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A B S T R A C T

Background: Commonly used neuroimaging biomarkers in Parkinson's disease (PD) are useful for diagnosis but poor at predicting outcomes. We explored whether an
atrophy pattern from whole-brain structural MRI, measured in the drug-naïve early stage, could predict PD prognosis.
Methods: 362 de novo PD patients with T1-weighted MRI (n=222 for the main analysis, 140 for the validation analysis) were recruited from the Parkinson's
Progression Markers Initiative (PPMI). We investigated a previously identified PD-specific network atrophy pattern as a potential biomarker of disease severity and
prognosis. Progression trajectories of motor function (MDS-UPDRS-part III), cognition (Montreal Cognitive Assessment (MoCA)), and a global composite outcome
measure were compared between atrophy tertiles using mixed effect models. The prognostic value of the MRI atrophy measure was compared with 123I ioflupane
single photon emission computed tomography, the postural-instability-gait-disturbance score, and cerebrospinal fluid markers.
Findings: After 4.5 years follow-up, PD-specific atrophy network score at baseline significantly predicted change in UPDRS-part III (r=−0.197, p= .003), MoCA
(r=0.253, p= .0002) and global composite outcome (r=−0.249, p= .0002). Compared with the 3rd tertile (i.e. least atrophy), the tertile with the highest
baseline atrophy (i.e. the 1st tertile) had a 3-point annual faster progression in UPDRS-part III (p= .012), faster worsening of posture-instability gait scores (+0.21
further annual increase, p < .0001), faster decline in MoCA (−0.74 further annual decline in MoCA, p= .0372) and a+ 0.38 (p= .0029) faster annual increase in
the global composite z-score. All findings were replicated in a validation analysis using 1.5T MRI. Receiver operating characteristic analysis confirmed the superiority
of the MRI biomarker, although it had modest AUC values (0.63). By comparison, the other biomarkers were limited in their ability to predict prognosis either in the
main or validation analysis.
Interpretation: A PD-specific network atrophy pattern predicts progression of motor, cognitive, and global outcome in PD, and is a better predictor of prognosis than
any of the other tested biomarkers. Therefore, it has potential as a prognostic biomarker for clinical trials of early PD.

1. Introduction

Parkinson's disease (PD) is a complex neurodegenerative disorder
with a broad range of motor and non-motor features. It is notably
heterogeneous, varying considerably in its clinical manifestations and
prognosis (Kalia and Lang, 2015). This represents an important con-
found in clinical trials against PD. Therefore, prognostic biological
markers are urgently needed to stratify and monitor patients for clinical
trials. Most described markers of prognosis are based on clinical mea-
sures (e.g. the postural instability and gait disturbance (PIGD) score)
(Stebbins et al., 2013), while biomarkers including cerebrospinal fluid
(CSF) measures, gene mutations, and nigrostriatal dopamine tracers
have not performed well as predictors of prognosis (Mehta and Adler,
2016).

Neuroimaging techniques have particular potential as prognostic
markers, since they directly measure brain morphological and func-
tional changes (Tuite, 2016). Positron emission tomography (PET) and
single-photon emission CT (SPECT) (e.g. with the DAT tracer 123I io-
flupane) can directly identify nigrostriatal neurodegeneration (even
years before the motor signs of PD appear) (Mehta and Adler, 2016),
qualifying them as valid diagnostic biomarkers. Nevertheless, while
they have been validated as diagnostic tests, it remains unclear to what
degree dopaminergic imaging techniques can predict PD progression.

Because of magnetic resonance imaging (MRI)’s broad availability
and standardized acquisition parameters, any MRI biomarker of prog-
nosis would have potential for widespread application. Although rou-
tine clinical MRI scans are classically considered as normal in PD, re-
cent methodological improvements may make MRI prognostic markers
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feasible (Tuite, 2016). However, there is currently no accepted MRI
prognostic biomarker for PD (Delenclos et al., 2016). Using high re-
solution 3T MRI data from the Parkinson's Progression Markers In-
itiative (PPMI) (Marek et al., 2011), we previously introduced an MRI-
based whole-brain atrophy measure that was strongly associated with
disease severity at baseline (Zeighami et al., 2015). In the current study,
we investigated whether this PD-network atrophy pattern could predict
the rate of progression of motor and non-motor symptoms. Second, we
compared the predictive power of the MRI-based biomarker with other
potential predictors, including motor examination, postural/gait mea-
sures, CSF measures, and SPECT. Third, we measured the rate of change
of the MRI biomarker in longitudinal MRI scans from PPMI. Finally, we
replicated our analysis in a separate validation set of the PPMI popu-
lation scanned with 1.5T MRI.

2. Methods

2.1. Participants

PD patients with age≥ 30, a diagnosis of PD within the last 2 years,
a baseline Hoehn and Yahr stage of I or II, and no anticipated need for
symptomatic treatment within six months of entry were recruited by
the Parkinson's Progression Markers Initiative (PPMI) (see: http://
www.ppmi-info.org), a multicenter international study of de novo in-
dividuals with early idiopathic PD (Marek et al., 2011). Selection cri-
teria included asymmetric resting tremor or asymmetric bradykinesia
or two of bradykinesia, resting tremor and rigidity, plus confirmation of
a dopaminergic deficit using dopamine transporter imaging (see
below). For the current study, we also excluded any participant with
less than one year of follow-up or no MRI available. Therefore, 362 de
novo treatment-naive PD patients were included. Of these, 222 had 3T
MRI and 140 had 1.5T MRI.

The relevant local institutional review boards approved the PPMI
protocol and written informed consent was obtained from all partici-
pants prior to inclusion. We retrieved data from the PPMI database in
October 2017 in compliance with the PPMI data use agreement. The
average follow-up period was 4.5 years.

2.2. Brain imaging analysis

High resolution T1-weighted 3T MRI was available in 232 PD as
well as 117 healthy age-matched control (HC) participants at baseline.
Deformation-based morphometry (DBM) was used as a measure of
brain atrophy. The analysis was performed as explained previously
(Zeighami et al., 2015). Each participant's MRI was first linearly and
then nonlinearly registered to the Montreal Neurological Institute
(MNI) ICBM-152 template (Fonov et al., 2009). The nonlinear

transformations were used to calculate the Jacobian determinant of the
deformation matrix at each voxel for each participant, to yield in-
dividual DBM or atrophy maps. We then performed independent com-
ponent analysis (ICA) on the DBM maps (Smith et al., 2004) to identify
PD-specific atrophy distribution in early PD (Fig. 1).

