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a b s t r a c t 

Background: Scoliosis is defined as a lateral spine curvature of at least 10° with vertebral rotation, as seen on a 

posterior-anterior radiograph, often accompanied by reduced thoracic kyphosis. Scoliosis affects all age groups: 

idiopathic scoliosis is the most common spinal disorder in children and adolescents, while adult degenerative 

scoliosis typically affects individuals over fifty. In the United States, approximately 3 million new cases of sco- 

liosis are diagnosed annually, with a predicted increase in part due to global aging. Despite its prevalence, the 

etiopathogenesis of scoliosis remains unclear. 

Methods: This comprehensive review analyzes the literature on the etiopathogenetic evidence for both idiopathic 

and adult degenerative scoliosis. PubMed and Google Scholar databases were searched for studies on the genetic 

factors and etiopathogenetic mechanisms of scoliosis development and progression, with the search limited to 

articles in English. 

Results: For idiopathic scoliosis, genetic factors are categorized into three groups: genes associated with sus- 

ceptibility, disease progression, and both. We identify gene groups related to different biological processes and 

explore multifaceted pathogenesis of idiopathic scoliosis, including evolutionary adaptations to bipedalism and 

developmental and homeostatic spinal aberrations. For adult degenerative scoliosis, we segregate genetic and 

pathogenic evidence into categories of angiogenesis and inflammation, extracellular matrix degradation, neural 

associations, and hormonal influences. Finally, we compare findings in idiopathic scoliosis and adult degenera- 

tive scoliosis, discuss current limitations in scoliosis research, propose a new model for scoliosis etiopathogenesis, 

and highlight promising areas for future studies. 

Conclusions: Scoliosis is a complex, multifaceted disease with largely enigmatic origins and mechanisms of pro- 

gression, keeping it under continuous scientific scrutiny. 
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The spine is a functionally complex structure. Disorders compro-

ising its integrity can lead to complications in multiple organ sys-

ems. Scoliosis is one such condition, where severe curvature may

e associated with serious cardiovascular and pulmonary complica-

ions, chronic pain, and psychological stress [ 1–3 ]. The profound im-

act of scoliosis on patients’ quality of life is becoming increasingly

ecognized [ 4 , 5 ]. Patients with scoliosis often suffer from body im-

ge misperceptions and demonstrate a higher incidence of mood dis-

rders [ 6 ]. This broad impact on patients’ lives underscores the need

or ongoing extensive scientific scrutiny into the etiopathogenesis of

coliosis. 
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According to the Scoliosis Research Society, the diagnosis of scolio-

is involves measuring the Cobb angle, with a threshold of 10° or higher

ndicating the disease, though significant axial rotation can occur even

elow this angle [ 7 , 8 ]. The prevalence of scoliosis in the general pop-

lation is around 2%–3%, with approximately 20% of cases being sec-

ndary to another disease [ 8 ]. The remaining 80% are cases of idio-

athic scoliosis and adult degenerative scoliosis [ 8 ]. Idiopathic scoliosis

s further subcategorized based on the age of the disease manifestation:

nfantile (first 3 years of life), juvenile (4–10 years old), and adolescent

10–18 years old). The latter is the predominant form of scoliosis in

he pediatric population [ 9 ] and is the most common pediatric muscu-

oskeletal disorder, affecting approximately 3% of school-aged children,

hich amounts to over 29 million children worldwide [ 10 ]. Progression
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[  
s more common in girls during puberty and can lead to severe deformi-

ies and impaired quality of life if untreated [ 11 ]. Such risk is highest

efore peak growth velocity but decreases sharply after skeletal matu-

ity [ 12 ]. 

In contrast to idiopathic scoliosis, adult degenerative scoliosis devel-

ps de novo in patients usually above fifty years of age with no pre-

iously detected spine deformity [ 13 ]. It is also more prevalent in the

emale population and is growing in incidence in parallel with the global

ging [ 14 ]. Intense back and leg pain, leading to spinal dysfunction and

isability in patients with adult degenerative scoliosis, can result from

neven muscle strain, facet joint arthritis, or nerve root compression

 15 ]. 

Management of idiopathic scoliosis generally depends on severity

f the curve progression and the symptomatology [ 9 ]. It ranges from

onservative management with analgesics, orthoses, nerve blocks and

hysical therapy to possible surgery [ 16–18 ]. 

Fortunately, modern therapeutic interventions are highly successful,

ignificantly improving patients’ quality of life [ 19 ]. Surgical correc-

ions of scoliotic deformities can be highly effective and improve pa-

ient’s body image [ 20 ]. However, they carry a risk of complications in

%-25% of cases [ 21 ]. Additionally, such surgical interventions result

n a large financial burden [ 22 ]. In general, treatment of scoliosis has

een associated with substantial consumption of healthcare resources

 23 , 24 ]. Such socioeconomic consequences of scoliosis further highlight

he need for improved disease understanding and consequent develop-

ent of disease prevention strategies. 

The current scope of knowledge indicates that idiopathic scoliosis

ikely results from multiple factors [ 7 , 25 , 26 ]. The pathogenesis of adult

egenerative scoliosis involves a self-reinforcing cycle of asymmetric

egeneration of intervertebral discs and facet joints, resulting in un-

alanced spinal load distribution and abnormal spinal curvature [ 27 ].

owever, as with idiopathic scoliosis, the etiopathogenetic mechanisms

f adult degenerative scoliosis also remain poorly understood. 

Previously, our group conducted a comprehensive literature review

n the biological principles driving the development of adult degen-

rative scoliosis [ 14 ]. Building on that study, in this review we ex-

lore the evidence on the genetic and pathogenetic factors of both id-

opathic and adult degenerative scoliosis. This approach aims to clar-

fy the mechanisms involved in scoliosis, identifying those that are ei-

her common to both types or specific to either one. For clarity, the

erm “idiopathic scoliosis ” will refer specifically to adolescent idiopathic

coliosis. 

ethods 

iterature search and study selection 

A comprehensive literature search was conducted to identify studies

xamining the biological factors, including genetic and developmental

spects, as well as environmental influences on the development and

rogression of scoliosis. The search focused on studies related to idio-

athic scoliosis and adult degenerative scoliosis, with studies on con-

enital scoliosis excluded, as it is regarded as a distinct category [ 28 ]

utside the scope of this review. 

atabases and search strategy 

The databases PubMed and Google Scholar were used for the lit-

rature search. Keywords included terms related to “genetic factors in

coliosis, ” “genetics of scoliosis, ” “pathogenesis of scoliosis, ” “biology of

diopathic scoliosis, ” “biology of adult degenerative scoliosis, ” “etiology

f scoliosis ”. No time restrictions were applied to the search, allowing

or the inclusion of studies published across all years. Only articles pub-

ished in English were considered. 
2

enetics of idiopathic scoliosis 

The term “idiopathy ” is translated from Greek to “a disease of its

wn kind, ” referring to a condition that has an unknown cause [ 29 ].

his term is particularly relevant in the context of idiopathic scoliosis,

here despite numerous pathogenetic theories proposed and extensive

esearch conducted, no single hypothesis has gained universal accep-

ance, and the debate is continued [ 30 ]. 

