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Introduction
Systemic sclerosis (SSc) is a heterogeneous autoimmune disease that results in the production of  auto-
antibodies, skin fibrosis, and internal organ involvement (1); the pattern and severity of  skin and organ 
involvement varies across patients. Clinically, SSc is divided into 2 subtypes based on the extent of  skin 
involvement, including limited cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc) (2). The lungs, 
heart, kidney, and other organs may also be involved (1, 3, 4). We have previously identified “intrinsic” 
subsets of  SSc (fibroproliferative, inflammatory, limited, and normal-like) based upon skin gene expression 
(5–7) that may predict response to therapy (8, 9). Analysis of  skin gene expression across cohorts identified 
interactions between immune and stromal cells that may act as key drivers of  SSc pathogenesis in patients 
with a permissive genetic background (10, 11).

Regulators, either acting at the transcriptional or posttranscriptional level, control the expression of  
their target gene networks; thus, they contribute to different biological phenotypes and can be proxies for 
tightly coordinated and regulated pathways (12). However, the regulators that underlie SSc and the associ-
ation with clinical phenotypes have not been systematically investigated. The goals of  these analyses were 
2-fold: first, to identify regulators of  gene expression, such as transcription factors (TFs) and miRNAs that 
are enriched in the SSc-intrinsic subsets and, second, to identify regulators that could identify patients with 
SSc with more severe skin and lung disease. Our reasoning is that the regulators, and the network of  genes 
that they control, may be informative of  pathological processes acting in SSc.

Herein, we constructed a computational framework to systematically examine the activity of  836 
regulators across 431 SSc skin and 35 SSc blood samples using publicly available gene expression data 
(see Figure 1 for an overview). We characterized each regulator’s target genes and their expression pro-
file to infer the regulator activity scores for each SSc sample using the BASE algorithm (13). Regulator 
activity scores were correlated with the modified Rodnan Skin Score (MRSS), a common measure of  SSc 

Systemic sclerosis (SSc) is a heterogeneous autoimmune disorder that results in skin fibrosis, 
autoantibody production, and internal organ dysfunction. We previously identified 4 “intrinsic” 
subsets of SSc based upon skin gene expression that are found across organ systems. Gene 
expression regulators that underlie the SSc-intrinsic subsets, or are associated with clinical 
covariates, have not been systematically characterized. Here, we present a computational 
framework to calculate the activity scores of gene expression regulators and identify their 
associations with SSc clinical outcomes. We found that regulator activity scores can reproduce 
the intrinsic molecular subsets, with distinct sets of regulators identified for inflammatory, 
fibroproliferative, limited, and normal-like samples. Regulators most highly correlated with 
modified Rodnan skin score (MRSS) also varied by intrinsic subset. We identified subgroups of 
patients with fibroproliferative and inflammatory SSc with more severe pathophenotypes, such 
as higher MRSS and increased likelihood of interstitial lung disease (ILD). Using an independent 
cohort, we show that the group with more severe ILD was more likely to show forced vital capacity 
decline over a period of 36–54 months. Our results demonstrate an association among the 
activation of regulators, gene expression subsets, and clinical variables that can identify patients 
with SSc with more severe disease.
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severity, to identify those with activity scores highly associated with severity of  skin disease, particularly 
in fibroproliferative and inflammatory patients. We then built an interaction network using regulators 
that were substantially associated with MRSS to provide a comprehensive picture of  the regulatory inter-
actions within the SSc-intrinsic subsets. Then, subgroups within the fibroproliferative or inflammatory 
intrinsic subset were identified by using a combination of  the activity scores of  2 MRSS-correlated reg-
ulators. Further, we found a group of  SSc samples from patients with a higher MRSS and significant 
decline in forced vital capacity (FVC) over 36 months of  follow-up.

Results
Regulator activity scores reproduce the SSc-intrinsic subsets. We analyzed the regulator activity scores in 4 
independent publicly available SSc data sets from Milano et al. (7), Pendergrass et al. (6), Hinchcliff  
et al. (5), and Assassi et al. (14). For each data set, we first calculated sample-specific regulator activ-
ity scores using BASE (13) by integrating gene expression profiles and regulator target gene sets (see 
Methods). We applied intrinsic gene analysis to calculate a within-between score (15) to select regu-
lators that showed the most consistent activity scores within an SSc-intrinsic subset but had the most 
variable activity scores across all subsets. The 270 regulators that had a FDR of  less than 2% in at least 
3 data sets were considered to be “intrinsic SSc regulators” and included activator proteins: CCAAT/
enhancer-binding proteins; members of  the E2F family, ETS family, STAT family, and GATA family; 
glucocorticoid receptors; interferon regulatory factors; RUNX1-related core binding factors; B cell– and 
T cell–related TFs; and numerous miRNAs (Supplemental Table 1; supplemental material available 
online with this article; https://doi.org/10.1172/jci.insight.137567DS1).