The PD-related atrophy score was calculated as a single numerical
indicator of atrophy for each participant, and is referred to here as the
PD-network atrophy score. The atrophy scores were transformed into z-
scores (lower values represent more severe atrophy). For the long-
itudinal analysis of brain morphometry, all T1-weighted MRIs for
subjects with up to 4-years follow up (average of 2.2 years follow up)
were included. This data includes 222 PD patients at baseline, 142 at
year-1, 127 at year-2, and 84 at year-4 (Subjects were not scanned at
year-3 based on data downloaded in May 2018). Healthy control sub-
jects included 112 subjects at baseline, 64 at year-1, and 20 at year-4.
The drop from 232 PD to 222 and 117 HC to 112 is due to lack of follow
up information in other domains needed for statistical analysis. All
procedures were repeated as explained for baseline analysis.

Furthermore, to validate our results in an out-of-sample set of par-
ticipants, we computed individual DBM maps in a validation set of 140
different PPMI PD participants who had undergone T1-weighted MRI at
1.5T. The atrophy pattern identified in the 3T sample (Zeighami et al.,
2015) was then applied to the DBM images of the 1.5T data to calculate
the atrophy score within this validation sample. To do so, for each in-
dividual in the 1.5T independent sample, we multiplied the DBM value
at each voxel by the PD-network atrophy score from the same voxel. We
averaged these values to obtain a weighted atrophy score for each in-
dividual. Due to lack of follow up for subjects with 1.5TT1-weighted
MRI imaging, longitudinal neuroimaging analyses are limited to the 3T
dataset.

2.3. Baseline and follow-up clinical assessments

Demographic characteristics including age, sex, race, family history,
duration of symptoms, and education level were recorded at the
screening visit. A comprehensive set of clinical features including both
motor and non-motor signs and symptoms was evaluated at baseline
and each follow-up visit. Motor-related measures consist of Movement
Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-
UPDRS)-Part II, MDS-UPDRS-Part III, PIGD score (Stebbins et al., 2013),
and Schwab and England activities of daily living (ADL) score. The non-
motor symptoms and signs used here are non-motor experiences of
daily living (MDS-UPDRS-Part I), autonomic dysfunction [the Scales for
Outcomes in PD-Autonomic (SCOPA-AUT) total score] (Visser et al.,
2004), depression [Geriatric Depression Scale (GDS) score] (Yesavage
and Sheikh, 1986), anxiety [State-Trait Anxiety Inventory (STAI) score]
(Spielberger et al., 1983), REM sleep behaviour disorder (RBD) [RBD

Fig. 1. Deformation-based morphometry (DBM) maps of the Parkinson's disease (PD)-specific network showing significant differences in atrophy between PD
individuals and healthy controls (p= .003 after Bonferroni correction for multiple comparison). The independent component analysis (ICA) spatial map was con-
verted to a z-statistic image via a normalized mixture–model fit and then thresholded at z= 3. Selected sections in Montreal Neurological Institute (MNI) space at
coordinates Z=−10, X=−6, Y=+14) (From: Zeighami et al., 2015).
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screening questionnaire (RBDSQ) score] (Stiasny-Kolster et al., 2007),
sleep disturbances [Epworth Sleepiness Score (ESS)](Johns, 1991) and
impulse control disorders (ICD) [Questionnaire for Impulsive-Compul-
sive Disorders in Parkinson's disease (QUIP) score](Weintraub et al.,
2009) and global cognition [age and education adjusted Montreal
Cognitive Assessment (MoCA) score] (Nasreddine et al., 2005).

We also created a global composite outcome (GCO) score as a single
numeric indicator of overall disease severity, as previously described
(Fereshtehnejad et al., 2015; Fereshtehnejad et al., 2017). This was
standardized by combining the z-scores of the most clinically relevant
motor and non-motor manifestations of disease progression, namely
non-motor symptoms (MDS-UPDRS-Part I), motor symptoms (MDS-
UPDRS-Part II), motor signs (MDS-UPDRS-Part III), overall activities of
daily living (Schwab and England ADL), and global cognitive function
(MoCA). For calculating follow-up z-scores we applied the mean and
standard deviation (SD) from baseline as the reference state to measure
progression over time. The GCO was calculated by averaging these z-
scores at baseline and at the most recent follow-up visit for each par-
ticipant. Higher GCO scores indicate worse overall function
(Fereshtehnejad et al., 2017).

2.4. Clinical subtypes

We recently recommended a guideline for subtyping de novo PD
participants based on clinical features (Fereshtehnejad et al., 2017), in
which three distinct subtypes of PD were defined (‘mild motor pre-
dominant’, ‘diffuse malignant’, and ‘intermediate’) based on the com-
bination of a composite motor severity score, RBD, dysautonomia, and
cognitive impairment. To investigate the ability of the PD-network
atrophy to predict a change in clinical subtype category, we re-
calculated the subtype assignments after 4.5 years follow-up using the
updated reference percentile values at that specific time-point derived
from the score distributions of these motor and non-motor features in
the entire PPMI population. Furthermore, we defined tremor-dominant,
intermediate and PIGD motor phenotypes (as described previously)
(Stebbins et al., 2013) at baseline and investigated the association be-
tween baseline PD-network atrophy score and the shift in motor phe-
notypes after follow-up.

2.5. Other potential predictive biomarkers

Cerebrospinal fluid (CSF) was collected for all participants at
baseline. CSF amyloid-beta (Aβ1–42), total Tau (T-tau), and phos-
phorylated tau (P-tau181) were measured by INNO-BIA AlzBio3 im-
munoassay (Innogenetics Inc.) and α-synuclein was measured by en-
zyme-linked immunosorbent assay (Kang et al., 2013). We calculated
the CSF Aβ42/T-tau ratio as recommended in a recent publication
(Kang et al., 2016).

SPECT with the DAT tracer 123I ioflupane was obtained in 351
participants with PD both at baseline and after two years (Marek et al.,
2011). Using the occipital lobe as a reference region, striatal binding
ratio (SBR) was calculated for the left and right caudate and putamen
separately in each individual.

2.6. Statistical methods

All relevant data available through the PPMI website were used.
Missing values (< 4%) were imputed by using the mean value for the
entire cohort. Univariate correlation between the baseline PD-network
atrophy score and clinical measures was investigated using Pearson
correlation. We used Bonferroni correction to adjust for type I error
inflation induced by multiple comparisons. Multivariate linear regres-
sion was performed to regress out the effect of age on the associations
between PD-network atrophy score and clinical measures. We applied
receiver operating characteristic (ROC) curve analysis to compare the
accuracy of various biomarkers at baseline to predict a 0.5 SD increase

in GCO after 4.5 years of follow-up. The threshold of 0.5 SD was chosen
to include a reasonable number of participants who experienced a more
rapid (almost double) progression rate (3 Tesla dataset: n=43 out of
222; 1.5 Tesla dataset: n=33 out of 140). For this purpose, we have
used 10-fold cross validation within and between cohorts and reported
area under the curve (AUC) for each biomarker.