The notion that idiopathic scoliosis might be a genetically predeter-

ined disease was proposed over a century ago, and research into its

ereditary aspects has been ongoing ever since [ 31 ]. Twin studies have

een particularly insightful. They have shown that idiopathic scoliosis

as a higher genetic correlation in monozygotic twins [73%] than in

izygotic twins [36%], with a noticeable association between disease

everity and genetics in identical twins only [ 32 ]. Results from the Dan-

sh Twin Registry have underscored the strong genetic influence, show-

ng a significantly higher concordance in identical twins [ 33 ]. These

ndings, along with evidence from later-arising genome-wide associa-

ion studies (GWAS), highlighted the role of genetics in the development

f idiopathic scoliosis. 

However, not all the identified genetic correlations were found to

ave an impact on specific forms of curvature [ 32 ]. Differences in the

rogression of idiopathic scoliosis among family members further sug-

ested that the genes modifying its progression are likely distinct from

hose increasing the disease susceptibility [ 34 ]. 

To facilitate perception, we categorize the identified genes as either

diopathic scoliosis susceptibility genes or genes that are associated with

isease severity and progression ( Fig. 1 ). The latter two are combined,

onsidering their interdependence. Namely, severity of scoliosis at the

ime of diagnosis is a significant predictor of how much the curve might

rogress. This in part is 1 of the reasons why monitoring and managing

coliosis, especially during periods of rapid growth, is crucial to prevent

ignificant worsening of the spinal curvature. Additionally, we group

ogether a set of genes that have been shown to have a role in both

usceptibility and scoliosis progression. 

usceptibility genes 

The first GWAS of adolescent idiopathic scoliosis identified a region

n chromosome 3p26.3 near the cell adhesion molecule L1 like (CHL1)

ene associated with adolescent idiopathic scoliosis risk, although

o causal variation was found within CHL1 [ 35 ]. The latter encodes

 neural cell adhesion molecule that participates in nervous system

evelopment [ 36–38 ]. Gene LOC642891 with an unidentified function

n a proximity to CHL1 was also linked to adolescent idiopathic

coliosis [ 35 ]. In the 9q31.2–34.2 interval, SNPs rs4979321 (zinc

nger protein 618 [ZNF618] gene), rs891725 (alpha-1-microglobulin/

ikunin precursor [AMBP] gene), rs1969944 (paralemmin 2 [PALM2]

ene), and rs4836643 (intergenic) showed significant associations with

diopathic scoliosis. These findings suggest that adolescent idiopathic

coliosis risk arises from genetic heterogeneity rather than a single

ocus [ 35 ]. 

Genome-wide pathway burden analysis of exome sequence data re-

eals that extracellular matrix (ECM) genes significantly contribute to

he polygenic inheritance of idiopathic scoliosis [ 39 ]. More broadly, in-

ependent studies have identified a group of genes that are functionally

inked to the vertebral column structural integrity (COL11A2, GPR126

nd PAX1). 

Specifically, new coding variants in musculoskeletal collagen genes,

articularly collagen type XI alpha 2 chain (COL11A2), increase

diopathic scoliosis risk by more than 2-fold [ 39 ]. The G-protein

oupled receptor 126 (GPR126 [aka, ADGRG6]) gene within the

hromosome 6q24.1 locus was also identified as a candidate for

diopathic scoliosis susceptibility through extensive GWAS analysis,

eplicated in Japanese, Chinese, and European-ancestry populations

 40 ]. Activated by type IV collagen, GPR126 is crucial for the normal
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Fig. 1. Genetics of idiopathic scoliosis. 
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ifferentiation of promyelinating Schwann cells and proper myelina-

ion of axons [ 41 ]. Interestingly, variants of GPR126 have also been

hown to regulate bone mass through cAMP-CREB signaling pathway

 42 ]. 

In addition, using a functional fine-mapping strategy, researchers

ave identified a susceptibility locus for idiopathic scoliosis on chromo-

ome 20p11.22, located downstream of the paired box 1 (PAX1) gene

 43 ]. The PAX1 region has been previously linked to spinal develop-

ent through research on naturally occurring undulated mouse strains

 44 ]. Collectively, COL11A2, GPR126 and PAX1 may indicate a genetic

ignature predisposing to spine structural deformities. 

Genetic linkage analyses combined with exome sequencing identi-

ed a rare missense variant (p. A446T) in the centriolar protein gene

OC5 centriolar protein (POC5) that co-occurred with the disease

n several families with multiple members affected with idiopathic

coliosis [ 45 ]. Using exome sequencing, researchers also identified

n insertion, c.1569_1570insTT in the tubulin tyrosine ligase like 11

TTLL11) gene as 1 of the potentially causative genes for idiopathic

coliosis [ 46 ]. Moreover, TTLL11 and POC5 are involved in similar bi-

logical processes of cytoskeleton organization and centrioles assembly

espectively [ 47 , 48 ]. Both genes may play a role in the pathophysiology

f idiopathic scoliosis. 

isease/curve progression genes 

In this review of genes associated with the progression of idiopathic

coliosis, we identified 3 rather distinct patterns: genes with neural asso-

iations (NTF3, KCNJ2, PCDH10, NPY), genes involved in connective tis-

ue and extracellular matrix homeostasis (FBN1/2, TIMP2, HAS2), and

enes associated with spinal embryogenic development (SOX9, PITX1,

NT10A). This patterning may help future research aimed at uncover-

ng the pathogenetic mechanisms underlying the development of idio-

athic scoliosis. 
3

enes with neural associations 

Variations in the neurotrophin 3 (NTF3) gene do not correlate

ith the incidence of idiopathic scoliosis, yet the promoter variation

rs11063714) is linked to the severity of the spinal curvature and influ-

nces the effectiveness of brace treatment [ 49 ]. This suggests that NTF3

ay play a mitigating role in the progression of idiopathic scoliosis.

ormally, it promotes nerve growth and survival of neurons [ 50 ]. 

In another study, variant rs12946942 located on chromosome

7q24.3 near potassium inwardly rectifying channel subfamily J mem-

er 2 (KCNJ2) gene, has been associated with scoliosis phenotypes [ 51 ].

he product of KCNJ2 had been suggested to have a role in establish-

ng action potential waveform and excitability of neuronal and muscle

issues [ 52 , 53 ]. 

Average methylation of the protocadherin 10 (PCDH10) promoter

as higher and gene expression was lower in idiopathic scoliosis pa-

ients compared to controls [ 54 ]. Additionally, high PCDH10 promoter

ethylation correlated with the Cobb angle of major curves in idiopathic

coliosis patients [ 54 ]. The product of PCDH10 has been shown to be

ritically involved in formation and maintenance of neural circuits and

ynapses, and regulations of actin assembly [ 55 ]. 

enes involved in connective tissue and extracellular matrix homeostasis 

Analysis of genetic linkage in eleven families with 52 scoliosis-

ffected members did not implicate fibrillin 1 (FBN1), elastin, or col-

agen type I alpha 2 chain (COL1A2) as relevant genes in these cases

 56 ]. Conversely, a genome-wide study examining rare variant burden

hrough exome sequencing identified FBN1 as significantly associated

ith idiopathic scoliosis [ 57 ]. The severity of scoliosis in idiopathic

ases was linked to rare variants in FBN1 and FBN2 genes (p = .0012), a

nding that was confirmed in a separate Han Chinese cohort (p = .0376)

 57 ]. This indicates that rare genetic variants could serve as predictors

or the progression of the spinal curve. 
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Earlier research indicated a potential link between a promoter poly-

orphism of the tissue inhibitor of metalloproteinases 2 (TIMP2) gene

rs8179090; − 418 bp G/C) and scoliosis progression in a Chinese cohort

 58 ], but this finding was not confirmed in a Japanese study [ 59 ]. In

ore recent studies, four different TIMP2 polymorphisms (rs11077401,

s2376999, rs2277700, and rs4789934) have been associated with an

ncreased risk of developing the progressive form of idiopathic scoliosis

 60 ]. Protein expressed by TIMP2 is a natural inhibitor of the matrix

etalloproteinases [ 61 ]. 

