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a b s t r a c t

Transcription Factors (TFs) bind to DNA and control activity of target genes. Here, we present
ChIPanalyser, a user-friendly, versatile and powerful R/Bioconductor package predicting and modelling
the binding of TFs to DNA. ChIPanalyser performs similarly to state-of-the-art tools, but is an explainable
model and provides biological insights into binding mechanisms of TFs. We focused on investigating the
binding mechanisms of three TFs that are known architectural proteins CTCF, BEAF-32 and su(Hw) in
three Drosophila cell lines (BG3, Kc167 and S2). While CTCF preferentially binds only to a subset of high
affinity sites located mainly in open chromatin, BEAF-32 binds to most of its high affinity binding sites
available in open chromatin. In contrast, su(Hw) binds to both open chromatin and also partially closed
chromatin. Most importantly, differences in TF binding profiles between cell lines for these TFs are
mainly driven by differences in DNA accessibility and not by differences in TF concentrations between
cell lines. Finally, we investigated binding of Hox TFs in Drosophila and found that Ubx binds only in open
chromatin, while Abd-B and Dfd are capable to bind in both open and partially closed chromatin. Overall,
our results show that TFs display different binding mechanisms and that our model is able to recapitulate
their specific binding behaviour.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Background

Decades of research have shown that gene expression plays an
essential role in the livelihood of cells and organisms. From devel-
opment to cellular homoeostasis, the activation or repression of
gene expression enables cells, and by extension organisms, to func-
tion properly. One of the key components of the regulation of gene
expression is Transcription Factors (TFs). The most commonly used
experimental method to determine specific regions of DNA where
TFs bind is chromatin immunoprecipitation followed by sequenc-
ing (ChIP-seq) [1,2]. This technique has become the gold standard
to determine the binding profiles of TFs to the genome, but, despite
the huge impact on understanding gene regulation, it does not pro-
vide a mechanistic model of what drives the binding of TFs to those
regions or even how genes are regulated. While we still lack a com-
plete predictive model for gene expression, over the years, many
factors have been identified as contributing to context dependant
TF binding.
An important aspect to consider concerning TF binding speci-
ficity is the DNA sequence itself. While some TFs do not bind in a
sequence specific manner, our work focuses on the sequence speci-
fic TFs [3–6]. The most common way to describe this motif is in the
form of a Position Weight Matrix (PWM); a measure of binding fre-
quency between TFs and DNA weighted by the genomic base pair
frequency [3,7]. Nevertheless, TFs can have tens of thousands
potential binding sites within each genome, yet only a few hun-
dred will be occupied by TFs [8,9].

Previous studies have shown that some TF binding events are TF
concentration dependent [10–13], where varying the concentra-
tion of the TF will drive the expression of different sets of genes.
However, there are many more spurious sites, rather than func-
tional binding sites where TFs could bind. This still begs the ques-
tion: how do TFs distinguish between bound and unbound binding
sites?.

One way to reduce the number of available sites is to consider
DNA accessibility. Are these sites even available for binding in
the first place? This assumes that TFs would bind only to sites that
are accessible and cannot locate sites within dense chromatin
[14,15]. Nevertheless, there is a certain class of TFs known as pio-
neer TFs are able to bind in closed chromatin. More specifically,
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pioneer TFs can bind sites in closed dense chromatin and subse-
quently open the chromatin [16–19].

Over the years, many tools and frameworks have aimed to pre-
dict transcription factor binding. One of the earliest tools incorpo-
rating DNA accessibility was the PIQ algorithm (Protein Interaction
Quantification) which implemented a machine learning type algo-
rithm to filter out binding sites located in inaccessible DNA [20].
Later, msCENTIPEDE improved upon CENTIPEDE using multi-
scale models for inhomogeneous Poisson processes to untangle
TF binding with respect to DNA accessibility [21]. Some notable
tools that have been developed through DREAM challenges are
FactorNet, implementing a deep learning framework [22], Anchor,
relying on a XGBoost system [23] and Catchitt making use of
supervised machine learning and iterative training [24]. While
machine learning methods predict TF binding events with high
accuracy, they are often difficult to interpret; i.e., it is not clear
what these models actually use to produce their predictions. The
interpretability issues have been widely discussed in the last dec-
ade [25,26] and machine learning methods are not always best
suited to understand the mechanism driving a biological
phenomenon.

We previously showed that statistical thermodynamics can be
used to model TF binding to DNA with high accuracy [13]. Consid-
ering only binding energy between TFs and DNA (estimated by the
PWM and a scaling factor modulating the binding energy), the
number of bound molecules to the DNA and DNA accessibility,
we modelled binding of five TFs in Drosophila embryo. Our results
confirmed that, for some TFs, this model is sufficient to explain the
majority of observed binding events in ChIP data and we were able
to backwards infer number of bound molecules and specificity for
five TFs in Drosophila embryo (bcd, cad, gt, hb and Kr).

In this manuscript, we build upon our previous model and
developed ChIPanalyser a versatile and user-friendly R/Biocon-
ductor package [27,28]. Furthermore, we used this model to
describe the behaviour of several Drosophila TFs (CTCF, BEAF-
32, su(Hw), Ubx, Abd-B and Dfd) in different cell lines (BG3,
Kc167 and S2).

We show that the performance of ChIPanalyser is at least sim-
ilar to other TF binding tools available. However, our results pro-
vide a mechanistic interpretation of TF binding behaviour and
propose a new classification of TFs based on fine details of their
binding mechanism. In particular, we found that DNA accessibility
is the main driver that explains binding of CTCF, BEAF-32 and su
(Hw) in three Drosophila cell lines (BG3, Kc167 and S2) and that
relatively medium changes in the concentrations of these TFs lead
to only negligible changes in their binding profiles. We also show
that TF binding specificity can be achieved by their capacity to bind
regions with different levels of DNA accessibility. In particular, we
showed that, while Ubx, Abd-B and Dfd have similar binding
motifs, the differences in their binding to DNA could be explained
by their different capacity to bind dense chromatin, with Ubx bind-
ing only in highly accessible chromatin and Dfd and Abd-B binding
denser chromatin.

2. Methods

2.1. Model description

ChIPanalyser is an R package available on Bionconductor [28].
The package is an implementation of the statistical thermodynam-
ics model proposed in [13]. Briefly, the model requires (i) a PWM
(Position Weight Matrix) or PFM (Position Frequency Matrices) of
the TF of interest, (ii) DNA accessibility data to model binding site
accessibility and two additional parameters: (iii) k (a PWM scaling
factor) and (iv) N (the number of bound molecules) [13]. The prob-
ability of a position j on the DNA being occupied is given by [13]:
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with N the number of molecules bound to the DNA, aj the accessi-
bility at site j; k a scaling factor of the PWM score, wj the PWM score
at site j; L the length of the DNA and n is the ploidy level. Given the
size of the genome and the range of TF abundances reported in the
literature, we can assume that the number of available sites is much

larger than the number of bound molecules. Thus, L � n � aie
1
kwið ÞD E

i

does not consider the number of bound molecules as it describes
the rest of the genome that will not be bound by a given TF.

