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Abstract

Background: Advances in large-scale tumor sequencing have led to an understanding that there are combinations of
genomic and transcriptomic alterations specific to tumor types, shared across many patients. Unfortunately, computational
identification of functionally meaningful and recurrent alteration patterns within gene/protein interaction networks has
proven to be challenging. Findings: We introduce a novel combinatorial method, cd-CAP (combinatorial detection of
conserved alteration patterns), for simultaneous detection of connected subnetworks of an interaction network where
genes exhibit conserved alteration patterns across tumor samples. Our method differentiates distinct alteration types
associated with each gene (rather than relying on binary information of a gene being altered or not) and simultaneously
detects multiple alteration profile conserved subnetworks. Conclusions: In a number of The Cancer Genome Atlas datasets,
cd-CAP identified large biologically significant subnetworks with conserved alteration patterns, shared across many tumor
samples.
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Introduction

Recent large-scale tumor-sequencing projects such as Pan Can-
cer Analysis of Whole Genomes (PCAWG) have revealed a multi-
tude of somatic genomic, transcriptomic, proteomic, and epige-
nomic alterations across cancer types. However, only a select
few of these alterations provide proliferative advantage to the
tumor and hence are called ”driver” alterations [1]. Distinguish-
ing driver alterations from functionally inconsequential random

”passenger” alterations is critical for therapeutic development
and cancer treatment.

Cancers are often driven by alterations to multiple genes
[2,3]. Whereas genomic alterations are likely consequences
of endogenous or exogenous mutagen exposures [4], their
evolutionary selection depends on the functional role of the af-
fected genes [1] and their synergistic combinations. For exam-
ple, TMPRSS2-ERG gene fusion is an early driver event in almost
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half of prostate cancer cases, and it often co-exists with copy
number loss of PTEN and NKX3-1 [5–7]. Another example is the
concomitant deletion of 4 cancer genes—BAP1, SETD2, PBRM1,
and SMARCC1—in chromosome locus 3p21, identified as a driver
event in clear cell renal cell carcinoma [8], uveal melanoma [9],
and mesotheliomas [10]. These genes are involved in the chro-
matin remodeling process, and their loss further impairs the
DNA damage repair pathway in tumors [9].

Alterations in ≥2 genes might be evolutionary co-
selected because alteration in 1 gene might enhance the
deleterious effect of the others [11]. Such co-selected genes
are often active in a functionally significant subnetwork (i.e.,
module or pathway) within the human gene/protein interaction
network, and aberrations in such subnetworks are common to
particular cancer types as demonstrated by recent sequencing
efforts (e.g., PCAWG) [12]. For instance, TMPRSS2 interacts
with ERG and PTEN (see the example above) in the STRING
version 10 protein-protein interaction (PPI) network; in fact all 3
genes co-operate to modulate the NOTCH signaling pathway in
TMPRSS2-ERG–positive prostate cancer progression [7]. As a re-
sult, it is desirable to identify subsets of functionally interacting
genes that are commonly (genomically or transcriptomically)
altered in specific tumor types.

Recently, a number of computational methods have been de-
veloped to identify recurrent genomic (as well as transcriptomic)
alteration patterns across tumor samples. Some of these meth-
ods have been designed to identify multiple gene alterations si-
multaneously on the basis of their co-occurrence or mutual ex-
clusivity relationships in a tumor cohort, either with [13] or with-
out [14,15] reference to a molecular interaction network. Other
methods have been developed to identify subnetworks within a
molecular interaction network with specific characteristics, e.g.,
the subnetwork of a fixed size with the highest total ”weight”
[16,17] or the subnetwork seeded by a particular node that can
be derived through a diffusion process [18,19]; naturally these
methods do not capture recurrent alteration patterns across a
cohort. A direction particularly relevant to our article is moti-
vated by a number of related works [18,20–22] and explored by
Bomersbach et al. [23], which suggests finding a subnetwork of a
given size k with the goal of maximizing h, the number of sam-
ples for which ≥1 gene of the subnetwork is in an altered state.
(A similar formulation where the goal is to maximize a weighted
difference of h and k, for varying size k, can be found in Hristov
and Singh [24].) Although the above combinatorial problems are
typically NP-hard, they became manageable through the use of
state of the art integer linear programming (ILP) solvers or greedy
heuristics, or by the use of complex preprocessing procedures
that substantially reduce the problem size.

Complementary to the ideas proposed above, there are also
several approaches to identify mutually exclusive (rather than
jointly altered) sets of genes and pathways [25–27]. These ap-
proaches utilize the mutational heterogeneity prevalent in can-
cer genomes and are driven by the observation that mutations
acting on same pathway are often mutually exclusive across tu-
mor samples. Although, from a methodological point of view,
these approaches are very interesting, they are not trivially ex-
tendable to the problem of identifying co-occurring alteration
patterns (involving >2 genes) conserved across many samples.