In another study, decreased methylation at site cg01374129 of the

yaluronan synthase 2 (HAS2) gene (encodes for an ECM constituent)

as linked to an increased curvature, suggesting it could serve as a

romising biomarker for distinguishing between patients with and with-

ut curve progression [ 62 ]. 

enes associated with spinal development 

In a 2-stage GWAS involving around 12,000 Japanese subjects, re-

earchers have discovered that the common variant rs12946942 is sig-

ificantly linked to severe idiopathic scoliosis [ 51 ]. This variant, lo-

ated on chromosome 17q24.3 near SRY-Box transcription factor 9

SOX9), has been associated with scoliosis phenotypes [ 51 ]. The prod-

ct of SOX9 expression was implicated in chondrocyte differentiation

oward cartilage formation [ 63 ]. The results were also replicated in The

hinese population as well [ 51 ]. Furthermore, an international meta-

nalysis with four ethnically diverse cohorts (2272 severe idiopathic

coliosis cases and 13,859 controls) confirmed this association (com-

ined p = 7.23 × 10ˆ-13; odds ratio = 1.36, 95% CI = 1.25–1.49) [ 64 ]. In

ilico analyses indicate SOX9 as the likely gene influencing idiopathic

coliosis curve progression in this region [ 64 ]. 

In another study, hypermethylation of the paired like homeodomain

 (PITX1) gene promoter in the blood cells of idiopathic scoliosis pa-

ients was significantly linked to the Cobb angle of the main curve,

ndicating a connection to the disease progression [ 65 ]. Further, four

robes were associated with curve severity: cg02477677 (RARA gene),

g12922161 (LOC150622 gene), cg08826461, and cg16382077 [ 66 ].

romoter regions for WNT10A (WNT signaling) and NPY (bone and

nergy homeostasis) were prioritized based on methylation concor-

ance in bone, suggesting relevance for bone formation and remodeling

 66 ]. 

usceptibility & progression genes 

Genes that have been found to contribute both to idiopathic scol-

osis susceptibility and progression were found to have common bio-

ogical involvements ( Fig. 1 ). As such, we identified genes pertinent to

he musculoskeletal system (CHD7, IGF1, MATN1, LBX1, BNC2, TGFB1,

APTM4B, COMP, H19, ADIPOQ, HSPG2, DOT1L) and genes related

o hormones and neurotransmitters (ESRRA, ESR1, ESR2, MTNR1B,

ALM1, CNTNAP2). 

enes attributable to the musculoskeletal system 

The Chromodomain Helicase DNA Binding Protein 7 (CHD7) was

he first gene to be associated with idiopathic scoliosis susceptibility

 67 ]. Its role in the etiopathogenesis of CHARGE (Coloboma, Heart de-

ects, Atresia of the nasal choanae, developmental Restriction, Geni-

ourinary abnormalities, and Ear malformations) syndrome, character-

zed by an increased incidence of scoliosis, suggested a shared under-

ying etiology with idiopathic scoliosis [ 67 , 68 ]. Research conducted on

olish Caucasian females identified a significant association between the

s1017861 polymorphism in CHD7 and idiopathic scoliosis susceptibil-

ty [ 69 ]. The rs1017861 and rs4738813 polymorphisms in CHD7 were

ound to be significantly correlated with the severity and progression of

pinal curvature as well [ 69 ]. Additionally, in the Chinese Han popula-

ion, the rs121434341 polymorphism in CHD7 was significantly linked

o adolescent idiopathic scoliosis [ 70 ]. Furthermore, CHD7 expression
4

as also been positively correlated with bone mineral content, indicat-

ng a potential role in the abnormal bone mass observed in patients with

his condition [ 70 ]. Contrasting these findings, another study that geno-

yped 22 single nucleotide polymorphisms in the CHD7 gene did not

nd a statistically significant association with familial idiopathic scolio-

is, highlighting the complexity and variability of genetic influences in

he development of idiopathic scoliosis [ 71 ]. 

Insulin-like growth factor 1 (IGF-1) is essential for bone growth [ 72 ].

 study of 506 Chinese girls with idiopathic scoliosis (Cobb angle > 20

egrees) and 227 age-matched controls found that IGF-1 polymorphism

ffects curve severity but not the onset of scoliosis, suggesting IGF-1

ay influence disease severity [ 73 ]. However, these results were not

eplicated in a Japanese cohort, where common single nucleotide poly-

orphisms in genes for matrilin 1 (MATN1), melatonin receptor 1B

MTNR1B), and tryptophan hydroxylase 1 (TPH1) were also found not

o be associated with the idiopathic scoliosis [ 74 ]. 

In contrast, a study of 68 Korean idiopathic scoliosis patients and

5 healthy age- and sex-matched adolescents found that rs5742612 in

GF-1 was associated with both susceptibility to and curve severity in

diopathic scoliosis [ 75 ]. In this study, the single nucleotide polymor-

hism rs2449539 in lysosomal-associated transmembrane protein 4 beta

LAPTM4B) was also found associated with both susceptibility to and

urve severity in idiopathic scoliosis [ 75 ]. Interestingly, the product of

APTM4B gene was found to be a negative regulator of transforming

rowth factor (TGF- 𝛽1) [ 76 ], which was also independently linked to

diopathic scoliosis [ 77 ]. 

More specifically, the TGFB1 gene allele -509T and genotype -509TT

ere significantly associated with an increased risk of idiopathic scolio-

is in both females and males (p < .01) [ 77 ]. Logistic regression revealed

 recessive genetic association between the C-509T polymorphism of

he TGFB1 gene and idiopathic scoliosis [ 77 ]. Additionally, sexual di-

orphism was observed: in females, the C-509T polymorphism of the

GFB1 gene was linked to both earlier onset and greater curve severity,

ut this was not the case in males [ 77 ]. 

Previously, a Japanese study found no significant association with

diopathic scoliosis for matrilin 1 (MATN1) gene, involved in the for-

ation of filamentous networks in the extracellular matrices [ 74 , 78 ].

ikewise, an analysis of MATN1 gene polymorphisms in Turkish indi-

iduals using real-time PCR on 53 adolescents with idiopathic scolio-

is and 54 healthy adults found no significant differences between the

coliosis and control groups [ 79 ]. Conversely, research on Chinese pa-

ients identified the tagSNP rs1149048 polymorphism in the MATN1

romoter region as being linked to both susceptibility and progression

f idiopathic scoliosis [ 80 ]. A recent meta-analysis further confirmed a

ignificant association between the rs1149048 polymorphism and idio-

athic scoliosis risk, particularly in the Asian population [ 81 ]. 

A previous study on developing zebrafish implicated basonuclin 2

BNC2) in the etiology of idiopathic scoliosis by observing a curve de-

elopment dependent on BNC2 expression levels [ 82 ]. Later research on

 Chinese population of idiopathic scoliosis patients found that BNC2

ene expression levels were significantly higher compared to controls

nd strongly correlated with scoliosis curve severity [ 83 ]. 