It should be noted that k represents the relative affinity a TF
could have for a binding site [7]. In particular, it represents how
well a given TF can discriminate between low/medium and high
affinity sites. Also note that number of bound molecules and con-
centration are not the same since in majority of the cases a large
proportion of the molecules are freely diffusing in the nucleoplasm
(reviewed in [29]). k and N are not always readily available in the
form of experimental data and, thus, we used ChIP-seq data and
select the values of these parameters that maximise (or minimise)
the goodness of fit metrics.
2.2. Datasets

To carry out the analysis described in this manuscript, we
selected data originating from various sources (see TableS1). We
provide the code used in the is manuscript in a GitHub repository
( https://github.com/patrickCNMartin/ChIPanalyserSub).

DNA Sequence: Reference Sequences of Drosophila melanogaster
(dm6) [30,31] and Homo sapiens (hg38) [32] were extracted from
the Bsgenome R packages [33]. All data sets were either aligned
to the dm6 versions of the Drosophila genome or lifted over from
dm3 to dm6 using the UCSC genome liftover chain [34].

PWM and PFM: Binding Motif matrices were downloaded from
online repositories (JASPAR) [35] or extracted from the MotifDb R
package [36], which collects and compiles PFMs and Position Prob-
ability Matrices (PPM) from various online repositories (see Fig-
ureS1 in Supplementary Materials). For the purpose of method
comparison requirements (msCENTIPEDE), TF binding sites were
extracted using FIMO from the MEME-suit tool kit [37].

ChIP-seq: ChIP enrichment signal and ChIP peaks were down-
loaded (pre-processed) from modEncode in three Drosophila cell
line: Kc167, S2 and BG3. Note that some of these ChIP datasets were
generated in RNAi mutant cells. Despite the differences between
ChIP-chip and ChIP-seq, they are sufficiently similar to be compara-
ble for the purpose of this analysis [1]. Both describe TF binding
events and both are provided in similar formats (.wig,.bed,.bed
Graph,.bigWig,.gff,.gff3). Supplementary data sets were down-
loaded from GEO. GEO datasets were aligned to the genome (dm6)
using bowtie-2 (- -non-deterministic). SAM files were converted to
BAM files using samtools [38]. Peaks and pile-up signal were called
using macs2 with a 0.01 FDR (-q 0.01) [39] in order to ensure the
robustness of the peaks selected. Processed data sets for Homo sapi-
ensweredirectly downloaded fromENCODEwere already aligned to
hg38. We selected one of the datasets provided and used in the
DREAMchallenge competition related to TFbindingprediction. Peak
replicates were combined using the GenomicsRanges package in R.
Datasets used for this analysis are described in TableS1 in Supple-
mentary Materials.

DNA accessibility: DNase I hypersensitivity data was generated
by modEncode for the three cell lines used in this analysis [40].
We aligned fastq files to the dm6 genome build using bowtie-2 (- -
non-deterministic). SAM files were converted to BAM files using
samtools [38]. Peaks and read pile-ups were called and produced
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using macs2 (–broad-call -cutoff 0.05 -q 0.05) [39]. We selected
broad peaks and amore relaxed FDR, sinceDNA accessibility is char-
acterised by broader regions compared to ChIP data. DNase I hyper-
sensitvity data for Homo sapiens was directly downloaded from
ENCODE and replicates were merged using samtools. DNase peak
replicates were combined using the GenomicsRanges package in R.
The level of accessibility is consistent with past experiments (see
FigureS2). ATAC-seq data for Kc167 cells was used from [41] and
ATAC-seq scores were computed using macs2 as described in [41].
We selected a series of ATAC-seq signal thresholds that we would
use as a cut-off point to select accessible/inaccessible DNA. These
thresholds were based on signal quantiles from 0.05 to 0.95 by
0.05. We also considered 0.99,0.999, 0.9999 quantile thresholds.
We will refer to this method as Quantized Density Accessibility
(QDA).

RNA-seq In order to rescale TF abundance between cell lines,
we used RNA-seq data from [42]. RNA-seq relative abundance
was used to rescale the estimated number of bound molecules
from one cell line to another.

2.3. Description of ChIPanalyser

The workflow of ChIPanalyser is described in Fig. 1. Briefly, the
optimal set of parameters (for k and N) can be inferred from ChIP
data by maximising (or minimising) a goodness of fit metric. Nev-
ertheless, if the user approximates these values by other means,
ChIPanalyser does not require any training data at all. Using these
values, ChIPanalyser will produce base pair resolution ChIP like
profiles for different genomic regions and compare the prediction
with the actual ChIP data (if that is provided by the user).

ChIPanalyser uses a set of genomic regions to infer optimal
parameters. If the genomic regions are not provided by the user,
the top n regions will be selected based on highest ChIP score after
binning the genome into bins of 20 Kb (number of regions to be
selected and bin width and can be customized). In the context of
Fig. 1. ChIPanalyser workflow. (A) ChIPanalyser follows the following work flow. Data In
data: If ChIP data is used to infer the optimal set of parameters (and/or validate model
extracted for further analysis. Inferring optimal parameters: Inferring optimal param
Predicting ChIP profiles and plotting: Using the optimal values for number of bound m
Both optimal parameter heatmaps and ChIP profiles can be plotted using the package’
experiments that were carried out throughout this manuscript.
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this analysis, ChIP score refers to the min/max normalised enrich-
ment scores at base pair resolution provided in each data set. For
our analysis, we split the entire genome into bins of 20 Kb and
selected bins that contained at least one CTCF, BEAF-32 and su
(Hw) peaks in at least one biological replicate and at least one cell
line. By doing so, we ensure that the regions we will use in this
analysis are common between all data sets. This resulted in 3293
bins of 20 Kb that contain at least one peak of any of these archi-
tectural proteins and at least one base pair of accessible DNA. In
addition, we followed the same process for Hox transcription fac-
tors, which resulted in a total of 3838 bins of 20 Kb containing at
least one peak for each TF (Ubx, Abd-b, and Dfd). Normalised and
ordered bins (based on highest ChIP scores in that bin) were pro-
duced by the processingChIP function from ChIPanalyser. Following
this, we selected the top ten regions in order to train our model (to
infer N and k by maximising or minimising a goodness of fit met-
ric). While the top ten regions contain the strongest peaks (True
positive signal), they also contain large segments of DNA that are
not bound by a given TF (True Negative signal). The ratio of True
positives to True negatives in the top ten regions provides a appro-
priate set of input data to train our model. Once we had selected
the optimal set of parameters based on our training set, we vali-
dated our results on the other regions that do not contain the train-
ing set. For example, as regions were ordered based on ChIP signal
(from strongest signal to lowest signal), we selected the top ten
regions with the strongest signal score to train our model (regions
1 to 10) and following twenty regions (11 to 30) for validation.