The population was divided into tertiles of PD-network atrophy
score -and other biomarkers- to test the a-priori hypothesis that parti-
cipants with mild, moderate and severe atrophy at baseline would
progress differently over time. We chose to divide the cohort into three
for this purpose based on our previous hierarchical clustering analysis
of this dataset (Fereshtehnejad et al., 2017). We then applied mixed
effect models to compare the longitudinal trajectories of clinical out-
comes and their interaction with age between the three subgroups de-
fined by the baseline level of the biomarker of interest. We used a se-
parate model for each clinical outcome (i.e. UPDRS-III, MoCA, GCO,
and PIGD score). In each model we included clinical outcome, age, their
interaction, as well as sex and education as fixed effects and subject as a
random effect (Eq. (1)).

+ + + + +
+

~
( | )

Outcome 1 sex age education biomarker group age

biomarker group 1 subj (1)

For the longitudinal brain imaging analysis, the PD atrophy score
was calculated for all PD and HC subjects for each visit. We then used a
mixed effect model to investigate the interaction between aging and
disease status (Cohort= PD or HC).

+ + + + +
+

~
( | )

atrophy score 1 sex education age cohort age

cohort 1 subj

Furthermore, to investigate the effect of baseline atrophy in the PD
group on the longitudinal changes of the atrophy score, we used the
same model to investigate other longitudinal outcomes with baseline
tertiles within the PD cohort.

+ + + +
+ +

~
( | )

atrophy score 1 sex education age atrophy score

groups age atrophy score groups 1 subject

All models were implemented in MATLAB 2015b using the fitlme
function. Other univariate and multivariate analyses were performed
using IBM SPSS Statistics software (version 23.0) and R version 3.2.2. A
two-tailed p-value of< 0.05 was considered as the threshold for sta-
tistically significant differences or associations in all analyses unless
otherwise specified.

3. Results

3T MRI data were available for 232 individuals of the PPMI popu-
lation at baseline, of whom 222 subjects had at least one year of follow-
up data. Table 1 summarizes demographic and clinical characteristics of
the study population including both main and validation cohorts at
baseline and after 4.5 years.

3.1. Longitudinal progression and trajectories of clinical features

The baseline PD-network atrophy score showed significant asso-
ciation with all measures of progression at 54 (± 12) months, in-
cluding the GCO (r=−0.25, p= .0002, Fig. 2), motor dysfunction on
UPDRS-parts II-III (r=−0.20, p= .0027), PIGD score (r=−0.24,
p= .0004), non-motor manifestations on UPDRS-part I (r=−0.21,
p= .0014) and MoCA (r=0.25, p= .0002) (Table 2).

When divided into tertiles based on the MRI-derived atrophy score
(Table 3, Fig. 3) those in the 1st tertile (i.e. most atrophy) progressed
significantly faster on motor signs, with a 3-unit further increase in
UPDRS-part III each year (p= .012) compared to the 3rd tertile. They
also experienced faster worsening of gait and postural instability (PIGD

Y. Zeighami, et al. NeuroImage: Clinical 24 (2019) 101986

3



score progression=+0.21 (p < .0001) compared to the 3rd tertile).
Subjects in the worst tertile not only had a lower MoCA score at
baseline (−1.02, p= .0089), but also declined faster by −0.74
(p= .0372) extra MoCA points per year. Members of the 1st tertile also
demonstrated a+ 0.38 (p= .0029) and+ 0.29 (p= .0220) further

annual increase in the GCO z-score compared to the 3rd and 2nd ter-
tiles, respectively.

3.2. Comparison with other potential biomarkers

We compared the predictive value of the MRI-derived atrophy
measure to other potential biomarkers. ROC curve analysis showed
that, among all biomarkers evaluated, only the baseline PD-network
atrophy score significantly predicted a>0.5 SD worsening in GCO
after 4.5 years of follow-up (AUC=0.63, p= .005, Fig. 4, Table 2).
Baseline PIGD score, motor severity (UPDRS-part II and III), and SPECT
SBR in caudate and putamen either lacked sensitivity or statistical
power to predict a 0.5 SD increase in GCO after this period (Fig. 4). It is
noteworthy that the accuracy as measured by AUC for within cohort 10-
fold cross validation train and test is very similar to between cohort
train and test results, both in terms of value and biomarker ranking.
This indicates the robustness and generalizability of the results and
confirms that, while the accuracies are not very high, they are not
driven by overfitting.

The baseline PIGD score failed to associate with longitudinal pro-
gression at 4.5 years. Most of the associations with the baseline CSF
Aβ42/T-tau ratio disappeared after regressing out the effect of age.
Compared to SPECT SBR, MRI PD-network atrophy score not only had
larger regression coefficients but also survived Bonferroni correction for
multiple comparisons (Table 3).

As summarized in Table 5, we repeated the same mixed effect
models by grouping the population into tertiles at baseline based on the
other potential biomarkers in the PPMI sub-population with available

Table 1
Demographic and clinical characteristics of the study population.

Characteristic 3T MRI (Main dataset) (n= 222) 1.5T MRI (Validation dataset) (n=140)

Baseline Follow-up Baseline Follow-up

Demographics
Age at onset (year) 60.7 (9.2) – 61.5 (10.5) –
Male sex (%) 142 (64%) – 95 (67.9%) –
Education history (year) 15.5 (2.8) – 16.0 (3.0) –
Symptoms duration (month) 7.0 (7.2) – 6.1 (5.4) –
Positive family history (%) 32 (14.6%) – 16 (11.4%) –

Clinical Motor Features
UPDRS-Part II 5.6 (3.9) 11.7 (7.6) 5.9 (4.2) 10.5 (6.7)
UPDRS-Part III 21.3 (9.0) 29.4 (14.3) 19.0 (7.5) 28.6 (11.9)
Schwab & England score 94.4 (5.8) 86.2 (12.7) 92.6 (6.1) 81.6 (12.9)
PIGD score 0.2 (0.2) 0.5 (0.6) 0.2 (0.2) 0.5 (0.5)