The polymorphisms rs4794665 in C17orf67 gene and rs12459350 in

OT1L gene were linked to idiopathic scoliosis susceptibility, however,

nly one of the genotyped SNPs were also correlated with the severity

f spinal curvature [ 84 ].The product of DOT1L expression is a histone

ethylator and wad suggested to be involved in protecting cartilage

omeostasis [ 85 ]. 

A total of 949 idiopathic scoliosis patients and 976 age-matched

ealthy controls were recruited for the study, where the SNP

s11190870 near the ladybird homebox 1 (LBX1) gene was linked

o both the susceptibility to and progression of idiopathic scoliosis [ 86 ].

BX1 gene product was reported to regulate the muscle precursor cell

igration [ 87 ]. A meta-analysis of 3 genome-wide association studies,

hich included 79,211 Japanese individuals, confirmed the association

f rs11190870 near LINC01514/LBX1 with idiopathic scoliosis [ 88 ].
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dditionally, research conducted on the northern Chinese Han pop-

lation identified two SNPs near LBX1 (rs11190870 and rs1322331)

hat are associated with an increased risk of idiopathic scoliosis

 89 ]. 

High cartilage oligomeric matrix protein (COMP) promoter methy-

ation was associated with a high Cobb angle, suggesting it may be a

aluable predictor of idiopathic scoliosis susceptibility and curve pro-

ression [ 90 ]. H19 imprinted maternally expressed transcript (H19)

nd adiponectin, C1Q and collagen domain containing (ADIPOQ) genes

howed inconsistent expression, with lower H19 and higher ADIPOQ

evels in concave-sided muscle tissues compared to convex-sided ones

 91 ]. This expression pattern correlated positively with the spinal curve

nd the age of onset, suggesting a putative role for these genes in both

usceptibility and scoliosis progression [ 91 ]. Moreover, H19 is located

ear IGF-2 and has been shown to be involved in osteoporosis develop-

ent [ 92 ]. At the same time, the structure of ADIPOQ gene was founding

oding for proteins like collagens X and VIII [ 93 ]. 

The coding variant p.Asn786Ser in the heparan sulfate proteogly-

an 2 (HSPG2) gene, encoding a protein that binds to and cross-links

any extracellular matrix components, was found to be significantly

ore prevalent in a larger cohort of idiopathic scoliosis cases than in

he control group (p = .024). This suggested an association with the id-

opathic scoliosis phenotype [ 94 ]. 

ormonal and neural genes 

In 1978, a prospective study of 26,947 students found a 4.5% inci-

ence of adolescent idiopathic scoliosis, with a female-to-male ratio of

.25:1 overall and increasing with curve severity [ 10 ]. Later, a study

f 304 girls with adolescent idiopathic scoliosis found that the XbaI

rs9340799) polymorphism in the estrogen receptor gene was linked

ith curve progression [ 95 , 96 ]. Girls with XX and Xx genotypes had

reater Cobb’s angles, a higher risk of a 5-degree curve progression, and

 greater likelihood of requiring surgery compared to those with the xx

enotype [ 95 , 96 ]. These findings implicated estrogen receptor polymor-

hisms in curve progression and indicated that DNA analysis could be

sed to predict this progression. 

A study comparing 202 scoliosis patients to 174 healthy controls

ound that the XbaI (rs9340799) polymorphism of the estrogen recep-

or gene is linked to idiopathic scoliosis susceptibility in females, with

he XX genotype and/or X allele being risk indicators [ 97 ]. On the

ther hand, the PvuII polymorphism showed no association with idio-

athic scoliosis risk [ 97 ]. However, in a cohort of 540 Chinese girls,

o association was found between PvuII and XbaI (rs9340799) poly-

orphisms of the estrogen receptor 1 and scoliosis susceptibility or

urve severity [ 98 ]. A meta-analysis of 4 studies (1,827 idiopathic scol-

osis cases and 1,253 controls) found no significant association between

baI (rs9340799) and idiopathic scoliosis(OR 1.09, 95% CI 0.96–1.23,

 = .17), suggesting that the XbaI (rs9340799) polymorphism is unlikely

o be a susceptibility variant for idiopathic scoliosis predisposition but

ay be linked to idiopathic scoliosis severity, progression, and treat-

ent [ 99 ]. Further, patients resistant to scoliosis brace treatment were

inked to the GA genotype and G allele of the estrogen related receptor

lpha (ESRRA) gene and the AT genotype and A allele of the tryptophan

ydroxylase 1 (TPH1) gene, suggesting that ESRRA and TPH1 are po-

ential genetic markers for predicting brace treatment outcomes [ 100 ].

PH1 gene encodes for an enzyme that is involved in serotonin synthe-

is, which precedes melatonin synthesis [ 101 ]. 

The AluI site polymorphism of the estrogen receptor 2 (ESR2) gene

as linked to Cobb angle severity (AA: 31.9°, AG: 43.2°, GG: 38.9°,

 = .002) and differed between moderate ( < 40°) and severe ( ≥ 40°) scolio-

is (p = .0011) [ 102 ]. While the ESR2 polymorphism was not associated

ith idiopathic scoliosis predisposition in Caucasian females, it may be

inked to curve severity [ 102 ]. A missense variant in ESR1 (c.868A > G)

nd a pathogenic variant in ESR2 (c.236T > C) were identified in idio-

athic scoliosis patients with Cobb angles of 41° and 45°, respectively

 103 ]. Both variants showed significantly decreased ability to activate
5

ownstream genes, suggesting genetic mutations in ESR1/2 can be as-

ociated with idiopathic scoliosis risk [ 103 ]. 

It has been previously reported that calmodulin has an affinity for

he estrogen receptor, decreasing its estrogen-binding capacity [ 104 ].

his led to the hypothesis that calmodulin’s effect on curve progression

ight be due to the loss of estrogen-binding affinity for the receptor

 96 ]. Researhers investigated the correlation between SNPs in calmod-

lin 1 (CALM1) and ESR1 genes and double curve idiopathic scoliosis in

7 patients and 100 controls [ 105 ]. Significant differences in the poly-

orphic distribution of rs2234693 in the ER1 gene and rs12885713 and

s5871 in the CALM1 gene were found between idiopathic scoliosis pa-

ients and controls. The findings suggest that different SNPs in these

enes may be associated with specific idiopathic scoliosis subtypes, par-

icularly double curve idiopathic scoliosis [ 105 ]. 

In a study of 146 idiopathic scoliosis patients and 146 controls, 12

NPs in the CALM1 gene were analyzed [ 106 ]. Three SNPs —rs2300496,

s2300500, and rs3231718 —were linked to idiopathic scoliosis predis-

osition, with no differences found in curve severity or genotype dis-

ributions, suggesting CALM1 gene variants can be associated with id-

opathic scoliosis susceptibility [ 106 ]. In a different study of 55 idio-

athic scoliosis patients, calmodulin levels correlated with curve pro-

ression and stabilization, indicating potential as a marker for identify-

ng stable and progressive curves [ 107 ]. Another study found that idio-

athic scoliosis patients had an asymmetric distribution of calmodulin

n paraspinal muscles, with higher levels on the convex side and lower

evels on the concave side [ 108 ]. Interestingly, platelet calmodulin did

ot reflect the muscle protein values [ 108 ]. 