During this step of the analysis (processingChIP), we also included
a noise filtering method. The current model does not consider ChIP
depletion, therefore all negative scores are replaced by 0. With that
in mind, ChIPanlyser provides four methods of filtering noise: Zero,
Mean, Median and Sigmoid. Zero removes only depletion scores
(equivalent to ‘‘no noise filtering”). Mean and Median replace all
scores below themeanormedian after filtering out depletion scores.
Finally, Sigmoid applies a logisticweighting to every score,modulat-
put: Data may come in various formats (e.g. bed, wig, gff etc.). Processing ChIP-seq
goodness of fit), ChIP data will be normalised and only regions of interest will be
eters will be achieved by maximising (or minimising) a goodness of fit metric.
olecules and the PWM scaling factor, ChIPanalyser will produce ChIP like profiles.

s plotting functions. (B) shows the general workflow and the main computational
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ing ChIP scores around the 95th quantile point. All analysis in this
manuscript was carried out after using the Sigmoid noise filtering
method.

Once the loci of interest have been selected, we inferred the
optimal set of parameters by using computeOptimal function. The
optimal set of parameters are inferred by maximising (or minimis-
ing) the average goodness of fit metric over all regions selected.
ChIPanalyser offers twelve different metrics: correlation coeffi-
cients (Pearson, Spearman and Kendall), Mean Squared Error
(MSE), Kolmogorov–Smirnov Distance, precision, recall, accuracy,
F-score, Matthew’s correlation coefficient (MCC) and Area Under
Curve Receiver Operator Characteristic (AUC ROC or just AUC)
(see TableS2 in Supplementary Materials). We also developed a
novel method that describes the ratio of shared geometric area
between curves and difference in area between curves. ChIPanaly-
ser generates a ChIP like profile at a base pair level resolution, how-
ever window size may be adjusted. The goal is to mimic
experimental ChIP profiles by smoothing high occupancy binding
sites into ChIP like profiles. This approach was described by [13].

For this analysis we used a 100 bp window for validation. Good-
ness of fit is carried out by comparing our prediction to ChIP score
data (as opposed to peak location overlap). The rationale behind
using ChIP scores instead of peaks was twofold: (i) we consider
peaks that are missed by peak calling algorithms and (ii) using ChIP
scores ensures that we also consider signal enrichment. The latter
is particularly relevant when estimating the number of bound
molecules.

The evaluation method used by ChIPanalyer is significantly
more stringent than methods used in other frameworks. When
confusion matrices are required for scoring (AUC, recall, F-score,
MCC, Accuracy, precision), ChIPanalyser uses 20 threshold values
bound between the lowest occupancy score (predicted or experi-
mental score) and the highest occupancy score (predicted or exper-
imental score). The threshold values are squared in order to ensure
a higher density of threshold values close to the lower end of occu-
pancy scores. For every threshold value, ChIPanalyser compares its
predicted profile to the experimental profile in 100 bp bins. If they
both contain a ‘‘signal”, we consider that ChIPanalyser has cor-
rectly predicted local ChIP enrichment. If ChIPanalyser predicts
ChIP enrichment when no experimental signal is present, we con-
sider this bin to be a false positive case. The same approach was
used for false negative cases (Experimental enrichment but no pre-
dicted enrichment) and true negative cases (No enrichment in
either experimental or predicted profiles). This approach ensures
that the model is penalised if it fails to predict peak enrichment
or conversely over estimates peak enrichment.

The optimal parameters inferred over training can be visualised
in the form of a heatmap describing the score associated to each
combination of k and N. Heatmaps are produced using the plotOpti-
malHeatMaps function. Finally, using the optimal set of parameters,
ChIPanalyser will produce ChIP like profiles that can be visualised
using the plotOccupancyProfiles function provided by the package.
3. Results

3.1. Evaluation of ChIPanalyser

Previously, we showed how statistical thermodynamics can be
used to mechanistically explain the binding of TFs in Drosophila
[13]. The optimal set of parameters (see Methods) was inferred
by maximising correlation and minimising Mean Squared Error
(MSE) between the predicted profile and experimental ChIP data.
Nevertheless, we observed that, in some cases, the predicted pro-
files and ChIP profiles display low correlation coefficient despite
the profiles looking similar and vice versa (e.g. see FigureS3A and
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S3B in Supplementary Figures). In some cases, selecting the optimal
parameters was hindered by little variation in correlation between
parameter combinations and, thus, the selection of these parame-
ters was exclusively driven by MSE (see FigureS3C in Supplemen-
tary Figures).

To reduce the potential influence of background noise, we
tested four noise removal methods: Zero, Mean, Median and Sig-
moid; see Methods. To test their performance, we used three CTCF
datasets (see TableS1 in Supplementary Tables): (i) a ChIP-chip
dataset with very little background noise (modEncode 2639), (ii)
a ChIP-seq dataset with high background noise (modEncode
3674) and (iii) a combination of all ChIP datasets in S2 cells (by
adding enrichment signals together at a base pair level). To ensure
equal contribution of each data set, we normalised the signal prior
to combining data sets. We ran the model on top ten regions (as
described in Methods) and searched for the optimal set of param-
eters (k and N) that optimised the goodness of fit metric (in this
instance – AUC). All four noise filtering methods have little to no
effect on ChIP data (see FigureS4 in Supplementary Figures). The
Sigmoid method showed a slight signal reduction in smaller peaks
(especially for noisy datasets), which was then translated into a
slight improvement of the mean Area Under Curve Receiver Oper-
ator Characteristic (AUC ROC) score between ChIP signal and our
predictions (see FigureS4 in Supplementary Figures). The distribu-
tion describes all AUC ROC scores for the ten regions used for this
analysis.

In addition to Pearson correlation and MSE, we tested several
goodness of fit metrics to verify the influence of the metrics on
our model as described in Methods and TableS2 in Supplementary
Tables. We used the same three CTCF datasets as described above
and observed the emergence of two classes within these metrics:
(i) similarity metrics that describe how similar the two curves
are (correlation coefficients, precision, MCC, Accuracy, F-score
and AUC ROC) and (ii) dissimilarity metrics that are a measure of
how different two curves are (MSE, geometric ratio, recall and Kol-
mogorov–Smirnov distance). Our results showed that depending
on the metric used, the optimal set of parameters varied signifi-
cantly, but each of the two classes (similarity and dissimilarity
metrics) displayed similar yet not identical values for the optimal
parameters (see Supplementary FigureS5 A–F).