Clinical Non-Motor Features
UPDRS-Part I 5.6 (4.1) 7.8 (5.5) 5.8 (3.7) 8.5 (5.7)
Epworth sleepiness score 5.9 (3.6) 8.0 (5.2) 5.5 (3.4) 7.0 (4.2)
Geriatric depression scale (GDS) 2.2 (2.5) 3.0 (3.2) 2.3 (2.0) 3.0 (2.9)
State-trait anxiety inventory (STAI) score 64.0 (18.3) 66.1 (21.5) 66.9 (18.1) 66.6 (19.8)

Impulse control disorders (QUIP score) 0.3 (0.8) 0.4 (0.7) 0.3 (0.9) 0.4 (0.8)
REM sleep behavior disorder (RBD) score 4.1 (2.6) 4.9 (3.2) 4.2 (2.7) 5.1 (3.2)
SCOPA-AUT score 9.3 (6.0) 12.9 (7.3) 9.7 (6.3) 13.9 (7.7)
MOCA score 27.3 (2.2) 26.2 (3.9) 26.7 (2.5) 25.9 (4.1)

UPDRS: Unified Parkinson's disease rating scale; PIGD: postural instability and gait disturbance; SCOPA-AUT: Scales for Outcomes in PD-Autonomic (SCOPA-AUT);
MOCA: Montreal Cognitive Assessment.

Fig. 2. Association between the Parkinson's disease (PD)-network atrophy score
at baseline and progression rate in global composite outcome after an average
of 4.5 years in people with PD (B=−0.240, p < .001). Tertiles refer to the
mean degree of atrophy.

Table 2
Results for Area under curve accuracy using 10-fold cross validation within and between cohorts for each biomarker.

Train Test MRI PD-related score PIGD score DATscan SBR (Putamen) DATscan SBR (Caudate) UPDRS-III

3 T cohort 3 T cohort 63% 54% 52% 59% 55%
3 T cohort 10-fold CV 3 T cohort 10-fold CV 62% 50% 45% 57% 52%
1.5 T cohort 3 T cohort 63% 54% 47% 59% 55%
1.5 T cohort 1.5 T cohort 57% 53% 47% 54% 54%
1.5 T cohort 10-fold CV 1.5 T cohort 10-fold CV 55% 49% 33% 51% 48%
3 T cohort 1.5 T cohort 57% 53% 52% 54% 55%
3 T cohort + 1.5 T cohort 3 T cohort + 1.5 T cohort 60% 52% 48% 56% 53%
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3T MRI (n=222). Members of the 1st tertile of SBR (i.e. the most se-
vere dopaminergic denervation) had further annual disease progression
by +2.57 (p= .0409) increase in UPDRS-part III progression (only 1st
tertile vs 2nd tertile), +0.43 (p= .0003) increase in GCO z-score pro-
gression, and+0.16 (p= .0003) increase in PIGD progression. The 3rd
tertile of PIGD baseline score (i.e. the most severe postural and gait
disturbances), progressed the least in UPDRS-part III [−2.59
(p= .0364) compared to the 1st tertile], representing a ceiling effect for
the progression of PIGD score after 4.5 years of initial diagnosis. While
this effect is marginally significant, it shows lack of prognostic power of
the baseline PIGD score. Neither the SPECT tertiles nor the PIGD motor
phenotypes significantly predicted cognitive decline at follow-up. Fi-
nally, the MRI network atrophy score was a stronger predictor of rate of
change in UPDRS-part III (R2= 0.197, p < .003) (and all other mea-
sures) than the UPDRS-part III itself (R2= 0.122, p= .070).

3.3. Phenotype shifting

Using previously published clinical criteria for subtyping PD,
(Fereshtehnejad et al., 2017) 118 participants were categorized as “mild
motor-predominant” PD at baseline, of whom 72.9% remained in the
same subtype after 4.5 years of follow-up. As illustrated in Fig. 5,
among those who were initially subtyped as “mild motor-predominant”
PD, baseline PD-network atrophy was significantly worse in the ones
who later shifted to the “diffuse malignant” subtype [−0.69 (SD=0.90)
vs. 0.31 (SD=1.08), p= .042]. A similar effect could also be seen for
the “intermediate” subtype, where the baseline PD-network atrophy
score was significantly lower in the subgroup who later shifted into the
“diffuse malignant” subtype compared to those who shifted to “mild
motor-predominant” [−0.60 (SD=1.03) vs. -0.01 (SD=0.91),
p= .034] (Fig. 5, Table 4).

Furthermore, there was a significant difference in baseline PD-net-
work atrophy score between individuals classified as stable “mild motor-

predominant” and “diffuse malignant” subtypes after 4.5 years [0.31
(SD=1.08) vs. -0.59 (SD=0.62) vs., p= .008]. Among individuals
initially categorized in the tremor-dominant phenotype, baseline PD-
network atrophy score was significantly lower in individuals who later
progressed into the PIGD-dominant phenotype after 4.5 years, com-
pared to those who remained tremor-dominant [−0.21 (SD=0.93) vs.
0.18 (SD=1.00), p= .042].

After 4.5 years of follow-up, only 27.1% of the initially categorized
patients as ‘mild motor-predominant’ switched to other subtypes; and
among those labelled as ‘diffuse malignant’ at baseline only 39.3% re-
mained in that category after 4.5 years. As expected, a large number of
patients with ‘intermediate’ subtype at baseline experienced subtype
reassignment after follow-up. Overall, clinical subtype stability in our
study was approximately 57.6%.

3.4. Longitudinal progression and trajectories of PD-network atrophy

To investigate the brain deformation alterations over time, we re-
peated our baseline neuroimaging analysis for the subsequent visits of
PD and HC subjects. Here we used the PD-network atrophy score for
each visit and used a mixed effect model for the longitudinal analysis.
We found a significant main effect of age (t=−9.27, p < .0001) as
well as a significant main effect of cohort (t=−2.44, p= .01), how-
ever there was no significant interaction between age and cohort
(t=1.27, p= .2). While a lack of significance is not evidence of lack of
effect, based on current results we find that over the first 4–5 years after
diagnosis most of the measurable is already present at baseline, while
subsequent MRI scans demonstrate roughly equal aging-related tissue
loss in PD patients and HC (Fig. 6A). While at the average group level
the further increase in PD-network atrophy score in PD is attributable to
aging, we further investigated the rate of progression for the PD-net-
work atrophy score in each of our tertiles based on the baseline atrophy
score. We also found a significant effect of age (β=−0.03, t=−10.7,

Table 3
Linear correlation coefficients for the associations between selected markers at baseline and changes in the
outcomes of interest after follow-up (4.5 years). Data are presented as correlation coefficient (p-value).