Contactin-associated protein-like 2 (CNTNAP2) is another gene of

nterest previously linked to idiopathic scoliosis and later confirmed

hrough a genome-wide association study [ 35 ]. CNTNAP2 is also of par-

icular interest, as it participates in axon pathfinding and interacts di-

ectly with L1 and Robo class proteins [ 109 ]. The latter, when mutated,

auses horizontal gaze palsy with progressive scoliosis (HGPPS), a rare

isease marked by severe scoliosis [ 110 ]. 

Studying a Chinese population of patients with idiopathic scoliosis,

esearchers identified interleukin 17 receptor C (IL17RC) gene single

ucleotide polymorphism rs708567 associated with both susceptibility

nd curve progression [ 111 ]. 

athogenesis of idiopathic scoliosis 

volution of erect posture and bipedalism 

Modern humans possess a highly mobile lower spine compared to

ther great apes and short-backed primates, due to unique anatomical

eatures [ 112 ] [ Fig. 2 ]. The development of lordosis, enabled by the

longation of the spinal column, aligned the spine over the hip joints in

n erect stance [ 112 ]. It positioned the center of mass of the head, arms,

nd trunk over the ground contact point without the need to flex both

he hip and knee, as do apes [ 112–114 ]. In parallel, ilia and sacrum have

roadened and shortened, preventing restrictive contact with the lower

umbar vertebrae [ 112 ]. The latter developed a progressive widening

f their laminae and increased space between their articular processes

 115 ]. The orientation of human facets became more coronal to resist

nterior displacement of L5 at the L5/S1 joint [ 116 ]. The mass and cross-

ectional area of the erector spinae muscles were reduced [ 117 ]. These

daptations, coupled with subtle imbalances in the elongated lumbar

pine, may contribute to the rotational instability from which scoliosis

riginates [ 118 , 119 ]. This might remain subclinical until more severe

ffects manifest in the spine [ 112 ]. 

The evolutionary drive for bipedality led to significant functional

daptations despite the increased risk of scoliotic deviations and flexion-

nduced injuries [ 112 ]. This suggests that the benefits of upright walk-

ng long outweighed potential spinal vulnerabilities. However, over the

ast 3 million years, primary changes in the human spine and pelvis

ave focused on lumbar shortening, possibly, among other purposes, to
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Fig. 2. Pathogenesis of idiopathic scoliosis. 
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itigate scoliosis and flexion injuries [ 112 ]. Despite this trend towards

trengthening the spine, in evolutionary terms these changes are still

ecent. Consequently, the incomplete adaptation to upright posture and

ipedality remains a predisposing factor for the development of scoliotic

eformities [ 120 ]. 

pinal growth and developmental aberrations 

Spinal growth is primarily driven by 2 neurocentral joints known as

chmorl’s cartilage [ 121 ]. The latter are 2 synchondroses that connect

ach vertebral body to a corresponding semiposterior arch [ 122 ]. The

symmetrical development of these cartilages is 1 of the proposed theo-

ies behind scoliosis development [ 120 ]. This is supported by MRI find-

ngs of asymmetrical vertebral pedicles in children with scoliosis and the

orrelation between intensified joint activity and aggravated idiopathic

coliosis [ 123 , 124 ]. Experimental studies on young pigs show that re-

tricting growth on 1 side of Schmorl’s cartilage induces convex scoliosis

n the restricted side [ 125 , 126 ]. However, inconsistent results, such as

coliosis on the opposite side of the lesion when electrically sterilized,

hallenge this theory [ 127 ]. 

Various factors related to abnormal growth and development of the

pine contribute to the progression of scoliosis [ 128 ]. Some individ-

als are born with abnormalities in the cartilage of their vertebrae

 129 , 130 ]. These congenital defects can disrupt normal spinal growth

nd alignment, contributing to the development and progression of sco-

iosis [ 129 , 130 ]. 

Children with scoliosis often experience growth spurts earlier than

heir peers [ 128 , 131 ]. This rapid growth can exacerbate the spinal cur-

ature because the spine is lengthening faster than it can stabilize. More-

ver, during periods of rapid growth, such as puberty, scoliosis tends to

orsen. Studies indicate that girls with adolescent idiopathic scoliosis

re typically taller and exhibit faster growth rates during puberty than

heir healthy peers [ 132 , 133 ]. Some researchers have found that during

rowth phases, the anterior part of the vertebrae can grow more than

he posterior part [ 134 ]. This uneven growth can cause the vertebrae

o become wedged or tilted [ 135 ]. The Hueter-Volkmann Law states

hat compression decelerates both growth whereas traction accelerates

 136 ]. This means that, if the spine starts with a small asymmetry, the

ifferential growth rates will cause this asymmetry to worsen over time.

Anatomical and MRI studies have shown that in structural scoliosis

atients, the anterior parts of the spine are longer than the posterior

arts, a condition called ‘relative anterior spinal overgrowth’ (RASO)
6

 137–143 ]. A similar spinal overgrowth was found in both idiopathic

coliosis and neuromuscular scoliosis patients, suggesting RASO is a gen-

ral feature of scoliosis rather than a specific cause of idiopathic scol-

osis [ 144 ]. The anterior-to-posterior length difference correlated with

he Cobb angle, indicating RASO may contribute to curve progression

 144 ]. However, RASO’s role as a primary cause of adolescent idiopathic

coliosis (AIS) is debated and does not apply to all curve types. 

Other researchers suggest disproportional growth between the skele-

al and neural systems in idiopathic scoliosis, either due to a short spinal

ord or rapid spine growth [ 140 , 145 , 146 ]. This concept was termed

synchronous neuro-osseous growth [ 140 , 145–148 ]. It was found that

n severe AIS, the vertebral column is significantly longer without de-

ectable changes in spinal cord length [ 149 , 150 ]. They suggested that

nterior spinal overgrowth stretches the spinal cord and cauda equina,

eading to hypokyphosis and thoracic spine deformity, causing scoliosis

 149 , 150 ]. 

Finally, the neuromuscular theory of idiopathic scoliosis posited that

uscular and nerve imbalances contribute to the condition [ 151 ]. An-

mal studies showed that muscle excision or nerve root division could

nduce scoliosis, highlighting the role of muscle and nerve integrity in

pinal stability [ 152 ]. Equilibrial dysfunction at the brainstem level was

lso suggested, with abnormalities in balance more common in scolio-

is patients, correlating with curve severity and resolving with maturity

 153 ]. However, subsequent findings of muscle abnormalities, such as

ystrophy and disproportions in muscle fiber types, were inconsistent in

heir locations, leaving the theory subjected to controversy [ 154–157 ]. 

one metabolism regulation 

The role of endocrine hormones and bone homeostasis in adolescent

diopathic scoliosis (AIS) is a significant area of research [ 158 ]. During

dolescence, the rapid changes in hormone levels that regulate growth

nd development might influence idiopathic scoliosis [ 158 ]. 