Goodness of fit metrics influence the way the model selects
optimal parameters, but how does this translate to the individual
predicted ChIP profile level? We further investigated this beha-
viour at the individual loci using the same three CTCF datasets.
Fig. 2A-B shows that similarity metrics (black shades) tend to be
less prone to false positive peaks but miss the actual ChIP signal
strength within the peak (the height of the peak). On the other
hand, dissimilarity metrics (light blue shade) generate far more
false positives but accurately recover the height of the peaks.

Overall, the best performing metrics were AUC ROC and MSE.
AUC ROC occasionally missed peak enrichment completely how-
ever, seemed to recover peak location fairly accurately, while
MSE rarely missed peak enrichment but also produced a higher
number of false positive peaks. For much of the following analysis,
we used AUC ROC and MSE, since they are more widely used esti-
mators and performed best. More specifically, MSE was used as the
training metric to select the optimal set of parameters. AUC, recall,
Spearman correlation and MSE were used for validating model
performance.

To evaluate the performance of our model, we first used a chro-
mosome withholding set up. The model was trained on the top 10
regions (as described in Methods – performed on modEncode 922)
on chromosome 3R (Fig. 3A). We then validated our model using
two approaches: (i) on the top 10 regions found on chr2R
(Fig. 3B) and (ii) on the top 10 regions on chr3R excluding regions
used for training (Fig. 3C). Our results show that ChIPanalyser
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Fig. 2. Goodness of fit Methods are context dependent. (A) ChIPanalyser correctly predicts CTCF peaks in a clean ChIP dataset (modEncode 2639) for the majority of metrics
used. (B) For a noisier dataset (modEncode 3674), dissimilarity metrics capture the height of the peak but also tend to show a high rate of False Positive peaks. In contrast,
similarity metrics accurately predict the location of the peak, but tend to underestimate peak height. (C) Combining several ChIP replicates (all ChIP-seq datasets in S2 cells;
see TableS1 in Supplementary Materials) does not reduce the rate of False Positive peaks for similarity metrics. The red profile shows experimental ChIP peaks, while light
blue and dark blue are predicted profiles. Light blue and dark blue as dissimilarity and similarity metrics respectively. Associated scores are the scores for each profile when
that metric was used to select optimal parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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accurately recovers peak location and enrichment between chro-
mosomes (Fig. 3D–G).

In order to demonstrate that our model accurately recovers TF
bindingmechanisms, we also produced profiles in chr2R after train-
ing in chr3R but with the addition of PWM scores above threshold.
In Fig. 4, we show predicted profiles (red lines) compared to exper-
imental ChIP (dark blue) for BEAF-32 (A), CTCF (B) and su(Hw) (C).
The vertical lines represent strong PWM scores (top 20%, top 20%
and top 30% respectively). We observed that while some regions
displayed strong PWM scores, this was not necessarily accompa-
nied by experimental ChIP peaks. By using the statistical thermody-
namic model, we were able to recapitulate ChIP peaks more
accurately and thus demonstrating that ourmodel predicts TF bind-
ing with higher accuracy than PWM scores alone.
3594
Finally, we compared the performance of ChIPanalyser to other
TF binding prediction frameworks namely PIQ, msCENTIPEDE and
Catchitt (see Table 1). As many available tools and frameworks
are restricted to only considering human or mouse data, we
selected CTCF ChIP data in astrocyte cells (Homo sapiens) as pro-
vided by ENCODE (TableS1 in Supplementary Materials). This data-
set was also used in the DREAM challenge competition related to
TF binding prediction. It should be noted that neither PIQ nor
msCENTIPEDE have a validation step and, for this reason, we ran
both PIQ and msCENTIPEDE on both chr11 and chr18 of the human
genome (full chromosomes). Input BAM files were truncated using
samtools to only include these chromosomes. As PIQ and msCEN-
TIPEDE provided discrete TF binding sites, we smoothed scores
over 100 bp in order to keep the evaluation window consistent
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Fig. 4. ChIPanalyser models TF binding with higher accuracy than PWM scores alone. A-C show predicted ChIP-seq profiles for BEAF-32 (modEncode 922), CTCF
(modEncode 282) and su(Hw)(modEncode 330). After training the model on chr3R, we validated the model on chr2R. The vertical blue lines represent normalised PWM
scores for regions above threshold: 0.8 for BEAF-32 and CTCF and 0.7 for su(Hw). The red line represents our prediction while the dark blue region represent experimental
ChIP. Yellow areas are regions on inaccessible DNA. Despite exhibiting strong PWM scores, some regions are not bound by TFs according to ChIP data. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Tool and framework comparisonWe provide a breakdown of a few popular tools and frameworks for TF binding prediction. We assess the ease of use of each tool based on three
main factors: ease of installation (package manager), knowledge of underlying code (if it is required to make changes to the underlying code) and finally package support (support
and documentation).

ChIPanalyser Catchitt FactorNet Anchor PIQ msCENTIPEDE

Language R java python 2.7 python3.6/perl 5.1 R python 3.6
Organisms All* All Human Human All* Human
Training & Validation Yes Yes Yes Yes No No
Plotting Yes No No No No Limited
Support & Documentation Yes Yes No Incomplete Yes Yes
Knowledge of Underlying code No No Yes Yes No No
Package Manager Yes No No No No No
Availability Bioconductor GitHub GitHub GitHub bitbucket GitHub
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between all tools. Catchitt was trained on chr18 while ChIPanaly-
ser was trained on the top ten regions of chr18. We then validated
each tool on varying number of regions on chr11 (20, 50, 100, 200,
500, 1000 and 6755 bin of 20 Kb). ChIPanalyser outperforms all
other tools when the number of regions used for validation is
below 500 (see Fig. 5A–C). When using more than 500 regions
for validation, we observed that all tools performed similarly
poorly. This trend holds true when using AUC, recall and MSE as
goodness of fit metrics (although less clear with MSE). Further-
more, we trained all tools (when possible) on whole chr18 and val-
idated on whole chr11. This ensures that all tools were trained and
validated using the same data. We show that all tools perform sim-
ilarly poorly when using the ChIP enrichment method to estimate
goodness of fit (see Fig. 5D–F). While ChIPanalyser outperforms
other tools, this could also be due to the method used to assess
model performance (see Methods, Discussion and FigureS6).
Fig. 3. Chromosomewithholding setup for model validation.We analysed BEAF-32 Ch
chromosome 3R. Top regions were selected from the 3293 regions described inMaterials
and, for comparison, on top 10 regions on chromosome 3R that did not contain the train
profiles obtained on chromosome 3R. (C) are profiles obtained during validation on chrom
Spearman correlation, recall and MSE respectively.
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3.2. DNA accessibility plays a key role in the binding of TFs

