
rat pups born to dams maintained on standard rat chow and
compared them with striatal dopamine levels from ω-3 PUFA
enriched rat pups. All pups were maintained in room air. Fig. 1
illustrates no difference in baseline striatal dopamine levels
[mean71 SEM picogram (pg) of dopamine per microgram (mg) of
protein] between pups born to dams maintained on standard rat
chow versus pups born to dams who received dietary supple-
mentation with ω-3 PUFAs (25.8372.94 versus 29.8773.0 pg/mg
protein, p¼0.400).

To assess the extent that maternal dietary supplementation
with ω-3 PUFAs may confer neuroprotection against hypoxic in-
sults, we measured striatal dopamine content within rat pups
(n¼5) born to dams maintained on standard rat chow as well as
within rat pups (n¼9) born to dams who received ω-3 PUFA-en-
riched diets. Both groups were exposed to repetitive hypoxic in-
sults between PN7-12. At PN 12, all pups were euthanized, brains
were harvested, striatal tissue dissected, homogenized and ana-
lyzed with HPLC. Fig. 2 illustrates that striatal dopamine levels
were significantly lower within post-hypoxic pups born to dams
maintained on standard rat chow versus dopamine levels within
post-hypoxic pups born to dams who received dietary supple-
mentation with ω-3 PUFAs (17.9971.43 versus 33.2972.32 pg/mg
protein, p¼0.001).
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Maternal dietary supplementation with ω-3 PUFAs
 does not change striatal dopamine content

Fig. 1. Striatal dopamine levels, as measured by HPLC, within PN12 rats born to
dams maintained on either standard rat chow (grey bar) or ω-3 PUFA enriched rat
chow (black bar). Diet did not influence dopamine levels; we found no inter-group
difference. Maternal dietary supplementation with ω-3 PUFAs does not change
striatal dopamine content.
Fig. 3 provides photomicrographs of substantia nigra pars
compacta (SNpc) from two PN 12 rat pups exposed to hypoxia.
Caspase-3 immunohistochemistry illustrates significant hypoxia-
induced cell death (denoted by purple dots) in the rat maintained
on the standard diet. Apoptosis was reduced in the ω-3 PUFA-
enriched rat (right), which is consistent with preserved brain do-
pamine levels illustrated in Fig. 2.
4. Discussion

In this study, we found that ω-3 PUFA-enriched rat pups ex-
posed to hypoxia between PN 7-12 experienced no loss of dopa-
mine levels and SNpc apoptosis was diminished in (Fig. 3). In
contrast, post-hypoxic control littermates born to dams main-
tained on normal diets experienced a 57% reduction in brain do-
pamine levels (Fig. 2) accompanied with significant apoptosis.
These findings concur with a recent publication demonstrating
neural resiliency against ischemic-anoxic insults in offspring of
mothers who received ω-3 PUFA dietary supplementation during
pregnancy [34].

Our findings, and those of Zhang [34] challenge the conclusions
from the recent Cochrane Review of “Long chain polyunsaturated
acid supplementation in infants born at term [35]”. That review
summarized outcomes from multiple clinical trials assessing
whether supplementing infant formula with ω-3 PUFA's was safe
and beneficial, to term infants. The author's concluded that dietary
supplementation with ω-3 PUFA's was safe for infants but “Routine
supplementation of milk formula with long chain polyunsaturated
acids to improve the physical, neurodevelopmental or visual out-
comes of infants born at term cannot be recommended based on the
current evidence”.

The doses of ω-3 PUFA's employed in clinical trials reviewed
within the Cochrane report were well below the 3.5–4.0 g daily
dose that we employed. Therefore, their conclusion that ω-3 PU-
FA's added to diets of healthy newborn children did not enhance
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Fig. 3. Photomicrographs of the substantia nigra pars compacta (SNpc) from two PN 12 rat pups exposed to hypoxia. The SNpc from the pup maintained on a standard diet is
on the left. The SNpc from the pup maintained on a ω-3 PUFA-enriched diet is on the right. Each small circular black dot identifies a caspase-3 positive cell undergoing
apoptosis. Apoptosis is reduced in the ω-3 PUFA-enriched rat (right). ω-3 PUFAs reduce hypoxia-induced apoptosis.
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physical, neurodevelopment or visual outcomes is not surprising.
It also could explain the divergence between other study findings
that ω-3 PUFA enriched diets could preserve physical, neurode-
velopmental or visual integrity in rodent models of hypoxic, is-
chemic, anoxic events [36–39]. Despite those compelling findings,
there have been no randomized controlled clinical trials to assess
the efficacy of ω-3 PUFA enriched diets for conferring neural re-
siliency against hypoxic insults in prematurely born children. Our
preliminary studies suggest that prenatal dietary supplementation
with ω-3 PUFA's do indeed confer neuroprotection against such
adverse clinical events.

Our novel rodent model of maternal dietary supplementation
enabled us to better control for environmental factors that we
have frequently encountered during our human-based studies
[40–42]. For example, our rodent model is not encumbered by the
complexities associated with controlling for human dietary in-
discretion that can negatively impact the assessment of nutritional
supplements. In addition, the experimental flexibility provided by
our rodent model enabled direct measurements of dopaminergic
function and structure that cannot be readily performed in hu-
mans. We believe that by first defining the neurochemical out-
comes conferred by ω-3 PUFA dietary supplementation in our
rodent model, our future human-based protocols will be free to
focus on hypothesis testing, rather than generation.