The androgen receptor (AR) in bone tissue is concentrated in the

rowth plate, where androgens stimulate cartilage proliferation and

ndochondral ossification [ 159 , 160 ]. Idiopathic scoliosis patients have

een found to have lower androgen levels than non-AIS patients, sug-

esting a potential link between androgens and idiopathic scoliosis

evelopment [ 160 ]. However, research on androgens’ role in idio-

athic scoliosis pathogenesis is limited, with most studies focusing on

strogen. 
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Estrogen’s involvement in idiopathic scoliosis pathogenesis is viewed

rom 2 perspectives [ 158 ]. One theory suggests that abnormal estro-

en levels delay menarche in females, postponing bone development

nd maturity, thereby increasing the risk of spine deformity [ 158 ]. Re-

earch supports this theory, identifying significantly lower serum estra-

iol levels in idiopathic scoliosis patients compared to healthy individu-

ls [ 161 , 162 ]. Low levels of estrogen and delayed menarche can lead to

ecreased bone mineralization and strength, increasing the risk of bone

eformity [ 163 ]. Studies of female ballet dancers found that those with

elayed menarche were more likely to experience idiopathic scoliosis

nd stress fractures [ 164 ], and that dancers were at a significantly higher

isk of developing scoliosis than nondancers of the same age [ 165 ]. 

While the mechanism by which low estrogen indirectly causes id-

opathic scoliosis by delaying menarche is plausible, it is important to

ote that idiopathic scoliosis also occurs in females with normal menar-

he and in males. In female idiopathic scoliosis patients with normal

enarche, estrogen’s role is more likely via abnormal bone metabolism

nd development, increasing the risk of malformations [ 166 ]. 

The second theory suggests that abnormal estrogen levels directly

ffect bone metabolism and remodeling, leading to improper bone

rowth and a higher likelihood of developing idiopathic scoliosis

 163 , 167 , 168 ]. Supporting this, studies have found that adolescent girls

ith idiopathic scoliosis exhibit lower bone mineral density and higher

one turnover rates compared to healthy controls [ 169 , 170 ]. Addition-

lly, low bone mineral density in the femoral neck correlates with curve

rogression [ 171 ]. 

Estrogen and its receptors are widespread in the body, playing roles

n various developmental processes. Some studies suggest that estrogen

eceptors (ERs) might be asymmetrically expressed in the paraspinal

uscles of idiopathic scoliosis patients [ 172 ]. However, further research

id not confirm this, finding no significant difference between idiopathic

coliosis patients and controls [ 173 ]. The expression levels of melatonin,

strogen, and other receptors in idiopathic scoliosis paraspinal muscle

re very low, implying that estrogen and melatonin likely influence id-

opathic scoliosis through their regulatory effects on cartilage and bone

evelopment. 

Melatonin, an indoleamine regulating biological rhythms, is known

o influence bone development [ 174 ]. In 1959, it was discovered that

hickens developed scoliosis after their pineal gland was removed, sug-

esting melatonin deficiency might cause idiopathic scoliosis [ 175 , 176 ].

his finding was replicated in bipedal rats [ 119 ]. However, subsequent

tudies showed that adolescents with IS had normal melatonin levels

 176 , 177 ] and that pinealectomized monkeys did not develop scoliosis

 178 ]. Instead, it was proposed that a dysfunction in melatonin signal-

ng, particularly affecting osteoblasts, could be involved [ 179 ]. This led

o exploring abnormalities in melatonin signaling pathways. 

It was found that the melatonin receptor MT2, but not MT1, showed

educed levels in IS patients, and MT2-related gene polymorphisms were

inked to IS [ 180–182 ]. Melatonin promotes bone density and mass

hrough MT2 receptors and the MAPK pathway, affecting osteoblast pro-

iferation and differentiation [ 183 ]. Further research identified a func-

ional abnormality in the melatonin MT2/PKC signaling pathway in id-

opathic scoliosis patients’ growth plate chondrocytes, potentially lead-

ng to abnormal endochondral ossification [ 184 , 185 ]. Melatonin also

educes osteoclastogenesis and increases osteoclast apoptosis by mod-

lating OPG and RANKL levels, promoting bone formation [ 186 , 187 ].

herefore, altered melatonin levels and MT2 receptor dysfunction might

ontribute to the development of idiopathic scoliosis by affecting bone

evelopment. 

Leptin, ghrelin, and adiponectin play significant roles in the develop-

ent of scoliosis [ 158 ]. Leptin, a hormone produced by adipose tissue, is

ypically lower in individuals with idiopathic scoliosis despite their low

MI, possibly due to higher utilization and reduced secretion [ 188 , 189 ].

his deficit leads to disrupted muscle and bone development, as leptin

s crucial for inhibiting muscle degradation and promoting osteoblast

ctivity [ 158 ]. Consequently, the asymmetry and postural imbalances
7

haracteristic of scoliosis are exacerbated. Adiponectin, also secreted

y adipose tissue, is found at higher levels in idiopathic scoliosis pa-

ients [ 190 ] and exhibits asymmetric expression in paraspinal muscles

 91 ]. It promotes bone resorption by decreasing OPG and increasing

ANKL, potentially resulting in lower bone mass and spinal instabil-

ty [ 190 , 191 ]. Ghrelin, a hormone from the stomach [ 192 ], is elevated

n idiopathic scoliosis patients [ 193 ] and is linked to scoliosis severity

 194 ]. It affects cartilage and bone development through various sig-

aling pathways, such as ERK/STAT3, and may contribute to abnormal

one mass and cartilage development, exacerbating scoliosis [ 195–197 ].

ogether, these hormones influence muscle, bone, and cartilage devel-

pment, playing a pivotal role in scoliosis pathogenesis. 

enetics and pathogenesis of adult degenerative scoliosis 

In earlier work, we identified 6 key factors likely contributing to the

evelopment and progression of adult degenerative scoliosis: uneven

ear of intervertebral discs and facet joints, autophagy-driven angio-

enesis and inflammation within the discs, extracellular matrix degra-

ation, bone metabolism abnormalities, muscle loss (sarcopenia), and

rregular mechanical stress distribution along the spine [ 14 ]. These fac-

ors highlight a complex asymmetric degenerative process in the spine

ith a deviated vertical load axis. This results in disproportional biome-

hanical pressure, worsening the degeneration and creating a vicious cy-

le [ Fig. 3 ]. Despite this understanding of its progression, less is known

bout the origin of adult degenerative scoliosis. 

Heritability is 1 key area of research that may help illuminate the

anifestation of adult degenerative scoliosis. However, to date fewer

enetic factors have been identified in adult degenerative scoliosis com-

ared to other degenerative spine diseases, such as idiopathic scol-

osis [ 198 , 199 ]. Nevertheless, several gene groups linked to different

athogenic mechanisms have been reported [ Fig. 4 ]. 

ngiogenesis and inflammation 

One significant group of genes associated with adult degenerative

coliosis pertains to aberrant angiogenesis and inflammation. This group

ncludes cyclooxygenase-2 (COX2), interleukin 6 (IL6), tumor necrosis

actor-related apoptosis ligand (TRAIL), and nuclear factor of activated

-cells (NFATC). Previous studies have indicated that COX-2 expres-

ion is elevated in degenerative disc disease compared to normal discs,

otentially linking it to increased angiogenesis [ 200 , 201 ]. In adult de-

enerative scoliosis, investigations revealed significantly higher COX-2

evels and lower miR-143 (a COX-2 inhibitor) levels compared to id-

opathic scoliosis and control groups further supporting the putative

athogenetic role COX-2 [ 202 ]. 