Steric hindrance can influence the binding of some TFs to DNA,
meaning that a TF molecule would only bind stretches of DNA if
they are accessible. Any given genomic region can be considered
either accessible or inaccessible and that is sufficient to explain
the binding profiles of most TFs [13]. Here, we selected accessible
DNA based on DNase Hypersensitivity Sites (DHS) in three Droso-
phila cell lines (Kc167, S2 and BG3). In these circumstances, DNA
was either considered accessible (score of 1) or inaccessible (score
of 0). As a point of comparison, we also considered all DNA to be
accessible (No Access – all regions are assigned a score of 1) and
also used a min–max normalised DNase score as continuous DNA
accessibility level (values between 0 and 1). We focused our anal-
ysis on three TFs: CTCF, BEAF-32 and su(Hw). We trained our
model on the top 10 regions for each data set. Then, we validated
IP in S2 cells (modEncode 922) and we trained ChIPanlayser on the top 10 regions on
and Methods. We then validated our model on the top 20 regions on chromosome 2R
ing set. (A) shows example profiles obtained during training. (B) shows validation
osome 2R. Finally, (D–G) are the associated metrics for training and validation: AUC,



Fig. 5. Performance comparison to other TF binding predictions tools After training each model in their respective training set, we validated each tool using varying
number of validations regions. ChIPanalyser outperforms other tools when number of validation regions remains below 500. This demonstrates ChIPanalyser’s ability to
describe TF binding behaviour with respect to peak strength. (A) shows AUC scores between Catchitt, msCENTIPEDE, PIQ,and ChIPanalyser over the selected validation regions
in chr11 on Homo sapiens. (B and C) are respectively recall and MSE over validation regions for each tool. Finally, (D), (E), and (F) show the performance of all tools when
trained on whole chr18 and validated on whole chr11. It should be noted that these results were performed using the ChIP enrichment method (see Methods) and that this
approach considers both ChIP peak location as well as local peak enrichment.
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our results using the optimal parameters selected during training.
The optimal parameters were selected by minimising MSE
between experimental ChIP profiles and predicted ChIP profiles.
Validation was carried out on the top 100 regions for each dataset
(excluding the ones used for training). Fig. 6 shows that, for BEAF-
32, the binding predictions were improved when considering DNA
accessibility. Nevertheless, su(Hw) and CTCF displayed a different
behaviour, as the mean AUC decreased when DNA accessibility
was considered for most ChIP-seq datasets (Fig. 6A–B). This differ-
ence is especially striking in the case of su(Hw). The performance
of the model improves drastically when all DNA was considered
accessible or when we used continuous values for DNA accessibil-
ity. CTCF showed a similar trend although improvement was not as
striking as in the case of su(Hw). This would indicate that only a
small number of CTCF peaks are located in closed chromatin
regions that display intermediary levels of accessibility.

While DNA accessibility seems to play a role in the quality of
our predictions, we also observed that the number of bound mole-
cules (N) and scaling factor (k) show a reduced influence when
DNA accessibility is considered for CTCF (Fig. 6). In particular, we
observed less variation in MSE for different sets of parameters,
when DNA accessibility was included, i.e., larger circles indicate
that number of bound molecules and k have a more important role
in TF binding, while smaller circles indicate that they have a less
important role. This opposite trend is seen in the case of su(Hw)
where N and k show an increased influence when DNA accessibility
is considered. BEAF-32 on the other hand is negligibly influenced
by N and k independently of whether or not we consider DNA
accessibility. The rational behind this approach was that if different
combinations of parameters produce a strong difference in good-
ness of fit, then N and k play an important role in producing the
predicted profiles. On the other hand, if we observed low variation
in MSE, we could conclude that regardless of the values assigned to
these parameters, the predicted profiles would remain similar.
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To factor in for potential differences in the capacity of the model
to predict binding in regions with strong or weak ChIP signal, we
trained ChIPanalyser on the top 10 regions (see Methods) for each
data set and then selected the top 20, 50, 100, 150, 200, 500, 1000
and 3283 regions for validation (excluding regions used for train-
ing). We looked at how the median AUC scores (over all data sets)
changes when regions with weaker binding are included in the
analysis or when DNA accessibility is considered. For each number
of regions selected for validation and for each data set, we sub-
tracted the mean AUC score when no accessibility was considered
from the AUC score with DHS accessibility (Delta mean AUC). First,
we observed that CTCF exhibited a slightly lower AUC score when
DNA accessibility was considered (FigureS7A and D; see also Fig-
uresS8A–S11A in Supplementary Figures). The decrease in AUC
scores observed upon considering more regions (see FigureS8A in
Supplementary Figures) implies that CTCF binds preferentially to
genome hotspots. CTCF shows strong binding at only a subset of
binding sites. Interestingly, the same results for CTCF were found
in human data sets as described in Fig. 5A–C. In contrast to CTCF,
BEAF-32 displayed higher AUC scores when DNA accessibility
was included, supporting the previous findings (FigureS7B and E;
see also FiguresS8B–S11B in Supplementary Figures). BEAF-32
AUC scores were not affected by the increase in the number of
regions (FiguresS7B and E and FiguresS8B–S11B in Supplementary
Figures), which means that BEAF-32 binding is not influenced by
the number of regions selected. In other words, BEAF-32 would
bind anywhere along the genome as long as it has an accessible
site. In this context, we call BEAF-32 a global binder and CTCF a
hotspot TF.

Furthermore, Supplementary FigureS7C and S7F shows that
there is a strong and statistically significant (p < 0:05) reduction
in AUC score for su(Hw) when DNA accessibility is included, which
indicates that su(Hw) would bind in less accessible DNA (also Sup-
plementary FiguresS8C–S11C). While, su(Hw) did not generally



Fig. 6. DNA accessibility, number of molecules and binding energy have different roles in TF binding. We selected optimal parameters by minimising MSE over the
training set (see TableS3 in Supplementary Materials) and then computed the median AUC scores over the top 100 regions in the validation set. We considered different ChIP
replicates in S2, Kc167 and BG3 cells for: (A) CTCF, (B) su(Hw) and (C) BEAF-32. Darker colours indicate higher AUC scores, while lighter colours lower AUC scores. We also
investigated the influence of number of bound molecules and scaling factor on TF binding by computing the standard deviation of MSE scores for all combination of
parameters over the training set. Smaller circles indicate less variability in MSE when different parameters are used and larger circles more variability. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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perform well when DNA accessibility is considered, the perfor-
mance of our model to predict su(Hw) binding is also tied to the
number of regions selected and our results show that the strongest
su(Hw) binding sites are found within inaccessible DNA. As the
model uses experimental ChIP data for training, these results sug-
gest that many su(Hw) peaks are located in inaccessible DNA.