We organized the samples and regulators in each data set by hierarchical clustering of  the activity scores 
with the 270 regulators. Broadly, we found that samples in the fibroproliferative subset clustered together 
and displayed activation of  key regulators of  cell proliferation, such as members of  the E2F, MYC, and ETS 
families (Figure 2 and Supplemental Figures 1–4). Target genes of  these fibroproliferative cluster regulators 
were highly enriched in cell cycle and DNA replication pathways (Supplemental Table 2 and Supplemental 
Figure 5; corrected P < 0.05), consistent with the activation of  biological processes enriched in the fibropro-
liferative subset. Immune-related proteins, such as those from the STAT family, Runx1-related core-binding 
factors, and nuclear factor of  activated T cells (NFAT), are enriched in the inflammatory subset (Figure 2 
and Supplemental Figures 1–4). Their target genes are significantly involved in immune-related and signal 
transduction pathways, such as the B/T cell receptor signaling pathway, Th17 cell differentiation, and the 
TGF-β signaling pathway (Supplemental Table 2 and Supplemental Figure 6; corrected P < 0.05).

There was also a strong cluster of  regulators for the Milano limited samples (7), which included 52 
regulators, such as the glucocorticoid receptor, estrogen receptor, and androgen receptor (Figure 2A and 
Supplemental Figure 1). Surprisingly, in the Milano data set, although the limited and inflammatory sub-
sets comprised different sets of  regulators, the pathways to which these regulators mapped were highly 
shared (Jaccard score = 0.53; Supplemental Table 2). For instance, the MAPK signaling pathway, PI3K/
Akt signaling pathway, and Wnt signaling pathway were all enriched in both clusters (Supplemental Table 
2), suggesting that the pathways driving these subsets may be similar but that the regulators that activate 
the pathways are different. In the Assassi data set (14) (Figure 2B), 27 of  42 enriched pathways in the 
fibroproliferative samples were shared with those in the inflammatory samples and included the MAPK 
signaling pathway, the PI3K/Akt signaling pathway, and the Wnt signaling pathway (Supplemental Table 
2). Similar results were found in the Pendergrass (6) and Hinchcliff  data sets (5) (Supplemental Figures 3 
and 4 and Supplemental Table 2).

Regulator activity scores are correlated with MRSS. Next, we asked if  regulator activity scores could be an 
additional index to identify patients with more severe disease. Correlations were calculated between each 
regulator’s activity score and patient MRSS in all 4 data sets. Mean correlations were calculated and ranked 
in decreasing order (Supplemental Tables 3 and 4 for fibroproliferative and inflammatory samples, respec-
tively). We chose to focus on the 50 top- and bottom-ranked regulators. In the fibroproliferative subset, 
regulators that had the highest (correlation >0.17, Supplemental Table 5) and lowest (correlation <–0.21, 
Supplemental Table 6) correlation were identified. In particular, the activity scores of  POU domain–related 
TFs (OCT1 and PIT1), Forkhead box (FOX) TFs, and many miRNAs were positively correlated with the 
MRSS of  fibroproliferative SSc samples (Figure 3A). POU domain–related TFs function in the cell cycle 
regulation of  immunoglobulins and are involved in viral infection (16). Regulators in the FOX family are 
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well-known regulators of  cell proliferation, e.g., FOXC1 increases the proliferation of  fibroblast-like synov-
iocytes in autoimmune diseases (17). In contrast, activities of  the tumor suppressor protein p53, ETS-relat-
ed proteins, and immune-related TFs (including STAT3, SMAD4, and macrophage migration inhibitory 
factor) were negatively correlated with the MRSS (Figure 3A).

Similarly, for the inflammatory subset, as shown in Figure 3B, we identified the most and least correlated 
regulators, with the lowest positive correlation of 0.3 (Supplemental Table 7) and the highest negative correlation 
of –0.26 (Supplemental Table 8). Immune-related TFs, such as NFAT, nuclear factor κ light-chain enhancer of  
activated B cells (NF-κB), RUNX1-related core binding factor, STAT family, SRF, and interferon regulatory fac-
tor (IRF) were positively correlated with MRSS (Figure 3B). In contrast, we found that macrophage migration 
inhibitory factor, E2F family proteins, and several miRNAs were negatively correlated with the MRSS.

Regulator interaction network in the context of  SSc. Based on the clinically relevant regulators that were 
identified, a network-based analysis was conducted to explore the interactions among those regulators 
in the context of  SSc (Figure 1). We defined an interaction as established if  a regulator’s target list con-
tained another regulator listed in the MSigDB C3 database. We began by investigating the regulator-tar-
get interactions in the context of  fibroproliferative (Figure 4A) and inflammatory (Figure 4B) samples. 
The 2 colors of  nodes represent the type of  correlation with the MRSS (red, positive; cyan, negative). 
The arrows indicate target directions, and a circular arrow indicates a self-regulating feedback loop. The 
size of  a node indicates its relative degree of  connection. Therefore, a larger node indicates that a given 
regulator plays a more important role by regulating others in SSc. For example, the TF SP3, which is neg-
atively correlated with the MRSS of  fibroproliferative samples, interacts with 5 other regulators, includ-
ing cell-cycle–related regulators (miR-485-3p and TFAP2A) and immune-related regulators (STAT3 and 
ELK1) (Figure 4A). These results are in line with previous findings that SP3 is able to control IL-10 gene 
expression and interact with E2F1 (18, 19). Though SP1 is well studied in SSc, this suggests that, as a 
collagen metabolism regulator, SP3 may also play an important role in SSc etiology (20, 21).