Another study compared 184 patients with adult degenerative sco-

iosis to 220 healthy controls, revealing a significant difference in the

L6-572 G/C polymorphism [ 203 ]. Additionally, when serum levels of

RAIL and polymorphisms in the TRAIL gene were investigated in pa-

ients with intervertebral disc disease, higher serum TRAIL levels in pa-

ients with more severe disc degeneration were revealed [ 204 ]. The G/C

utation at loci 1525/1595 of the TRAIL gene was also more frequent

n patients than in controls [ 204 ]. Although no subgroup analysis was

onducted for patients with scoliosis, the above evidence suggests TRAIL

ight also be a contributing factor in adult degenerative scoliosis devel-

pment [ 204 ]. Finally, a genomic study had associated the NFATC gene

ith adult degenerative scoliosis as well [ 205 ]. The product of NFATC

ene expression is known to be involved in inducible gene transcription

uring an immune response [ 206 ]. Interestingly, it has also been found

o play an important role in osteoclastogenesis and hence, may also be

nvolved in bone remodeling [ 207 ]. 

Aberrant angiogenesis and inflammation have been identified as con-

ributors to the intervertebral disc degeneration [ 208 , 209 ]. Samples

rom the posterior annulus fibrosus of adult degenerative scoliosis pa-

ients showed increased expression of proangiogenic factors like angio-
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Fig. 3. Vicious cycle of adult degenerative scoliosis. 
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enin and platelet-derived growth factor B (PDGF-B) [ 210 ]. Cells from

egenerated discs were found expressing TRAIL and death receptors

R4 and DR5, markers of inflammation that correlated with the disc’s

egenerative state [ 211 ]. Together, aberrant angiogenesis and local in-

ammation promote extracellular matrix degradation, further driving

ngiogenesis and perpetuating the degenerative cycle [ 212 ]. 

xtracellular matrix degradation 

Extracellular matrix (ECM) disruption is a key factor in the degen-

ration of intervertebral discs and facet joints [ 14 , 213 ]. Type II colla-
8

en, an essential ECM component for the nucleus pulposus and facet

oints, plays a crucial role in maintaining their structure. Elevated lev-

ls of the C-propeptide of type II collagen (CPII), indicating increased

ollagen synthesis, have been observed in patients with degenerative

umbar scoliosis [ 213 ]. A significant association has been found be-

ween the SNP rs2276454 in the collagen type II alpha 1 (COL2A1)

ene and adult degenerative scoliosis in Korean patients, underscor-

ng collagen’s role in bone homeostasis [ 214 ]. This association was fur-

her confirmed by comparing 51 adult degenerative scoliosis patients

o 235 healthy controls [ 215 ]. In the Chinese Han population, sin-

le nucleotide polymorphisms rs1337185 in COL11A1 and rs162509 in
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Fig. 4. Genes associated with adult degenerative scoliosis. 
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erative scoliosis. 
DAMTS5 have been linked to a higher risk of lumbar disc degeneration

 216 ]. 

eural associations 

A genomic study identified the gene ankyrin repeat domain contain-

ng 11 (ANKRD11) as being associated with adult degenerative scoliosis

 205 ]. It is thought to have a role in the proliferation and development

f cortical neural precursors [ 217 ] and may regulate bone homeostasis

 218 ]. Angiogenesis in intervertebral disc degeneration is thought to be

ccompanied by neural ingrowth, which has been suggested as the main

eason for lower back pain development [ 219 ]. Given the presence of

-methyl-D-aspartate (NMDA) receptors in bone cells, researchers ex-

mined the genetic link between cSNPs in NMDA receptor genes and

dult degenerative scoliosis [ 220 , 221 ]. Although no significant overall

ssociation was found [ 222 ], specific cSNPs ‘in the glutamate ionotropic

eceptor NMDA type subunit 2C (GRIN2C) gene were linked to larger

obb angles, and cSNPs in the glutamate ionotropic receptor NMDA type

ubunit 2B (GRIN2B) gene were associated with greater lateral listhesis

ithin the scoliosis group [ 221 ]. However, when the serum proteome

rofiles of 12 patients with degenerative scoliosis were compared to

hose of healthy controls, several downregulated proteins were revealed

 223 ]. Among all, isoform 1 of G protein-regulated inducer of neurite

utgrowth 1 (GPRIN1) was the most significantly downregulated one

 223 ]. 

Another study linked an SNP rs10461 in regulating synaptic mem-

rane exocytosis 2 (RIMS2) gene to adult degenerative scoliosis [ 224 ].
9

 genomic study had associated the transmembrane protein 163

TMEM163) gene, product of which is an integral component of

ynaptic vesicle membrane, with adult degenerative scoliosis as well

 205 ]. 

Together, while the precise role of glutamate signaling in degenera-

ive scoliosis remains an intriguing subject of future studies, the existent

vidence is supportive of adult degenerative scoliosis having neural as-

ociations. 

ormonal influences 

Individuals with vertebral compression fractures from osteoporosis,

articularly women, face an increased risk of developing scoliotic spine

eformities [ 225 ]. Women can have up to a 50% lifetime risk of frac-

ures due to bone fragility [ 226 ]. Additionally, cartilage is thought to

e sensitive to sex hormones [ 227 ]. 

In this context, a notable difference was identified in the Pvu II poly-

orphism, suggesting that the Pvu II polymorphism may serve as a ge-

etic marker for the prevalence of adult degenerative scoliosis [ 228 ].

dditionally, women with degenerative changes in the lumbar spine

ere found to have a significantly higher frequency of the A-allele of

he parathyroid hormone 2 receptor (PTH2R) SNP rs897083 [ 229 ]. Al-

hough 122 women had adult degenerative scoliosis, no subgroup analy-

is was performed [ 229 ]. Yet, the PTH2R gene variations may contribute

o age-related spinal degeneration, potentially leading to adult degen-
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Fig. 5. The etiopathogenetic tree of scoliosis. 

 

t  

d  

t  

n  

c  

g  

t

 

i  

g  

g  

d  

t  

a  

e  

p  

e

 

g  

g  

s  

m  

s  

j  

h  

a  

r

 

r  

c  

g  

l  

l  

i  

g  

d

 

a  

n  
iscellaneous genes 

Proteomic analysis of sera from adult degenerative scoliosis patients

dentified 11 differentially expressed proteins (Clusterin, CLU cDNA

LJ57622, ALB cDNA FLJ50830, Hypothetical short protein, HLA-A

HC class I antigen [Fragment], ALB 23 kDa protein, Isoform 1 of G

rotein-regulated inducer of neurite outgrowth 1 [GPRIN1] and Ficolin-

) [ 230 ]. Western blot confirmed 2 of these, Clusterin and Ficolin-

, suggesting their potential as biomarkers [ 230 ]. Additional analysis

f scoliosis patient mesenchymal stem cells revealed differential levels

f PIAS2, NDUFA2, and TRIM68, distinct from those in serum [ 231 ].

hile these proteins may serve as disease biomarkers, further research

s needed to validate them across diverse patient populations due to

ossible environmental and epigenetic influences. 

iscussion 

Scoliosis affects approximately 2%–3% of the population, translating

o an estimated 7–9 million individuals in the United States [ 232 ]. Early

etection of a progressive curve is crucial for effective treatment of id-

opathic scoliosis, as it allows timely intervention. However, significant

hallenges persist in predicting who will develop scoliosis, understand-

ng the etiological factors, assessing the likelihood of progression, and

etermining the extent of disease advancement [ 34 ]. To this end, ge-

etic testing offers the potential to diagnose idiopathic scoliosis before

ymptom onset, enabling earlier and more targeted treatments. 