3.3. Number of bound molecules and TF specificity plays a limited role
in the binding of architectural proteins.

To investigate the robustness of our estimated parameters, we
computed the optimal parameters for different biological repli-
cates. Despite strong variations between experimental data, we
show that the predicted optimal set of parameters when using
MSE remained similar between biological replicates (see Fig. 7).
This suggests that despite biological and technical variation
between replicates performed by different labs using different pro-
tocols, our model robustly infers a similar number of bound mole-
cules and scaling factor for a given TF. Note the consistency
between optimal parameters of different ChIP dataset despite
some of the ChIP being performed in RNAi mutants (not more than
one sample per TF and cell), which could be explained by the fact
that TFs are not strongly depleted.

The importance of method selection is clearly shown when con-
sidering other metrics, where MSE produces most clear heatmaps
compared to AUC, Recall or Spearman correlation (see Fig-
uresS12–S14 in Supplementary Figures). The optimal parameters
3598
estimated over the training set can be found in TableS3, TableS4,
TableS5 and TableS6 in Supplementary Tables for MSE, AUC, recall
and Spearman correlation coefficient.

To investigate the influence of these parameters, we assumed
that a high variation of goodness of fit score for each combination
of parameters would suggest a strong influence of these parame-
ters on TF binding. If goodness of fit scores varied little between
parameter combinations, we can then conclude that they do not
strongly influence our predicted profiles. We then analysed the
standard deviation of MSE over training between different sets of
parameters and we found that some TFs are not strongly influ-
enced by the number of bound molecules or the scaling factor (de-
scribed by circle size in Fig. 6).

CTCF showed a slight decrease in sensitivity to number of
bound molecules and the scaling factor when accessibility was
considered (Fig. 6A), while, for BEAF-32, N and k showed reduced
influence on the binding profile (Fig. 6C). In contrast to CTCF, su
(Hw) displayed an increased sensitivity to N and k only when
DNA accessibility was considered (Fig. 6B). This means that DNA
accessibility would be the strongest driver towards predicting TF
binding of these architectural proteins. Restricting the amount of
available binding motifs would be more influential than the num-
ber of TFs and the ability of a TF to discriminate between high and
low affinity sites. Interestingly, this still holds in the case of su
(Hw); we show that su(Hw) binding sites are most likely found
in less accessible DNA. Our results suggest that relative TF abun-
dance only play a role on binding sites found in accessible DNA.
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Fig. 7. Optimal parameters consistency among biological replicates for MSE using DHS accessibility. Heatmaps show an overlay of the top 10 % combinations of
parameters when minimising MSE for: (A–C) CTCF, (D–F) BEAF-32 and (G–I) su(Hw). We plot the following cell lines: (A, D and G) BG3, (B, E andH) Kc167 and (C, F and I) BG3.
The colour legend represents the proportion of data sets inferring each parameter combinations. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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3.4. ChIPanalyser recapitulates TF binding profiles in different cell lines
by considering relative mRNA abundance.

We wanted to further investigate the predictive capabilities of
our model and also demonstrate its mechanistic soundness for
CTCF, BEAF-32 and su(Hw) in the three selected cell lines. For that,
we estimated the optimal set of parameters in one cell line and
aimed to predict TF binding in a different cell line taking into
account changes in DNA accessibility using DHS data and changes
in number of boundmolecules using relative changes in RNA abun-
dance. For example, we estimated the optimal set of parameters for
CTCF in Kc167 cells (GSM762842) that would minimise MSE as
3599
k ¼ 1:5 and N ¼ 104 over the top 10 regions (see Methods). By
rescaling N based on relative RNA-seq levels of CTCF in the two cell
lines, we could approximate the number of CTCF molecules bound
to DNA in BG3 cells (N � 1:6� 104). This togetherwith BG3-specific
DNA accessibility data is capable of predicting the ChIP-seq profile
in BG3 cells (see Fig. 8A and B – modEncode 282). RNA rescaling of
the number of bound molecules seems to recover both the number
of peaks and their location with high accuracy. The rescaling of
number of bound molecules lead to differences in terms of MSE
variation between estimated and rescaled (Fig. 8G).

The estimated MSE (MSE over the training set) in one cell line is
lower than its counter parts in the other cell line. However, we



Fig. 8. TF abundance remains stable between different cell lines when considering relative mRNA abundance. A–F show predicted ChIP-seq profiles with TF abundance
estimated based on RNA-seq. The yellow area represents inaccessible DNA, the dark area represents experimental ChIP signal and the red lines are our predicted profiles. We
estimated the number of boundmolecules in one cell line (A, C and E) (GSM762842, modEncode 921,GSM762839 respectively) and rescaled our estimate using relative mRNA
abundance in an other cell line (B, D and F) (modEncode 282, modEncode 922, modEncode 331 respectively). (B, D and F) The dashed red line represents the rescaled value of
number of bound molecules based on relative RNA-seq abundance, the light blue the original value estimated in (A, C and E).The purple line and the green line represent the
original estimated value reduced 10 and 100 times respectively. (G, H and I) Boxplots with MSE for all cases in the estimated and predicted profiles at top 10 regions for both
training and validation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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attribute this change to differences quality and nature of peaks/sig-
nal between cell lines. Here we assume that more narrow peaks
and less spurious binding events represent higher quality data.
Nevertheless, depending on the biological question, the data qual-
ity assessment can vary. This is especially striking in Fig. 8 A, B, E,
and F. ChIP peaks in the training cell line (see Fig. 8A and E) display
sharper peaks and much less background signal then ChIP peaks in
the validation cell line (see Fig. 8B and F). As described in Methods,
ChIPanalyser estimates goodness of fit using ChIP enrichment
scores and therefore is sensitive to background signal and/or wider
than expected peaks. The same analysis was performed for BEAF-
32 (Fig. 8C, D and H - modEncode 921 & modEncode 922), where
we estimated parameters in BG3 cells (k ¼ 2:5 and N ¼ 2� 104)
and rescaled the number of molecules in S2 cells (N � 1:2� 104).
Once again, the model correctly predicts ChIP profiles in both loca-
tion and relative enrichment. Finally, for su(Hw) (Fig. 8E, F and I –
GSM762839 &modEncode 331) we estimated parameters in Kc167
cells (k ¼ 1:25 and N ¼ 104) and rescaled the number of molecules
in S2 cells (N � 6� 103). Again, the predictions of the model are
accurate.