∆ MOCA 
Score

∆ UPDRS 
Non-Motor 

Score

∆ PIGD 
Score

∆ UPDRS 
Motor 
Score

∆ Schwab 
& England 
ADL Score

∆ Global 
Composite 
Outcome

PD- atrophy score
0.25

(0.0002)
-0.16

(0.0189)
-0.24

(0.0003)
-0.18

(0.0064)
0.06

(0.3652)
-0.22

(0.0011)

SBR (caudate)
0.20

(0.0035)
-0.14

(0.0330)
-0.08

(0.2042)
-0.06

(0.3538)
0.18

(0.0079)
-0.19

(0.0040)

SBR (putamen)
0.12

(0.0794)
-0.08

(0.2160)
-0.05

(0.4377)
-0.01

(0.8993)
0.07

(0.2663)
-0.09

(0.1936)

UPDRS-
Motor (II-III)

-0.13
(0.0095)

-0.02
(0.7241)

0.04
(0.4171)

-0.22
(0.0000)

0.03
(0.5232)

-0.12
(0.0162)

PIGD score
-0.06

(0.2395)
-0.08

(0.0920)
-0.25

(0.0000)
-0.06

(0.2527)
-0.07

(0.1485)
-0.02

(0.7357)

CSF Aβ42/T-tau ra"o
0.15

(0.0042)
-0.04

(0.4393)
-0.08

(0.1057)
-0.12

(0.0151)
0.14

(0.0054)
0.13

(0.0093)

CSF α-synuclein
0.07

(0.1894)
-0.02

(0.6200)
-0.02

(0.6322)
-0.06

(0.2024)
0.02

(0.7209)
-0.07

(0.1853)

grey= not significant (p-value > 0.05)
Black=uncorrected significant (p-value< 0.05)
Bold Blue= significant after Bonferroni correction p-value < 0.05 after bonferroni correction)
UPDRS: Unified Parkinson’s disease rating scale; PD: Parkinson’s disease; PIGD: postural instability and gait
disturbance; SCOPA-AUT: Scales for Outcomes in PD-Autonomic (SCOPA-AUT); MOCA: Montreal Cognitive
Assessment; CSF: cerebrospinal fluid; SBR: striatum binding ratio
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p < .0001), but in this analysis we find a significant interaction be-
tween age and tertile group both between the 1st tertile (i.e. most
atrophy) and 3rd tertile (i.e. least atrophy) (β=−0.01, t=−2.13,
p= .03) and also between 1st tertile and 2nd tertile (i.e. intermediate
atrophy) (β=−0.01, t=−1.97, p= .05) (Fig. 6B). In the model we
included the baseline tertiles to control for average atrophy levels at
baseline between groups and these results are derived based on the
slope of progression. Thus, only the PD patients with the most severe
atrophy at baseline show ongoing atrophy that progresses faster than
normal aging.

3.5. Replication

To validate our findings, we repeated all mixed effect progression
models in a separate sub-population of PPMI with 1.5T MRI accessible
at baseline (n=140, Table 5). All significant trajectory differences
between the tertiles of PD-network atrophy score were replicated

(Fig. 3). Members of the 1st tertile with the largest atrophy in the MRI-
based PD-network at baseline, experienced a faster increase in UPDRS-
part III (4–6 units/year), more rapid motor phenotype deterioration
(0.21–0.36 PIGD scores/year), larger decline in MoCA (1–2 scores/
year), and a worse overall prognosis on GCO (0.55–1.07 z-scores/year)
after 4.5 years. By comparison, except for the cognitive domain where
the 1st tertile of the SBR showed faster decline compared to the 3rd
tertile, SBR subgroups and PIGD motor phenotype failed to show any
significant difference in the trajectory of motor and global outcomes.

4. Discussion

This study has found that a single MRI-derived structural atrophy
measure can be used as an early biomarker for PD prognosis. This PD-
network atrophy measure combines atrophy in midbrain, basal ganglia,
basal forebrain, medial temporal lobe, and discrete cortical regions into
a single score for each patient. This score predicted the progression of

Fig. 3. Longitudinal trajectories of the outcomes (i.e. motor UPDRS-part III, MoCA cognition, Global composite outcome scores) in different tertiles of the Parkinson's
disease (PD)-network atrophy score at baseline in 3T and 1.5T PPMI sub-populations (Mean follow-up duration in the entire population= 4.5 years).
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motor impairment, clinical severity phenotype, cognition and a global
measure of PD severity. All these results remain significant after re-
gressing out the effect of age and were replicated in a validation ana-
lysis in an independent sample.

The PD-network atrophy score was a better predictor of prognosis
than competing biomarkers. PIGD score, which has long been used as
an indicator of motor phenotype and disease severity (van der Heeden
et al., 2016), failed to predict progression in most motor and non-motor
outcomes of interest at 4.5 years of follow-up. The MDS-UPDRS score at
baseline was associated with cognitive decline, but showed no relation

with other non-motor markers or even progression in the UPDRS score
itself. CSF Aβ42/T-tau ratio was marginally associated with disease
progression, however, this relationship failed to remain significant after
regressing out the effect of age. SPECT imaging with 123I ioflupane,
previously shown to correlate with cognitive impairment in de novo PD
in this cohort (Schrag et al., 2017), had only modest predictive power
for subsequent cognitive decline; moreover, our validation analysis
demonstrated that it could not predict motor progression with the same
strength as the MRI network atrophy score. The effect sizes of differ-
ences in trajectories were more prominent between the tertiles of the

Fig. 4. Receiver operating characteristics (ROC)
analysis to compare the area under the curve (AUC)
of baseline Parkinson's disease (PD)-network atrophy
score (AUC=0.639 ± 0.047, p= .005), UPDRS-
Parts II and III (AUC=0.493 ± 0.048, p= .894),
PIGD score (AUC=0.559 ± 0.044, p= .230),
striatal binding ratio in caudate (AUC=0.560
± 0.051, p= .224) and putamen (AUC=0.494
± 0.048, p= .904) to predict 1.5 standard deviation
(SD) increase in the global composite outcome after
an average of 4.5 years of follow-up.

Fig. 5. Prediction of the change in phenotypic subgroup assignment. Baseline value of Parkinson's disease (PD)-network atrophy score at baseline among PPMI
population categorized in different clinical subtypes at baseline and after 4.5 years of follow-up.
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MRI network atrophy score for both motor and cognitive outcome
measures, compared to SPECT.