We selected to use 7–12 day old rat pups since seven day old
rat's cerebral cortex is comparable to humans born around 37
weeks (premature birth) [42]. By 12 days of age, the rat pup's
cortex is developmentally similar to a human born between 40
and 42 weeks gestation (term birth). We have previously shown
that during this period of critical brain development, hypoxic in-
sults induce significant impairment in brain dopamine systems
[24,25]. Therefore, to be considered effective, we believe any pu-
tative neuroprotectant should confer resiliency to the dopamine
system, against hypoxia, during this time period of vulnerability.
Our findings suggest that ω-3 PUFAs may achieve this goal.

Another relevant feature of our model is the use of an iso-
capnic, hypoxia-inducing gas mixture of 10% oxygen, 3–5% carbon
dioxide, and balance nitrogen. This mixture evolved from our prior
studies in both humans [41–45] and animals [46] employing both
hypobaric and hypoxic challenges. During those studies we added
3.0–5.0% carbon dioxide (CO2) into the inspired gas mixture to
provide an “atmospheric” pressure near 38 Torr. During hypoxic
challenges, the addition of 3.0% supplemental inspired CO2

maintains the partial pressure of arterial CO2 (PaCO2) within the
normative range of 38–45 mmHg. This prevents the acute reduc-
tion in PaCO2 that can occur during post-apnea hyperventilation
(Fig. 4). Thus, during our protocol, pups become hypoxemic and
hyperventilated, their inspired gas mixture sustained a PaC02
within the upper end of the normative range. The net result was a
relatively pure hypoxic insult without corresponding hypo- or
hypercapnia, and other abrupt perturbations to acid–base phy-
siology. We believe that minimizing potential blood acidosis (in-
duced by CO2 buildup during apnea or anoxia) and alkalosis (in-
duced by post-apnea hyperventilation), our gas mixture and hy-
poxia-inducing protocol provides insight into the pathogenic effect
of hypoxia alone, and subsequently the neuroprotective effect of
ω-3 PUFAs against hypoxia. Future experiments may be performed
with gas mixtures designed to induce both hypoxia and hy-
percapnia, to further define the efficacy of ω-3 PUFAs against more
severe apneic events.

Our selection of 10% oxygen within our gas mixture was in-
formed by our prior studies in which we employed indwelling
arterial catheters with simultaneous pulse oximetry to measure
both partial pressures of arterial oxygen (PaO2) and hemoglobin
oxygen saturation (SaO2) in rats exposed to hypobaric as well as
hypoxic hypoxia [46]. Those studies revealed that a sustained in-
spired oxygen content of 10% produced a PaO2 of approximately
40 mmHg with a corresponding SaO2 of 75–80%. As Fig. 4 illus-
trates, an SaO2 near 80% is within the range observed during ap-
neic events in a prematurely born infant at a gestational age of
approximately 50 weeks at the time of the recording.

4.1. Limitations and future studies

We acknowledge that our study design cannot provide insight
into whether putative ω-3 PUFA conferred neuroprotection origi-
nated within the fetal brain prior to birth via ω-3 PUFA's conveyed
in fetal circulation, or following birth via ω-3 PUFA's conveyed in
mother's colostrum [47,48]. If neuroprotection occurred prior to
birth, this may suggest that ω-PUFA's were conveyed directly
through placental circulation. If neuroprotection occurred post-
birth, this may suggest that PUFA's were conveyed through the
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Fig. 4. Strip chart recording from a prematurely born male human who we assessed for apnea of prematurity. Post-apnea hyperventilation is identified by the red arrows
pointing to chest wall excursions (impedance channel) as well as on the airflow channel. Repetitive apneas are identified by the red arrows on the airflow channel.
Corresponding oxygen desaturations occur several seconds after each apneic event (bottom channel – red underline). Heart rate (top row) does not significantly change
during events.
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digestive tract. In addition, future studies are also needed to
characterize the relationship between the dietary content of con-
sumed ω-PUFA's with subsequent circulatory and neuronal levels.

Our study was not designed to uncover the potential me-
chanism through which ω-3 PUFA's conferred their beneficial ef-
fects. Recent observation by Chang et al. [49] suggest that the DHA
component of ω-3 PUFA's suppress post-ischemia neural damage
by suppressing release of proinflammatory cytokines. Oxidative
damage was concomitantly attenuated by reducing c-Jun
N-terminal kinase (JNK) phosphorylation and activating protein
(AP-1) signaling. Future studies are needed to determine if these
same mechanisms contributed to the neuroprotection of the do-
pamine system that we observed in ω-3 PUFA enriched newborns
pups exposed to hypoxic insults.
5. Conclusions

In spite of this study's potential limitations, our novel findings
suggest that it may be feasible to confer some degree of neuro-
protection to newborns at risk for hypoxic insults. Our future
studies are directed towards characterizing the extent that beha-
vioral, motor and cognitive function is also preserved in ω-3 PUFA
enriched newborns exposed to those insults. Collectively, those
and other studies are necessary to confirm and extend findings
presented here. Doing so may also provide the scientific rationale
to begin considering the feasibility to shift current clinical para-
digms away from focusing only upon maximizing the remaining
function of the post-hypoxic brain, to proactively conferring neu-
roprotection against such insults.
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