Our results show that ChIPanalyser can accurately recapitulate
ChIP profiles between cell lines using cell specific DNA accessibility
data and number of bound molecules. Nevertheless, we still do not
know which of the two is the more important factor or whether
both have similar contributions. To address this, we also assumed
that in the predicted profile that there is (i) no change (same num-
ber of bound molecules is used in both cells), (ii) a 10-fold reduc-
tion and (iii) one 100 fold reduction in the number of bound
molecules and repeated the analysis. Fig. 8 shows that using the
same TF abundance as in the original cell line produces extremely
3600
similar ChIP like profiles. In fact, we observed a significant reduc-
tion in the predicted profile only when reducing the number of
bound molecules by 100 (for su(Hw)) or 10 (for CTCF and BEAF-
32) fold. These results show that cell differences in binding profiles
of TFs, at their strong binding regions, would mainly come from dif-
ferences in DNA accessibility and not relatively small changes in TF
abundance. The only way that TF abundance could impact the
binding profile (and, consequently, lead to changes in gene regula-
tion) is when the expression of the TF is strongly down-regulated.

3.5. Hox genes show differential binding preferences with respect to
DNA accessibility.

Hox proteins are key players during development. Recently it
has been suggested that Hox proteins show different binding pref-
erences with respect to DNA accessibility [41]. Most notably, Ubx
and Abd-A would bind predominately in open chromatin, while
other Hox TF (Lab, Pg, Dfd, Scr and Abd-B) would prefer closed
chromatin. We selected three Hox TFs (Ubx, Dfd and Abd-B) and
ran our model using different levels of DNA accessibility. DNA
accessibility levels were selected based on quantile distribution
of ATAC-seq scores (see Methods). This means that higher QDA
scores lead to fewer regions being marked as accessible.

We trained our model on the top ten regions selected from the
3838 selected for the Hox analysis (see Methods) for each QDA
accessibility. Our results show that Ubx exhibits a preference
towards open chromatin. In Fig. 9A, the maximum AUC score for
Ubx increases with the increase of the QDA score. Dfd and Abd-B
on the other hand were not strongly influenced by QDA accessibil-
ity. This means that these TFs can bind in inaccessible DNA.
According to our model, Ubx performed best with 0.99 QDA (top
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1% ATAC-seq scores – AUC 0.928), while Abd-B and Dfd with 0.95
QDA (top 5% ATAC-seq scores) and 0.8 QDA (top 20% ATAC-seq
scores) respectively (see Fig. 9B). It should be noted that these
scores are on the training set as the goal was to understand how
QDA would effect the training of our model. We then validated
our model on the top 100 regions (excluding the ones used for
training) using the optimal set of parameters inferred during train-
ing and plotted the predicted profiles for Hox TF (see Fig. 9).

The model recovers the position of peaks accurately especially
for Ubx (see Fig. 9C–E). While for Dfd and Abd-B most of the peaks
are detected, their height is not always an accurate representation
of the strength of the ChIP-seq signal. Hox TFs are known to display
cooperative interactions and there are reports that both Dfd and
Abd-B have a higher number of sites in the bound peaks, suggest-
ing they bind cooperatively to open the chromatin [41]. Our model
does not include cooperative interactions and this could explain
the reduced performance for Dfd and Abd-B. Furthermore, TF bind-
ing event can also be mediate by protein–protein interactions and
post-translational modifications [43], which are not consider in our
model.
4. Discussion

Our analysis shows that ChIPanalyser and its underlying model
predicts binding profiles of TFs (ChIP) with high accuracy and most
importantly it can also shed light on the binding mechanism of TFs.
We show how ChIPanalyser not only predicts location of peaks, but
can correctly predict the enrichment of a TF at a given location.
4.1. TFs used different binding mechanisms

In this analysis, we focused our attention on three DNA binding
proteins: CTCF, BEAF-32 and su(Hw). All three TFs are known
architectural proteins in Drosophila but also play roles in transcrip-
tion regulation and insulation [44,45]. Moreover, it was shown that
these three TFs have distinct binding behaviours and were classi-
fied into three subclasses with respect to chromatin architecture
[46,47]. In our analysis we show that they all exhibit different
behaviours with respect to DNA binding.

Our findings suggest that CTCF binds to hotspots along the gen-
ome and this could be explained by the observation that the stron-
gest peaks are in fact highly conserved binding sites. CTCF binding
to highly conserved sites can be explained by our model, but some-
thing else is responsible for the reduced binding at less conserved
sites (i.e. cell specific CTCF binding) as seen by the decay in perfor-
mance with increased number of regions used for validation [48].

BEAF-32 is a Drosophila specific insulator [49] that shows pref-
erential binding towards TAD boundaries, but also is involved in
transcription itself [50]. Previous studies showed that BEAF-32
has uniform binding along the entire genome [46]. Our results con-
firm that BEAF-32 shows a strong preference towards accessible
DNA and that the majority of accessible sites would be bound.
We notice a drop in model performance when all regions are used
to validated the model, but this is likely due to an increase in false
positive peaks as those many regions will not contain any peaks at
all.

Furthermore, we show that su(Hw) binds in both open and
closed chromatin. su(Hw) plays a role in chromatin insulation
and remodelling [51] and is also a primary actor in the interaction
between the genome and nuclear lamina [52]. This would explain
why su(Hw) can bind in both open and closed chromatin and why
ChIP peaks might not overlap well with DNase hypersensitivity
data. It has also been shown that su(Hw) binding sites tend to clus-
ter together (with varying number of sites) and that these sites are
constitutively bound by su(Hw) [53]. Interestingly, it seems that
3602
only isolated high affinity sites had a role in transcriptional regula-
tion and the clustered sites were more involved in chromatin
architecture.

4.2. DNA accessibility is the main driver of binding to DNA for
architectural TFs and Hox TFs

Our results show that DNA accessibility and number of bound
molecules control the binding profiles of TFs (Fig. 6). When we esti-
mated the binding parameters (k and N) in one cell line and then
predicted TF binding profiles in a different cell line based on
changes in DNA accessibility and number of TF molecules (using
changes in mRNA), we found a good agreement between our pre-
dictions and the actual ChIP-seq dataset (see Fig. 8). Nevertheless,
the changes in number of TF molecules between the two cell lines
did not seem to make any difference to the predicted profiles (com-
pare blue and dashed red line in Fig. 8B, D and F). This means that
biologically relevant fluctuations in TF numbers between different
cell lines would have little effect on the differences in binding pro-
files of TFs, which would be mainly driven by changes in DNA
accessibility. Furthermore, only very strong knock-downs would
decrease or deplete ChIP peaks. It should be noted that CTCF,
BEAF-32 and su(Hw) are highly expressed architectural and insula-
tor proteins and, thus, they would be expected to saturate their
binding sites. Interestingly, only strong depletion (undetectable
by western blot) of CTCF in mammalian cells (using Auxin Induci-
ble Degradation) was able to lead to noticeable changes in 3D chro-
matin loops controlled by CTCF [54]. It should be noted that our
analysis focused on the regions displaying strongest binding,
which means that strong depletion is required for the binding of
these TFs at their strongest sites to be affected.