It is also noteworthy that the baseline PD-network atrophy score
could forecast a shift in PD subtype attribution after 4.5 years.
Participants initially labelled as “mild motor-predominant” who later
progressed into the “diffuse malignant” subtype had significantly larger
atrophy in this MRI network at baseline compared to those with stable
phenotype. The atrophy measure was also able to predict which pa-
tients in the “intermediate” subtype shifted to “mild motor-predominant”
and “diffuse malignant” subtypes. Such a biomarker might also be useful
for clinical trials of neuroprotective therapies, allowing the stratifica-
tion of individuals predicted to progress more rapidly.

PD is a neurodegenerative condition with no remission in under-
lying pathology. However, some changes in subtype assignment at
follow-up went in the direction of reduced severity. This paradox can be
explained by noting that these subtype assignments were solely based
on clinical features, which may be influenced by other factors besides
parkinsonian pathology. Moreover, we should emphasize that subtype
assignment at each time point (drug-naïve early stage and follow-ups) is
based on the population values at that specific time point and not at
baseline. This means that “improving” in clinical subtype reflects
slower progression compared to the entire cohort rather than remission.

Other studies have suggested potential biomarkers for PD progres-
sion. These generally have targeted only one specific domain of PD (e.g.
movement or cognition) or lack clear clinical applicability at the in-
dividual level. Using machine-learning approaches on a combination of
clinical, imaging, CSF and genetic data, one recent study concluded that
imaging data were unable to predict motor progression in de novo PD
(Latourelle et al., 2017). However, in that study, DAT SPECT was the
only imaging biomarker. We also found SPECT to be poor at predicting
disease progression. On the contrary, another study using radiomics
analysis on SPECT images at baseline and one year was able to predict
changes in UPDRS-part III score in a small subset of patients from the
PPMI cohort (Rahmim et al., 2017). There are several reasons why
SPECT may be a better diagnostic than prognostic marker of PD: Par-
kinsonian medications may affect DAT SPECT uptake, there is likely a
floor effect, and it is also possible that atrophy in the occipital lobe in
PD may introduce noise in the measurement as it is the reference region
typically used for measuring striatal DAT binding.

Other MRI biomarkers have been proposed. In one study, serial
diffusion MRI measures of the free water in posterior substantia nigra
were shown to correlate with the change in Hoehn and Yahr scale over
4 years (Burciu et al., 2017). However, unlike these SPECT and MRI-
based measures, the PD-network atrophy score proposed here describes
a single measure at baseline is easily obtainable using standard MRI
pulse sequences.

A possible explanation for the prognostic strength of the MRI based
biomarker is that it takes into account the entire spatial distribution of
PD pathology. Although PD was initially characterized as a pre-
dominantly motor disorder caused by loss of dopamine neurons in the
substantia nigra, several sources of evidence suggest this is an in-
complete picture of the disease. Post-mortem analyses have suggested
that PD is a spreading process that moves stereotypically from

brainstem to subcortical regions to cortex (Braak et al., 2003). Clinical
studies have demonstrated the importance and ubiquity of non-motor
features such as autonomic, sleep, and cognitive dysfunction, attribu-
table to widespread neuropathology below and above the substantia
nigra (Berg et al., 2014). Our previous work with this PD network
atrophy measure is supportive of a propagating process (Zeighami
et al., 2015; Yau et al., 2018; Zeighami et al., 2017; Dadar et al., 2018;
Pandya et al., 2019; Rachel Paes et al., 2017). Moreover, the discovery
that neurotoxic misfolded α-synuclein can propagate trans-neuronally
provides a mechanism for the propagation hypothesis first proposed by
Braak et al. (Braak et al., 2003; Luk et al., 2012). This suggests that the
pattern of disease could be stereotyped in its spatial distribution as
determined by the brains' normal wiring diagram (or connectome)
(Zeighami et al., 2015). If so, an imaging measure that takes into ac-
count the entire distribution of atrophy could have more power to

Table 4
Changes in the clinical subtypes after 4.5 years of follow-ups.

Clinical Subtypes after 4.5 years of follow-up

Mild Motor-
Predominant

Intermediate Diffuse
Malignant

Clinical
Subtypes at
Baseline

Mild Motor-
Predominant

86 (72.9%) 25 (21.2%) 7 (5.9%)

Intermediate 33 (43.4%) 31 (40.8%) 12 (15.8%)
Diffuse
Malignant

3 (10.7%) 14 (50.0%) 11 (39.3%)

Fig. 6. Longitudinal Progression and Trajectories of PD-network atrophy. A)
The PD network atrophy score over time in healthy controls and PD patients.
There is a significant main effect of cohort (PD - healthy controls) as well as a
main effect of age. However, we didn't find a significant interaction between
cohort and age, suggesting that after the first hit in the PD-ICA network in PD
patients, there is a dominant effect of aging in the following 3–4 years in both
groups. B) While at the whole group level the dominant effect belongs to aging
within PD patients, there is a significant interaction between age and disease
severity (as measured by baseline tertiles in atrophy score). The patients with
higher atrophy score at baseline show faster progression of the atrophy score in
the following 3–4 years.
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Table 5
Longitudinal trajectories of various clinical outcomes compared between tertiles of baseline of proposed biomarkers and the given outcome in the main dataset (3T
MRI) and validation dataset (1.5T MRI) of PPMI population using mixed effect models. The first column represents model variables for each proposed biomarker
(separated in blue) and each column in this table shows an outcome. (e.g. first column first subsection represents the PD-ICA as a proposed biomarker and the
outcome is based on UPDRS-III measured longitudinally in the 3T MRI dataset.

dataset 3T MRI (Main dataset) 1.5T MRI (Valida!on dataset)

outcome UPDRS-III Cogni on GCO PIGD UPDRS-III Cogni on GCO PIGD

PD-ICA UPDRS-III Cogni on GCO PIGD UPDRS-III Cogni on GCO PIGD

Age Effect 5.20
(3.24,7.16)

-2.54
(-4.50,-0.58)

5.77
(3.81,7.73)

2.82
(0.86,4.78)

5.12
(3.16,7.08)

-0.78
(-2.74,1.19)

7.11
(5.15,9.07)

2.55
(0.59,4.52)

Sex Effect 
(male)

1.08
(-0.88,3.04)

-2.25
(-4.21,-0.28)

1.59
(-0.37,3.56)

-0.28
(-2.24,1.68)

1.02
(-0.95,2.98)

-0.61
(-2.57,1.36)

0.58
(-1.39,2.54)

-0.46
(-2.42,1.50)

Educa on 
Effect

-0.10
(-2.06,1.86)

2.07
(0.10,4.03)

-1.06
(-3.02,0.90)

-0.78
(-2.74,1.18)

1.03
(-0.93,2.99)

2.46
(0.50,4.42)