Figure 1. Overview of computational workflow in this study. Briefly, by integrating target gene lists and gene expression of patients with SSc, we 
calculated sample-specific regulatory activity scores for each data set. Then, by calculating the correlations between activity scores and MRSS, 
fibroproliferative and inflammatory associated regulators were identified. Using those regulators, we further identified subgroups of patients in a 
given intrinsic subset, built a regulatory network in the context of SSc, and identified possibly novel subgroups of patients with SSc who are more 
like to have ILD or FVC decline over 36 months of follow-up.
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Next, by combining the regulators associated with both fibroproliferative and inflammatory samples, we 
built a more comprehensive interaction network in the context of  SSc (Figure 4C). Again, the size of  a node 
indicates its degree of  connection, and different colors of  nodes represent different categories. Besides those 
regulators that have specific correlation directions with MRSS (4 corners in Figure 4C), we found that the 
activities of  paired box 3 (PAX3) and sex-determining region Y (SRY), as shown in dark red, were posi-
tively correlated with MRSS in both fibroproliferative and inflammatory samples. PAX3 contributes to the 
embryonic development of  the central nervous system and heart vasculature (22), which suggests that there 
are underlying associations between autoimmunity and the nervous system (23). Meanwhile, SRY has been 
shown to have a strong relationship with autoimmune diseases (24). MiR485-3p’s activities are positively and 
negatively correlated with the MRSS of fibroproliferative and inflammatory samples, respectively (purple 
node). Conversely, the activities of  STAT3, ETS1, RFX1, PEA3, and MADH4 are positively and negatively 
correlated with the MRSS of inflammatory and fibroproliferative samples, respectively (light green nodes). 
Additionally, E2F, miR142-5p, MIF1, and NFMUE1 were negatively correlated with both intrinsic subsets of  
patients. Interestingly, we found that the activities of  a subset of  miRNAs were positively correlated with the 
MRSS in fibroproliferative samples and were negatively correlated with the MRSS in inflammatory samples.

Figure 2. Activity scores reproduce intrinsic subtypes in SSc data sets. Heatmaps were plotted to show the intrinsic subsets clusters in the (A) Milano 
et al. (7) and (B) Assassi et al. (14) data sets. In the heatmap, each row represents a regulator, each column represents an SSc sample, and different 
colors infer intrinsic subtypes (red, fibroproliferative; purple, inflammatory; yellow, limited; and green, normal-like). The cells in the heatmap represent 
the normalized activity scores, within which blue denotes a low score and red denotes a high score. Driven regulators were listed for each cluster.
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Regulator activity scores identify subgroups that differ by disease severity. We then asked whether combinations 
of  regulator pairs could identify novel subgroups of  SSc within the intrinsic subsets that had more severe 
MRSS. We used a combination of  gene expression data and clinical information collected from Milano et al. 
(7), Pendergrass et al. (6), and Hinchcliff  et al. (5) to generate a larger cohort to increase the statistical power. 

Figure 3. Identification of clinically relevant regulators. Heatmaps were plotted to show the Pearson correlation coefficients (PCC) between activity 
scores and the MRSS of samples across data sets for (A) fibroproliferative and (B) inflammatory SSc samples. In the heatmap, each row represents a reg-
ulator, each column represents a data set, and the cells in the heatmap represents PCC (within which blue is low PCC and red is high PCC). The median PCC 
was calculated for each regulator across data sets to show the correlation power. The heatmap was plotted by ranking the median PCC in decreasing order. 
The short, black, bold line is the cutoff we used to select out the common regulators in all data sets. Significant regulators are listed.
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The combined data from Franks et al. was used (25). Regulator activity scores and their correlation with the 
MRSS were recalculated based on the combined data. We again focused on the 50 top- and bottom-ranked 
regulators, which we reasoned were likely to be the most clinically relevant regulators in each intrinsic subset 
(Supplemental Table 9 for fibroproliferative and Supplemental Table 10 for inflammatory). Then, we per-
formed pairwise analyses of  regulators that were positively correlated with the MRSS in both fibroprolifera-
tive and inflammatory subsets.