While our model and current results do not demonstrate a
strong role of TF abundance (as in TF concentration) in the binding
of these TFs, this does not mean that concentration as well as bind-
ing site affinity does not a play a role in TF binding. Indeed, concen-
tration fluctuation have been shown to play a role in gene
expression during embryonic development in Drosophila [55,56].
More recently, studies have demonstrated the role of TF concentra-
tion by direct measurement of TF concentration instead of relying
on mRNA abundance as a TF concentration proxy [57]. Modelling of
TF binding by considering TF concentration and binding kinetics
have been described by [58,7]. Changes in concentration is
expected to change the binding affinity of TFs only if the concen-
tration is within a certain range. Indeed, the Kd (dissociation con-
stant) of TF buffers binding events if the concentration is below a
certain threshold and sites will be oversaturated above a certain
TF concentration (reviewed in [59]). Furthermore, it has been sug-
gested that DNase I footprinting can display sequence specificity
depending on experimental conditions. This would influence the
location of open chromatin and in turn influence the performance
of our model [60].

Why would changes in concentration of the TF have such a lim-
ited effect on their binding? One potential explanation is that these
TFs control the expression of essential genes that should be tightly
regulated to buffer fluctuations in number of molecules that affect
the cell [61].

Finally, we also investigate the capacity of our model to differ-
entiate between TFs that can bind only in open chromatin or also
partially opened chromatin. Our results showed that while Ubx
displays a strong sensitivity to open chromatin and binds in the
top 1% accessible sites, the binding of Abd-B and Dfd is less influ-
enced by DNA accessibility (with Abd-B and Dfd binding in top
5% and 20% respectively accessible regions); see Fig. 9. Hox TFs
are known for having a similar motif, but display differences in
their binding profiles [62]. It was hypothesised that binding coop-
erativity could explain the difference in binding profiles coupled
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with protein sequence changes [63]. Here, we showed that differ-
ential capacity to bind in dense chromatin could also be responsi-
ble for the difference in binding profiles of Hox TFs (see Fig. 9).

4.3. Background noise and experimental artefacts remain a challenge
in TF binding predictions

We found that many ChIP datasets suffer from significant back-
ground noise that would reduce our ability to accurately assess the
goodness of fit of the model. Despite our approaches to reduce
background noise, it seems that ChIP data will always suffer from
unspecific DNA pull-down [64]. It should be noted that more
recent methods such as ChIP-exo or Cut‘n‘Run demonstrate shar-
per peaks and reduced background noise. Using these newer meth-
ods could reduce the influence of background noise on the
performance of the model [65,66]. Finally, differences in data sets
could be the consequence of these data sets being produced by dif-
ferent laboratories with potentially different protocols. However,
we demonstrate that ChIPanalyser produces similar results
between data sets for a given TF in a given cell line.

Another possibility is that the noise in ChIP signal could be the
result of unspecific binding of TFs to DNA followed by one-
dimensional random walk along the genome [67,68]. Nevertheless,
the washing steps in the ChIP protocol would remove this non-
specific binding from the final ChIP signal [2].

We showed that choosing a goodness of fit method is context
dependent. Interestingly, similarity methods (correlation, F-score
or AUC) had the tendency to correctly call peak location but greatly
underestimate the enrichment on the peak (see Fig. 2). This beha-
viour results from the fact that these methods are highly penalised
by false positive hits. The scaling factor can be described as how
well a TF discriminates between a strong binding site over a
weaker one. High values for the scaling factor translate to poorer
ability for the TFs to discriminate between high and low affinity
sites, which leads both to a higher number of false positive peaks
and the model picking up smaller peaks. The number of bound
molecules on the other hand, tend to affect the height of the peak
(relative local enrichment). Similarity methods would avoid high
values for N and k as this would penalise their goodness of fit score
more severely as opposed to dissimilarity methods (see Fig. 2).

Choosing the right method will depend on the question at hand
and similarity methods could be used to determine peak location,
while dissimilarity metrics would be more appropriate to investi-
gate the TF local enrichment.

4.4. ChIP enrichment scores provide a highly stringent method to
assess model performance

ChIPanalyser evaluates goodness of fit using ChIP enrichment
scores (see Methods). This ensures that the model considers peak
enrichment during the optimisation step (both location and height
of the peak). Competing tools generally assess model performance
by overlapping predicted TF binding sites with ChIP peaks and do
not explicitly account for peak enrichment (they assume that there
is very little difference between a strong and a weak ChIP peak).
While we recognise that our scoring method is best suited for TF
binding events described both by peak location and peak enrich-
ment, we selected this approach as ChIPanalyser describes a mech-
anistic interpretation of TF binding.

When comparing ChIPanalyser to other frameworks, we
observed that all tools performed poorly when trained and vali-
dated on a full chromosomes. When ChIPanalyser was trained on
the top 10 regions of chr18 and validated on varying number of
regions in chr11, it outperforms other tools and frameworks if
the number of validation regions did not exceed 500. The rational
to train ChIPanalyser on top 10 regions is to ensure a balance
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between True Positive and True Negative signals, which results in
a more effective parameter inference. Many regions along the gen-
ome might not contain any ChIP signal and this lack of signal will
affect the profiles produced by ChIPanalyser and result in a drop in
performance for our model (increase in False positive).

Finally, the goal of ChIPanalyser is not only to predict TF binding
events but also shed light on the mechanisms driving TF binding. In
the case of CTCF in human astrocytes (as used in the comparison
with other tools), ChIPanalyser showed a decay in performance
after 500 regions used for validation (see Fig. 5A–C). PIQ, msCen-
tipede and Catchitt did not display such a clear behaviour. Interest-
ingly, we observed a similar effect for CTCF in Drosophila. Our
results suggest that CTCF binds to highly conserved sites [48]
and this holds true in different organisms. Most importantly,
ChIPanalyser was able to recapitulate this behaviour.
5. Conclusion

ChIPanalyser is a user-friendly R package available on Biocon-
ductor for predicting the binding of Transcription Factors to DNA.
The package performs similarly if not better than competing tools
and frameworks. More importantly, the model also provides an
insight into the binding mechanisms of various DNA binding pro-
teins. We show the nuanced role of DNA accessibility in the bind-
ing of three architectural proteins CTCF, BEAF-32 and su(Hw) in
Drosophila. Furthermore, we demonstrate that architectural pro-
teins are robust to relative changes in protein abundance. Finally,
we recover the binding preferences of Hox TFs with respect to
chromatin compaction. ChIPanlyser provides both predictive and
biological modelling capabilities.
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