-0.14
(-2.10,1.82)

0.90
(-1.06,2.86)

Baseline 
Difference
2nd - 1st Ter le

3rd - 1st Ter le

-0.18
(-2.15,1.78)

-2.59
(-4.55,-0.63)

0.72
(-1.25,2.68)

1.75
(-0.22,3.71)

-0.78
(-2.74,1.18)

-3.06
(-5.03,-1.10)

-2.12
(-4.08,-0.16)

-4.37
(-6.33,-2.41)

-1.75
(-3.71,0.21)

-3.70
(-5.66,-1.74)

1.15
(-0.82,3.11)

2.15
(0.19,4.12)

-3.05
(-5.01,-1.09)

-5.70
(-7.66,-3.74)

-2.52
(-4.48,-0.55)

-5.65
(-7.61,-3.69)

Age * Group 
Interac on
2nd - 1st Ter le

3rd - 1st Ter le

0.17
(-1.79,2.13)

2.52
(0.56,4.48)

-1.10
(-3.06,0.87)

-2.17
(-4.13,-0.20)

0.74
(-1.22,2.70)

3.03
(1.06,4.99)

2.23
(0.27,4.19)

4.43
(2.47,6.39)

1.35
(-0.61,3.31)

3.51
(1.55,5.47)

-1.30
(-3.26,0.66)

-2.36
(-4.33,-0.40)

2.62
(0.66,4.58)

5.01
(3.05,6.97)

2.54
(0.58,4.50)

5.49
(3.53,7.45)

SPECT SBR UPDRS-III Cogni on GCO PIGD UPDRS-III Cogni on GCO PIGD

Age Effect 7.37
(5.41,9.33)

-5.14
(-7.11,-3.18)

6.61
(4.65,8.57)

4.12
(2.16,6.08)

7.23
(5.27,9.19)

-0.22
(-2.18,1.75)

8.13
(6.17,10.10)

4.56
(2.60,6.53)

Sex Effect 
(male)

-0.37
(-2.33,1.59)

-1.01
(-2.97,0.96)

0.59
(-1.37,2.55)

0.55
(-1.41,2.51)

-0.76
(-2.72,1.20)

0.57
(-1.39,2.54)

-1.27
(-3.24,0.69)

-1.70
(-3.66,0.27)

Educa on 
Effect

1.68
(-0.29,3.64)

0.38
(-1.58,2.34)

1.74
(-0.23,3.70)

0.52
(-1.44,2.48)

-0.32
(-2.28,1.64)

1.60
(-0.36,3.57)

-1.25
(-3.21,0.71)

-1.04
(-3.01,0.92)

Baseline 
Difference
2nd - 1st Ter le

3rd - 1st Ter le

2.15
(0.19,4.11)

0.13
(-1.84,2.09)

-1.13
(-3.09,0.83)

0.69
(-1.27,2.65)

0.14
(-1.82,2.10)

-3.11
(-5.08,-1.15)

-0.33
(-2.29,1.63)

-3.57
(-5.54,-1.61)

0.33
(-1.63,2.29)

0.79
(-1.17,2.75)

1.99
(0.02,3.95)

2.48
(0.51,4.44)

-1.55
(-3.51,0.41)

-1.65
(-3.62,0.31)

-1.91
(-3.88,0.05)

0.01
(-1.95,1.97)

Age * Group 
Interac on
2nd - 1st Ter le

3rd - 1st Ter le

-2.01
(-3.97,-0.04)

0.30
(-1.66,2.26)

1.20
(-0.76,3.17)

-0.75
(-2.71,1.21)

-0.20
(-2.16,1.76)

3.49
(1.53,5.45)

0.48
(-1.48,2.44)

4.06
(2.10,6.02)

-0.28
(-2.25,1.68)

-0.71
(-2.68,1.25)

-2.35
(-4.31,-0.39)

-2.69
(-4.66,-0.73)

1.43
(-0.53,3.39)

1.34
(-0.62,3.31)

1.77
(-0.19,3.73)

-0.08
(-2.04,1.88)

(continued on next page)
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Table 5 (continued)

PIGD UPDRS-III Cogni on GCO PIGD UPDRS-III Cogni on GCO PIGD

Age Effect 8.28
(6.32,10.24)

-5.27
(-7.23,-3.31)

8.89
(6.92,10.85)

6.12
(4.16,8.08)

6.63
(4.67,8.60)

-1.28
(-3.24,0.68)

8.17
(6.21,10.13)

4.05
(2.09,6.01)

Sex Effect 
(male)

0.12
(-1.84,2.08)

-0.44
(-2.40,1.52)

0.24
(-1.73,2.20)

-0.97
(-2.93,0.99)

0.90
(-1.06,2.86)

-0.58
(-2.54,1.39)

-0.18
(-2.14,1.78)

-0.50
(-2.47,1.46)

Educa on 
Effect

3.15
(1.19,5.11)

0.02
(-1.94,1.99)

2.27
(0.30,4.23)

1.72
(-0.24,3.68)

0.68
(-1.28,2.64)

2.51
(0.54,4.47)

-0.81
(-2.77,1.15)

0.22
(-1.74,2.18)

Baseline 
Difference
2nd - 1st Ter le

3rd - 1st Ter le

1.25
(-0.71,3.21)

-0.60
(-2.56,1.36)

1.55
(-0.41,3.52)

0.93
(-1.03,2.89)

-1.44
(-3.40,0.52)

1.23
(-0.73,3.19)

-1.19
(-3.15,0.77)

-0.88
(-2.85,1.08)

2.69
(0.73,4.65)

-0.35
(-2.31,1.61)

0.96
(-1.00,2.93)

0.78
(-1.18,2.74)

1.74
(-0.22,3.70)

0.60
(-1.36,2.57)

-0.18
(-2.14,1.78)

0.85
(-1.11,2.81)

Age * Group 
Interac on
2nd - 1st Ter le

3rd - 1st Ter le

-0.79
(-2.75,1.17)

-2.20
(-4.16,-0.24)

0.39
(-1.57,2.35)

0.10
(-1.87,2.06)

-1.22
(-3.18,0.74)

-0.31
(-2.27,1.65)

-0.38
(-2.34,1.58)

0.34
(-1.62,2.30)

1.79
(-0.18,3.75)

-1.68
(-3.64,0.29)

-1.40
(-3.36,0.57)

-0.92
(-2.88,1.04)

1.45
(-0.51,3.42)

0.36
(-1.61,2.32)

1.38
(-0.58,3.34)

-0.17
(-2.13,1.79)