For the pairwise combinations of  regulator activity scores in the fibroproliferative subset, a total of  
1225 pairs were divided into 4 subgroups, using 0 as cutoff  for each activity score. By comparing MRSS 
between groups, we found 910 pairs where samples that had positive activity of  both regulators (i.e., double 
positive) also had more severe skin disease compared with those in other 3 groups (FDR <1%, Supple-
mental Table 11). For example, a top-ranked pair, CART1_01 and NMYC_01, classified fibroprolifera-
tive samples into 4 subgroups: those that were positive for both regulators (red, group 1); those positive 
for CART1_01 and negative for NMYC_01 (blue, group 2); those that were negative for both regulators 
(brown, group 3); and those that were negative for CART1_01 and positive for NMYC_01 (gray, group 4), 
as shown in Figure 5A. CART1, known as TNF receptor–associated factor 4, is able to target fibroblasts 

Figure 4. Regulator interaction networks in the context of SSc. Using the intrinsic subtype-specific clinically relevant regulators, we created networks 
in (A) only fibroproliferative samples; (B) only inflammatory samples; and (C) both of them. In networks (A and B), red nodes represent regulators whose 
activity scores are positively correlated with MRSS and cyan nodes represent regulators whose negatively scores are positively correlated with MRSS. The 
size of the node is positively correlated to its degree of connection. The arrow direction points from regulator to target and a circle denotes self-regulation. 
In the network of shown in C, different colors represent different clusters.
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(26) and regulate cell-cycle pathways (27, 28). NMYC, a member of  the MYC family, plays an important 
role in regulating cell cycle and metabolism in many human diseases (29). Similar observations were found 
among the significant regulator pairs, suggesting that a potentially large number of  regulators are dysregu-
lated in SSc (Supplemental Table 11).

We found that patients with samples in group 1 had more severe disease than patients with samples 
in the other groups (all 2-sided Wilcoxon rank test; P < 0.0005; Figure 5B). The fraction of  samples from 
patients with dcSSc in group 1 was similar to that in group 4 (Supplemental Figure 7), but a significant 
difference in MRSS persisted. The fraction of  samples from patients with dcSSc in group 1 was 1.23-fold 
and 1.65-fold higher than groups 2 and 3, respectively (2-tailed Fisher’s exact test; P = 0.04 and P = 0.0008). 
Patients with samples in group 4 had higher MRSS compared with patients with samples in groups 2 
and 3 (all 2-sided Wilcoxon rank test; P < 0.05; Figure 5B), likely due to the higher prevalence of  dcSSc. 
These observations suggest that patients with higher NMYC activity are more likely to have dcSSc and that 
patients with higher NMYC activity have a worse disease phenotype than those that have lower NMYC 
activity. Patients with samples in groups 1 and 2 had relatively higher fractions of  early-stage disease than 
those in groups 3 and 4, which might suggest that higher CART1 activity is associated with early-stage 
disease (Supplemental Figure 7). Moreover, we found that samples in group 1 came from individuals who 
were significantly younger at diagnosis and had notably longer disease durations at baseline compared with 
other groups (all 2-sided Wilcoxon rank test; P ≤ 0.05; Figure 5C). We stratified patients by treatment to 
determine if  the subgroups could derive from treatment with disease-modifying antirheumatic drugs. We 
found that samples in group 1, 3, and 4 came primarily from individuals who were not on immunosup-
pressive treatment at baseline (Supplemental Table 12). A slightly larger proportion of  baseline samples 
from group 2 had mycophenolate mofetil treatment (47.4%) compared with those who had no treatments 
(31.6%). Therefore, treatment does not appear to be a defining feature of  the groups.

We repeated the pairwise analyses for patients in the inflammatory subset and identified 312 pairs 
where patients that were double positive had a more severe disease phenotype (Supplemental Table 13). 
For example, using a top-ranked combination of  NFAT (NFAT_Q6) and SMAD4 (SMAD4_Q6), sam-
ples from patients were divided into positive/positive (group 1, purple), positive/negative (group 2, blue), 
negative/negative (group 3, brown), and negative/positive (group 4, gray) groups (Figure 5D). NFAT is a 
well-known TF that has a significant role in the immune system (30). SMAD4 plays important roles in the 
TGF-β and fibroblast growth factor signaling pathways (31). Again, patients with samples in group 1 had 
significantly higher MRSS than those in other groups (all 2-sided Wilcoxon rank test; P < 0.05; Figure 5E). 
Similar to our results with the fibroproliferative subset, we found that samples in group 1 were more likely 
to be from patients with dcSSc compared with other groups (Figure 5F, 1.25-fold and 1.96-fold difference 
when comparing dcSSc fraction in group 1 to that in groups 2 and 3, respectively; 2-tailed Fisher’s exact 
test; P = 0.03 and P = 0.01). Group 1 samples had a relatively higher fraction of  samples coming from 
patients with dcSSc than in group 4 (1.18-fold). Interestingly, this observation was found in many immune 
system–related regulator pairs as well (Supplemental Table 12). We found that group 1 and group 2 samples 
were more likely to be from early-stage patients (mean disease duration of  27.15 and 24 months since first 
onset of  non-Raynaud’s symptoms, respectively), compared with group 3 (mean disease duration of  106 
months) and 4 (disease duration of  33.83 months) (Figure 5F). Unlike the fibroproliferative subset, we did 
not find significant differences between the age and disease duration among patients grouped using these 
subgroups among the inflammatory subset. We also examined treatment effects on these subgroups. We 
found that the majority of  samples in group 1 and 2 were from individuals that were not on immunosup-
pressive therapies (61.7% and 62.5%, respectively; Supplemental Table 14). Samples in group 3 and 4 came 
from individuals for which 50% and 44%, respectively, were not on an immunosuppressive therapy.