Research previously suggested that idiopathic scoliosis may follow

utosomal and X-linked dominant inheritance patterns [ 233 ]. However,

iscrepancies in data and the diminishing risk of idiopathic scoliosis

cross generations indicated a multifactorial inheritance model to be

ore likely [ 120 ]. This model implies a complex interaction between

ultiple genes and environmental factors, rather than a straightforward

ereditary pattern, poising idiopathic scoliosis as a multifaceted disease.

Over time, the methodology for studying the genetics of scoliosis

as advanced. Genetic linkage analysis, a widely utilized technique, ex-

mines familial cases by analyzing genetic information across genera-

ions [ 234 ]. This approach identifies genetic markers that consistently

o-occur with the disease, pinpointing the chromosome regions likely

ousing the causative genes. Genetic linkage analysis was the predomi-

ant methodology for identifying genetic factors associated with scolio-

is. Then followed the emergence of genetic association analysis which

ocuses on identifying statistical correlations between specific genetic

ariants —typically single nucleotide polymorphisms (SNPs) —and the

resence of diseases in broader populations [ 1 ]. This method is partic-

larly useful for complex diseases such as scoliosis, likely influenced

y multiple genetic and environmental factors. Each method has its ad-

antages and both have allowed to generate an insight into the genetic

actors driving scoliosis development. 

Despite the growing interest in the genetics of scoliosis, no specific

enetic markers have been identified to date. Research has primarily

ocused on idiopathic scoliosis, likely because it is the most common

orm of the condition and typically manifests at a younger age [ 235 ]. In

ontrast, adult degenerative scoliosis generally affects individuals over

fty [ 13 ]. 

Considering different age of scoliosis onset, one may presume the

enetic signature that predisposes individuals to scoliosis development

s likely different in idiopathic scoliosis vs adult degenerative scoliosis.

upporting this notion, our review identified only the estrogen receptor

nd collagen genes as common genetic factors in both diseases. In idio-

athic scoliosis, abnormal estrogen delays menarche, postponing bone

evelopment and maturity [ 158 ]. It directly affects bone metabolism

nd remodeling, leading to improper bone growth and an increased risk

f scoliosis [ 163 ]. In adult degenerative scoliosis, women can have up

o a 50% lifetime risk of fractures due to bone fragility [ 225 , 226 ]. Thus,

hile estrogen-related genetic changes increase susceptibility to both IS

nd ADS, they do so via distinct mechanisms. 
10
Another shared feature of idiopathic scoliosis and adult degenera-

ive scoliosis is the development of spinal asymmetry, though the un-

erlying mechanisms differ significantly as well. In idiopathic scoliosis,

he most widely accepted mechanism is the asymmetrical activity of the

eurocentral cartilage [ 120 ]. This uneven growth pattern leads to spinal

urvature and has led to therapeutic suggestions, such as targeting the

rowth of neurocentral cartilage with thoracic pedicle screw instrumen-

ation [ 236 ]. 

Conversely, in adult degenerative scoliosis, asymmetry arises primar-

ly from the uneven degeneration of intervertebral discs [ 14 ]. This de-

eneration is thought to be driven by a combination of aberrant angio-

enesis and chronic inflammation, which together perpetuate the degra-

ation of the extracellular matrix [ 14 ]. These processes contribute to

he uneven wear and tear of the intervertebral discs, resulting in spinal

symmetry. However, unlike in IS, where the sequence of pathogenic

vents is relatively well theorized, the reason why these degenerative

rocesses become asymmetric in the aging spine leading to adult degen-

rative scoliosis, remains unclear. 

Further, we propose a new tree-like model of scoliosis etiopatho-

enesis, which depicts multiple layers of disease susceptibility and pro-

ression [ Fig. 5 ]. The first layer involves an evolutionarily maladaptive

pine, predisposing humans to spinal deformities and serving as a com-

on predisposition for both types of scoliosis. The second layer, con-

isting of distinct genetic signatures, differentiates the pathogenetic tra-

ectories of idiopathic and adult degenerative scolioses. Influenced by

ormonal changes and exposomal factors, these genetic factors lead to

berrations in spinal development and intervertebral disc degeneration,

esulting in idiopathic and adult degenerative scolioses, respectively. 

The term exposome was coined by Christopher Wild in 2005 to rep-

esent a compilation of all environmental, lifestyle, behavioral and so-

ial factors that may contribute to disease development and/or pro-

ression [ 237 ]. Studies on monozygotic twins have previously high-

ighted the significant role of environmental factors in idiopathic sco-

iosis [ 238 ]. However, research on the role of exposomal factors in id-

opathic scoliosis has not been gaining momentum. It has been sug-

ested to be due to an excessive emphasis on the genetic aspect of the

isease. 

Among the new evidence is recognition of epigenetic regulations

s bridges between the exposome and the inner pathogenetic mecha-

isms. It has been shown to reflect the early life environmental influ-
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nces [ 239 ]. Continued research in this direction may help shedding

ore light on the origin of the process that eventually lead to idiopathic

coliosis development. 

Studies on the exposomal factors for adult degenerative scoliosis

ave been more prevalent in identifying the risk factors for the disease.

s such, bone mineral density <− 1.85g/cm2, body mass index > 25.57

g/m2, and sagittal vertical axis > 3.98cm were suggested to be potential

isk factors for degenerative scoliosis [ 240 ]. A body mass index [BMI]

ver 25 kg/m2 is linked to a higher risk of degenerative lumbar scol-

osis [ 241 ]. Excess weight is associated with more frequent falls, sar-

openia, and the production of proinflammatory cytokines like IL-6 and

NF- 𝛼, which contribute to increased osteoclastogenesis and bone loss

 242–244 ]. Conversely, a high BMI is also associated with higher bone

ineral density (BMD), indicating stronger bones [ 245 ]. This paradox

an be partially explained by mechanical loading and strain, as well as

strogen production by adipocytes, which enhances bone formation and

educes resorption [ 246 ]. The net effect of these conflicting influences

f obesity on degenerative scoliosis remains unclear. Therefore, further

esearch is needed to understand the precise roles of physical activity

nd obesity in the development and progression of adult degenerative

coliosis. 

Understanding these distinct pathogenetic mechanisms is crucial, as

t could inform more targeted treatments for each type of scoliosis. In

diopathic scoliosis, interventions might focus on modulating the growth

nd development of spinal structures during critical periods, whereas in

DS, therapies could aim at mitigating the degenerative processes and

nflammation that contribute to disc asymmetry. Despite the differences,

oth conditions underscore the complexity of spinal asymmetry and the

eed for continued research to fully elucidate these mechanisms. 

onclusion 

Despite major advancements and success in therapy of scoliosis, the

isease continues to affect large populations both among children and

dults. In the case of adult degenerative scoliosis, the global trend to-

ard aging is alarming, since it portends a rise in disease prevalence.

iven these considerations, it is imperative to refine predictive and pre-

entive strategies to enhance the diagnosis and treatment of scoliosis.

o do so, more studies are needed to better understand the etiology and

athogenesis of scoliosis. 

ummary 

This comprehensive review explores the genetic factors and mul-

ifaceted pathogenesis of idiopathic and adult degenerative scoliosis,

roposing a new model for scoliosis etiopathogenesis and highlighting

uture research directions. 
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