Alpha-
synuclein

UPDRS-III Cogni on GCO PIGD UPDRS-III Cogni on GCO PIGD

Age Effect 5.02
(3.06,6.98)

-4.85
(-6.81,-2.88)

7.79
(5.82,9.75)

6.09
(4.13,8.06)

6.72
(4.76,8.68)

-3.79
(-5.75,-1.82)

8.52
(6.56,10.48)

6.51
(4.55,8.47)

Sex Effect 
(male)

1.49
(-0.47,3.46)

-1.29
(-3.25,0.67)

1.89
(-0.07,3.85)

0.11
(-1.85,2.07)

0.36
(-1.60,2.32)

-0.43
(-2.39,1.53)

0.88
(-1.08,2.84)

1.06
(-0.90,3.02)

Educa on 
Effect

1.45
(-0.51,3.41)

1.52
(-0.44,3.48)

0.63
(-1.33,2.59)

0.67
(-1.29,2.63)

1.14
(-0.82,3.10)

0.62
(-1.35,2.58)

-0.44
(-2.40,1.52)

-0.84
(-2.80,1.12)

Baseline 
Difference
2nd - 1st Ter le

3rd - 1st Ter le

-1.80
(-3.76,0.16)

-2.01
(-3.97,-0.05)

-0.74
(-2.70,1.22)

0.33
(-1.63,2.29)

-0.20
(-2.16,1.76)

-0.36
(-2.32,1.60)

0.44
(-1.52,2.40)

-0.72
(-2.68,1.24)

-1.36
(-3.32,0.60)

0.87
(-1.09,2.83)

-0.87
(-2.83,1.09)

-2.03
(-3.99,-0.06)

-1.76
(-3.72,0.20)

-0.33
(-2.30,1.63)

0.31
(-1.65,2.27)

1.86
(-0.10,3.82)

Age * Group 
Interac on
2nd - 1st Ter le

3rd - 1st Ter le

1.87
(-0.09,3.83)

1.70
(-0.26,3.67)

0.80
(-1.16,2.76)

-0.33
(-2.29,1.64)

0.04
(-1.93,2.00)

-0.08
(-2.04,1.88)

-0.55
(-2.51,1.42)

0.38
(-1.58,2.34)

1.75
(-0.21,3.71)

-1.06
(-3.02,0.90)

0.91
(-1.05,2.87)

1.95
(-0.01,3.92)

2.08
(0.12,4.04)

0.02
(-1.94,1.99)

-0.33
(-2.29,1.63)

-2.29
(-4.25,-0.33)

The corresponding model therefore will be UPDRS-part III ~ 1+Age+ Sex + Education + Group + Age*Group + (1|Subject)
Group=Biomarker tertile, in this case Group=PD-ICA MRI score tertile
As seen in the table the model has 61% variance explained (adjusted R-squared), There is a significant effect of age on UPDRS-III as well as a significant difference in
UPDRS-III between most atrophied and least atrophied group after accounting for age, sex, and education. Furthermore, there is a significant interaction between the
atrophy group and age suggesting for each extra year in age most atrophied group will gain three point more than least atrophied group in their UPDRS-III score
UPDRS: Unified Parkinson’s disease rating scale; PD: Parkinson’s disease; ICA: independent component analysis; PIGD: postural instability and gait disturbance;
MOCA: Montreal Cognitive Assessment; GCO: global composite outcome; SBR: striatal binding ratio
Each column in this table shows an outcome and each of the three subsections within a column represents one mixed effect model (e.g. first column first subsection
represents UPDRS-part III ~ AGE+ SEX + GROUP (PD-ICA MRI biomarker tertiles)+AGE*GROUP)
* p<0.00001, % p<0.0005, & p<0.001, ^ p<0.005, $ p<0.01, # p<0.05
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reflect global disease effects.
Some limitations of this study should be acknowledged. Follow-up

duration of PPMI is still relatively short (4.5 years) and our findings
need to be re-evaluated after a longer follow-up period. While our re-
sults have been validated in an independent sample from PPMI (a multi-
center, multi-scanner dataset), future studies using external cohorts
with different scanners and acquisition protocols can further investigate
the generalizability of our proposed biomarker. The ROC analysis
(Fig. 4) shows that the PD-network biomarker outperforms the UPDRS,
SPECT and PIGD scores as a prognostic indicator; however, even the
PD-network score exhibits a significant trade-off between sensitivity
and specificity. With an AUC of approximately 0.6, the biomarker's
ability to accurately predict outcomes in single patients is very limited,
and it would not make a useful prognostic test in the clinic; however, in
the setting of a clinical trial, it remains a better prognostic marker than
the others tested here, which perform almost at chance, and may
therefore prove useful in startifying patients for clinical trials for ex-
ample.

Out of the 222 PD patients, 10 subjects showed improvements in
terms of subtyping; i.e. they moved to less severe cohort compared to
their baseline visit status. To ensure that the findings of the study are
not biased by this small group, the analyses were repeated excluding
these 10 subjects. All the findings remained similar after this exclusion
(see the supplementary materials).

Our study focused on baseline markers as predictors; future studies
should also expand our analysis of the change in brain atrophy mea-
sures over time. We did however find that our mostly subcortical MRI
atrophy network demonstrated progression in tissue loss that was no
different than the effect seen in the age-matched control group. This
may represent a floor effect. Future studies should look for development
and progression of atrophy in other brain areas. On the other hand, our
study has some methodological strengths. By using mixed effect models,
we analyzed all data points over time to increase statistical power, and
adjusted for the effect of normal aging unlike most previous studies. We
validated our analysis in an independent sample (PPMI population with
1.5T MRI), none of whose scans were used to develop the network
atrophy score (Zeighami et al., 2015). Finally, one of the advantages of
our analysis was the simultaneous consideration of motor, cognition,
and a multifaceted global outcome.

In conclusion, a PD-network atrophy measure based on a whole-
brain MRI analysis can be more sensitive to disease severity and
prognosis than more specific biomarkers that measure only dopami-
nergic deficit (e.g. DAT SPECT (Rahmim et al., 2017; Burciu et al.,
2017)) or MR-measures focused on the substantia nigra (Du et al., 2012;
Dagher and Zeighami, 2018). Our biomarker's ability to predict phe-
notype shifting highlights its clinical potential, as well as the need to
incorporate biomarker information in PD subtyping. The MRI analysis
pipeline has been made freely accessible (Zeighami et al., 2015) so that
the corresponding atrophy score for any individual can be easily cal-
culated for external applications. Further investigation to explore how
different regional clusters of the PD-network atrophy might relate to the
heterogenous pathology and clinical manifestations of PD is warranted.
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