Subgroups associate with FVC decline, a surrogate for interstitial lung disease. Leveraging the patients with 
interstitial lung disease (ILD) and without ILD contained within the Assassi data set (14), we determined 
if  novel subgroups were associated with the presence of  ILD (FVC reduction). By performing the pairwise 
analyses of  the common regulators across 4 data sets in both fibroproliferative and inflammatory subsets, 
we classified 23 patients with SSc with ILD and 37 patients with SSc without ILD into 4 subgroups, where 
group 1 patients had the worst disease phenotype compared with other groups (FDR <5%). Additionally, 
for each single pair, we calculated the fold change of  the fraction of  ILD between group 1 and other groups. 
As a result, we identified 28 pairs of  regulators with a fold change greater than 1.5 (Supplemental Table 
15). For example, using the top-ranked pair of  FOXO4_02 and COREBINDINGFACTOR_Q6, patients 
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were classified into 4 groups, as shown in Figure 6A. FOXO4 is known to decrease the activity of  hypox-
ia-inducible factor, which is a validated biomarker for lung diseases (32–34). The core binding factor, which 
is within the RUNX family, has been shown to be highly involved in autoimmunity and inflammation and 
several autoimmune diseases and contributes to pulmonary fibrosis (35–37). Again, patients in group 1 had 
the highest MRSS compared with that in other groups (all 2-sided Wilcoxon rank test; P < 0.05; Figure 6B). 
The majority of  patients in each group were not on immunosuppressive therapies (Supplemental Table 16). 
We also found that patients in groups 1 and 4 were more likely to have dcSSc than those in groups 2 and 3 
(Supplemental Table 14). In contrast, patients in groups 2 and 3 were more likely to have lcSSc than those 
in groups 1 and 4. This suggests that the activity of  the core binding factor might be higher in patients with 
dcSSc versus lcSSc. More patients in group 1 had ILD (50%) compared with other groups (25%–29% ILD; 
Figure 6C), which is consistent with a previous study showing that patients with dcSSc are more likely to 
develop fibrotic pulmonary complications (1). Patients in groups 2 and 3 were more likely to be classified 
in the normal-like intrinsic subset compared with those in the rest of  the groups (Supplemental Table 16).

We repeated the analysis in the skin biopsy samples analyzed in Hinchcliff  et al. (5), as shown in Figure 
6D. Patients with unclear ILD diagnosis at baseline or with morphea were excluded. We found that group 
1 samples were from patients with more severe skin involvement than those in the other 3 groups (Figure 
6E). Again, the majority of  samples in group 1 (85.7%) and group 4 (82.7%) were from patients with dcSSc 
compared with other groups (Supplemental Table 17); samples in groups 2 and 3 were more likely to be from 
normal-like patients when compared with the other groups. We did not find enrichment of  ILD in group 1 
at initial biopsy but did find those patients had an increased rate of  FVC decline over 36 months. ILD was 
present in group 1 (45%), group 2 (67%), group 3 (70%) and group 4 (45%) (Supplemental Figure 8).

Figure 5. Regulator pairs identify subgroups of samples in intrinsic subsets. Shown are the sample distribution of (A) fibroproliferative and (D) 
inflammatory samples based on the activity scores of given regulator pairs. Group 1 (red dots for fibroproliferative and purple dots for inflammatory) 
samples have positive scores of both regulators. Group 3 (brown dots) samples have negative scores of both regulators. Group 2 (blue dots) and group 
4 (gray dots) samples have 1 positive and 1 negative score. The box plot of MRSS comparisons between groups is shown in B for fibroproliferative and 
E for inflammatory samples. (C) Box plots for age at diagnosis and disease duration at baseline are shown for each group of fibroproliferative samples. 
Two-tailed Mann-Whitney-Wilcoxon test P values are listed. (F) Clinical subtypes and stage fractions for each group are shown in inflammatory samples. 
Fractions of dcSSc and early-stage samples are shown.
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We hypothesized that the observed stratification might result from the majority of  patients in the 
Hinchcliff  data (5) set being early stage (66.7% samples from patients in group1 had SSc disease duration 
<18 months at baseline), while only 2 patients in the Assassi data set (14) were early stage. To test this, 
patients were stratified into groups based on their baseline biopsies. FVC predicted values were compared 
between baseline and the last time point (>36 months). We found that patients in group 1 had a significant 
FVC decline compared with other groups (2-tailed paired samples t test, P = 0.02, Figure 6F) that was not 
observed in the other groups.

SScMH_06 was the only patient that lacked ILD at baseline but had developed ILD by the last time point. 
This patient’s baseline biopsy was classified in group 1. Analysis of  patient’s pulmonary function measures 
showed that FVC, first second of  forced expiration (FEV1) and adjusted diffusing capacity of  carbon mon-
oxide (DLCOadj) decreased over time (Supplemental Figure 8). These observations suggest that using the 
combination of  core binding factor and FOXO4 captures the features of  FVC decline in SSc skin biopsies.

To further validate this finding, we applied an activity score calculation to an independent PBMC data 
set (Cheadle et al., ref. 38). Using the same pair of  regulators, we again found that samples were able to be 
divided into 4 groups (Supplemental Figure 9). Notably, half  of  the patients in group 1 had ILD, which is 
the largest ILD fraction compared with other groups (16.7%–33.3% ILD, Supplemental Figure 9). These 
observations suggest that the use of  regulator pairs, such as core binding factor and FOXO4, enables iden-
tification of  a subgroup of  patients with SSc that have worse skin disease and are more likely to have ILD. 
These findings indicate that our skin regulator signature is also applicable to blood samples.

Figure 6. Regulator pairs associated with SSc complicated by pulmonary fibrosis. (A) The distribution of samples between ILD and non-ILD SSc 
samples. (B) MRSS comparisons. (C) Bar plot of the fraction of ILD samples in each group from the Assassi data set (14) with a given regulator 
pair. (D) Validation of sample distribution. (E) MRSS comparisons from the Hinchcliff data set with the same regulator pair (5). (F) Validation with 
patients using their adjusted forced vital capacity (FVC).
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Discussion
In order to understand the functions of  regulators of  gene expression in the context of  SSc, our computa-
tional framework used gene expression profiles and target gene lists of  regulators to calculate the activity 
scores from mRNA expression data. Our results are robust because we included 5 independent SSc gene 
expression data sets (Table 1).

Our results demonstrate that intrinsic subsets were clustered together based on regulator activity scores 
(Supplemental Figures 1–4). Interestingly, we found that a small number of  patients with SSc identified as 
“normal-like” by gene expression grouped with inflammatory or fibroproliferative subset when ordered using 
regulator activity. This may have been the result of  using all genes in the genome that passed basic quality fil-
ters to infer regulator activity score rather than a more limited intrinsic gene list. Activity scores could present 
a future opportunity to further investigate patients classified as “normal-like” by gene expression.

The intrinsic subset classification system has been used to stratify patients in SSc clinical trials (25) and 
may predict response to therapy (39–41). The TF signatures reported here may assist in further stratifica-
tion of  patients with SSc within the existing intrinsic subsets in both cross-sectional and longitudinal stud-
ies. We hope the data we generate here will provide mechanistic insight into these subsets for personalized 
medicine in SSc, as they provide a comprehensive view of  the regulators that underlie the intrinsic gene 
expression subsets, and provide the opportunity to mechanistically understand the regulatory networks that 
give rise to these different groups of  patients.

An intriguing result from this analysis was that although each intrinsic subset often contained different 
regulators, the enriched pathways that were activated showed a high level of  consistency (Supplemental 
Table 2). For example, we found the MAPK signaling, P13K/Akt signaling, and TGF-β signaling pathways 
were consistently identified across subsets, which suggest they are essential pathways for SSc pathogenesis. 
Four KEGG pathways, chronic myeloid leukemia, endocrine resistance, the longevity regulating pathway, 
and transcriptional misregulation in cancer were all shared by fibroproliferative, inflammatory, and limited 
samples in the Milano data set (7) (the remaining 3 data sets lacked limited patients with SSc). Several 
microbiome-related pathways were enriched in inflammatory subsets, suggesting an important relationship 
between SSc and microbiome (Supplemental Table 2) (42, 43).

The results of  these analyses provide a catalog of  TFs and miRNAs that are deregulated in SSc and 
provide information about their correlation with clinical covariates associated with skin and lung disease. 
We hope this information can now be used to study the mechanisms of  SSc in these patients with more 
severe disease. There were a number of  immune-related regulators that were associated with more severe 
disease (Figure 4). A regulator’s correlation with MRSS across data sets provides one method by which 
regulators could be prioritized for further study (Supplemental Tables 5–8). As an example, the activi-
ty of  FOX family TFs was positively correlated with MRSS in the fibroproliferative subsets, while E2F 
family regulators were negatively correlated with MRSS in the fibroproliferative and, surprisingly, also in 
the inflammatory subsets (Figure 4C). Previous studies have shown that a dysfunction in E2F signaling 
enhances the function of  inflammatory cytokines and leads to autoimmunity (44–46).

We repeatedly identified the RUNX1-related core binding factor to be a regulator of the inflammatory sub-
set (Figures 2–4). Patients with ILD with higher RUNX1-related core binding factor activities were more likely 
to be dcSSc and were more likely to have inflammatory signatures (Supplemental Table 16). In contrast, samples 
from patients with lower RUNX1-related core binding activities were more likely to be from normal-like patients 
(Supplemental Table 16). Additionally, we found that high expression of 2 other RUNX1-related core binding 
factors (AML1_01 and AML1_Q6) identified inflammatory subsets with the highest MRSS (mean PCC = 0.28). 
RUNX1-related core binding factors are essential immune regulators (36, 37), and decreased expression has 
been reported in SSc Tregs (47). Our regulator interaction network in inflammatory subsets suggests RUNX1 
may be a central regulator of inflammatory processes in SSc end target tissues (Supplemental Figure 10).

We also identified potentially novel subgroups within fibroproliferative and inflammatory subsets 
that may be at risk for more severe disease (Figure 5). Samples from patients assigned to a double-high 
regulator group were more likely to be from patients have higher MRSS and with dcSSc. Analysis of  
multiple data sets suggests that patients in these double-high groups were more likely to have FVC 
decline. We first identified this in Assassi et al. (14) and validated it in independent skin and PBMC 
data sets, which suggests that the regulator pairing is informative across multiple tissues. The results 
suggested that disease-modifying antirheumatic drugs were not a major confounder or driver of  these 
novel subgroups (Supplemental Tables 12, 14, and 16).
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Limitations of  our analyses include the small number of  samples of  limited intrinsic subset across 
the cohorts and the dependence on published clinical data. The Milano (7) and Hinchcliff  (5) data sets 
contained small numbers of  limited patients (n = 7 and n = 2, respectively). There were no patient sam-
ples in Pendergrass (6) or Assassi (14) data sets classified as limited. Although, we did observe a cluster 
of  TFs for the limited patients in Milano (7), and we have listed the enriched pathways in Supplemental 
Table 2, it was not possible to validate these results in an independent data set. A second limitation is 
that our definitions of  ILD were variable across cohorts. In these analyses, ILD was defined as in each 
of  the original publications with the exception of  the Hinchcliff  cohort (5), where ILD was defined 
using the criteria defined in the methods.

In summary, we applied computational approaches to investigate the function of  regulators associat-
ed with SSc pathogenesis. Though SSc is a complex and heterogeneous disease, taking advantage of  the 
previously well-defined intrinsic subsets, we identified the most significant and highly correlated TFs for 
fibroproliferative and inflammatory patients. These observations might provide a list of  novel regulators 
for those distinct patients with SSc. The prediction of  ILD could provide additional information to deter-
mine probability of  ILD development over time.

Methods
Data set collection. Two types of  data sets were used, gene expression data sets from patients with SSc 
and publicly available target gene lists for regulators. The regulator target gene lists and motif  gene sets 
(C3) were downloaded from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) (48, 49) 
(November 2017), which totaled 836 gene sets, of  which 615 were TFs and 221 were miRNAs. Five 
independent SSc gene expression data sets were obtained from the gene expression omnibus (GEO) 
(50), as shown in Table 1. Milano (GSE9285) (7), Pendergrass (GSE32413) (6), and Hinchcliff  data sets 
(GSE59787) (5) were generated by analysis of  skin biopsies on Agilent Technologies 2-channel DNA 
microarrays in a common reference design and included 75, 89, and 165 samples, respectively. For these 
3 data sets, both lesional (forearm) and nonlesional (lower back) skin biopsies were collected and pro-
cessed using similar protocols, as described in the original studies. These studies have shown the consis-
tent gene expression between lesional (forearm) and nonlesional (lower back) samples. Intrinsic subset 
assignments were as defined in the original publications. Assassi (GSE58095) (14), contains gene expres-
sion data collected from 102 SSc involved forearm skin biopsies using a single-channel DNA microarray, 
and intrinsic subset assignments were determined in a separate study using a previously trained classifier 
(25). Additionally, we downloaded an independent PBMC RNA gene expression data set, Cheadle et 
al. (GSE33463) (38), that contains blood from 27 patients with SSc, 8 of  whom had ILD as previously 
defined. Clinical data, such as MRSS, disease duration, and ILD status for each data set were either 
obtained from NCBI GEO or were requested from the authors of  each study. Early SSc was defined using 
criteria for each published data set (usually as SSc disease duration less than 18 months from the time of  
the first non-Raynaud’s symptom attributed to SSc to the sample collection time).

Table 1. Summarization of data sets used in the study

Data set GEO accession Platform No. samples No. intrinsic subtypes 
(proliferative/inflammatory/

limited/normal-like)

No. clinical 
subtypes  

(dcSSc/lcSSc)

No. disease stage 
(early/late)

Milano et al., ref. 7 GSE9285 Two-channel 
array

75 24/9/13/22 31/16 7/45

Pendergrass et al., ref. 6 GSE32413 Two-channel 
array

89 26/25/9/23 66/0 59/6

Hinchcliff et al., ref. 5 GSE59787 Two-channel 
array

165 49/42/40/30 111/21 75/64

Assassi et al., ref. 14 GSE58095 One-channel 
array

102 27/22/0/53 43/18 5/5

Cheadle et al., ref. 38 GSE33463 One-channel 
array

69 NA NA NA

NA, data not available.
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SSc-ILD definition across data sets. In this meta-analysis of  published cohorts, presence or absence of  ILD 
used was as defined in each of  the original publications. These were as follows. For the Assassi et al. data 
set (14), which was used as the training data set, patients were classified as having ILD when the percent-
age FVC predicted was less than 70%. For the Hinchcliff  et al. data set (5), which was used as validation 
cohort, ILD was defined as the presence of  radiographic findings consistent with ILD in the opinion of  an 
expert thoracic radiologist (5, 51). The Cheadle et al. data set (38), also used as a validation cohort, defined 
ILD according to pulmonary function tests and chest high-resolution computed tomography.

Regulator activity score calculation. To implement our computational pipeline, we first imputed missing gene 
expression values using the mean value of  a probe across samples. Then, probe-level DNA microarray data 
were collapsed to genes using median values. Next, by integrating target genes and gene expression profiles, 
we applied a statistical algorithm called BASE (13) to calculate a regulator activity score for each regulator in 
each sample. This algorithm has been successfully applied in tumors to infer the activity of  regulators based 
on target gene expression (52, 53). By quantile normalizing the gene expression profile, BASE ensures that 
samples have a comparable distribution at the genetic level. Then, for single-channel DNA microarray data 
sets, BASE normalizes its gene expression based on the median expression of  each gene. For 2-channel DNA 
microarray data, as the data has already been processed by calculating log ratios, no additional processing 
is needed. Afterward, for a regulator whose target gene list is g = {g1...,gi...,gn} (if  genei is target gene, gi is 1; 
otherwise gi is 0) and a sample with gene expression profile is e = {e1...,ei...,en}, where n is the number of  genes, 
BASE sorts the gene expression in decreasing order and generates 2 cumulative distribution functions. The 
first function calls the foreground function, which captures the gene expression levels of  target genes of  this 
regulator. Then, the background function is calculated to represent the gene expression levels of  nontarget 
genes. When target genes have a higher gene expression level, the foreground function increases dramatically 
and the background function increases slowly. When the target genes have lower levels of  gene expression, 
the foreground function increases slowly and the background function increases dramatically. The maximum 
difference of  these 2 functions was used as a preliminary regulator activity score in this sample. A higher 
score indicates that the target genes of  a given regulator are being more highly expressed, which translates 
to a high regulator activity. Further, by performing a permutation that randomly permutes g for 1000 times, 
BASE recalculates the regulator activity score to provide a score vector sp = {s1,s2...,s1000}. Finally, by dividing 
the mean of  absolute values of  sp, BASE normalizes the preliminary regulator activity score and infers a 
sample-specific regulatory activity score. As a general approach, we considered TF activity scores as being 
positively correlated and miRNA activity scores as being negatively correlated with the expression of  their 
target genes. We recognize that there are cases that violate these assumptions (i.e., transcriptional repressors 
and activating miRNAs) that will have to be considered on an individual gene basis. Z-transformed activity 
scores for each data set are listed in Supplemental Table 18.

Common regulator identification. Using the calculated regulatory activity scores, we calculated the cor-
relations between scores and the MRSS that were obtained at the time of  the skin biopsy. Mean correlation 
was calculated across all cohorts and ranked in decreasing order. The 50 most top- and bottom-ranked 
regulators were considered to be clinically relevant regulators.

Network construction. To build the regulator interaction network, we applied our previous workflow (53). 
After mapping regulators to the genetic level, an interaction could be identified in the case when the target 
gene list of  a regulator contains the genetic symbol of  other regulators within the MSigDB C3 database. 
To reduce the complexity of  the network, duplicated regulators were amalgamated, and unclassified motifs 
were excluded. In the network, different colors implied the correlation directions (positively or negatively) 
with MRSS. The arrow on the edges showed the regulatory direction and a circle with an arrow indicates 
that a regulator participates in a self-feedback loop. The network was created using Cytoscape (54).

Statistics. We calculated within-between scores for each regulator in each data set using the intrinsic 
subsets as groups (15). FDR was provided to define the degree of  consistent activity in 1 intrinsic subset 
and the degree of  the diverse activity between intrinsic subsets. An FDR of  2% was used as a statistical 
significance cutoff, as the results showed the most consistency with the previously defined intrinsic subsets.

Pathway enrichment analysis was conducted via g:Profiler (55) with best per-parent group setting. The 
KEGG pathway data set was selected (56). A corrected P value of  less than 0.05 for multiple testing using 
the default g:SCS method was applied to define the significantly enriched pathways.

For the subgroup analysis, P values between groups were calculated by 2-tailed Mann-Whitney-Wilcox-
on test. Then, the FDR was calculated with the p.adjust() function in R. For subgroups in intrinsic subsets, 
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an FDR of  <1% was used to define significance. Given their smaller sample size, an FDR of  <5% was used 
to define significance for subgroups in ILD samples. For the FVC comparisons between baseline and the last 
time point, 2-tailed paired-samples t test was used.

Heatmaps were plotted using the heatmap.2() function in R “gplots” package (57). The activity scores 
were processed with the scale() function in R.
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