Our contribution

In this article we present a novel computational method,
combinatorial detection of conserved alteration patterns (cd-
CAP), for detection of subnetworks of an interaction network,

each with an alteration pattern conserved across a large sub-
set of a tumor sample cohort. The framework of cd-CAP allows
each gene to be labeled (or ”colored”) with ≥1 distinct alteration
type (e.g., somatic mutation, copy number alteration, or aber-
rant expression) with the goal of identifying ≥1 subnetworks,
each with a specific alteration (labeling) pattern, that is shared
across many samples (Fig. 1). As such, cd-CAP solves a novel
problem that has not been tackled in the literature. In fact, the
very notion of ”conserved subnetworks” used by cd-CAP is novel:
in Bomersbach et al. [23] and Hristov and Singh [24] the sub-
networks of interest are composed of nodes such that in each
patient ≥1 is altered (one way or another). In contrast, cd-CAP
insists that each node is altered in each patient, and each node
preserves its alteration type in each patient. Additionally, un-
like Hristov and Singh [24], which employ heuristics to solve a
highly restrictive problem and thus cannot guarantee optimal-
ity, cd-CAP uses a very efficient exhaustive search method (a
variant of the a priori algorithm, originally designed for asso-
ciation rule mining [28]) to quickly solve a very general problem
optimally.

cd-CAP offers 2 basic modes: the ”single-subnetwork” mode
identifies the largest subnetwork altered the same way in ≥t
samples by solving the maximum conserved subnetwork iden-
tification problem (MCSI) optimally; the ”multi-subnetwork”
mode identifies l subnetworks of size (at most) k (k and l are
user-defined parameters) that collectively cover the maximum
number of nodes in all samples by solving the maximum con-
served subnetwork cover problem (MCSC) via ILP. In both modes,
cd-CAP runs in 2 steps. The first step computes a set of all ”candi-
date” subnetworks (each with a distinct alteration pattern) with
≤k nodes, and which are shared by ≥t samples. However, the 2
modes differ in the second step: the first returns a single largest
subnetwork, and the second returns l subnetworks collectively
covering the maximum number of nodes from the set of candi-
date subnetworks.

Additionally cd-CAP provides the user the ability to add or
relax some constraints on the subnetworks it identifies. Specifi-
cally, the user can ask cd-CAP to (i) return ”colorful” subnetworks
(i.e., subnetworks of nodes with ≥2 distinct colors) or (ii) allow
up to a δ fraction of nodes in the subnetwork to have no alter-
ation (as a result, not colored) in some of the samples that share
the subnetwork.

We have applied cd-CAP—with both single and multi-
subnetwork mode, with the basic setting (which only requires
that each node has the same alteration type across the sam-
ples), as well as each of the possible additional options above,
i.e., (i), (ii)—to The Cancer Genome Atlas (TCGA) breast ade-
nocarcinoma (BRCA), colorectal adenocarcinoma (COAD), and
glioblastoma multiforme (GBM) datasets. On these datasets,
which collectively include >1,000 tumor samples, cd-CAP iden-
tified several connected subnetworks of interest, each exhibit-
ing a specific gene alteration pattern across a large subset of
samples.

In particular, cd-CAP results with the basic setting demon-
strated that many of the largest highly conserved subnetworks
within a tumor type solely consist of genes that have been sub-
ject to copy number gain, typically located on the same chromo-
somal arm and thus likely a result of a single, large-scale amplifi-
cation. One of these subnetworks that cd-CAP observed (in about
one-third of the COAD samples [29]) includes 9 genes in chro-
mosomal arm 20q, which corresponds to a known amplification
recurrent in colorectal tumors. Another copy number gain sub-
network cd-CAP observed in breast cancer samples corresponds
to a recurrent large-scale amplification in chromosome 1 [30]. It
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Figure 1: Schematic Overview of our framework. Multi-omics alteration profiles of a cohort of tumor samples are identified using appropriate bioinformatics tools.
The alteration information is combined with gene-level information in the form of a sample-gene alteration matrix. Each alteration type is assigned a distinct color.
Using a (signaling) interaction network, cd-CAP identifies subnetworks with conserved alteration patterns.

is interesting to note that cd-CAP was able to rediscover these
events without specific training.

Several additional subnetworks identified by cd-CAP solely
consist of genes that are aberrantly expressed. Further analy-
sis with option (ii) in the multi-subnetwork mode of cd-CAP re-
vealed subnetworks that capture signaling pathways and pro-
cesses critical for oncogenesis in a large fraction of tumors. We
have also observed that the subnetworks identified through all
different options of cd-CAP are associated with patients’ survival
outcome and can hence be clinically important.

To assess the statistical significance of subnetworks discov-
ered by cd-CAP in the single-subnetwork mode, we introduce for
the first time a model in which likely interdependent events,
in particular amplification or deletion of all genes in a single
chromosome arm, are considered as a single event. Conven-
tional models of gene amplification either consider each gene
amplification independently [31] (this is the model we implic-
itly assume in our combinatorial optimization formulations, giv-
ing a lower bound on the true P-value) or assume that each
amplification can involve >1 gene (forming a subsequent se-
quence of genes) but with the added assumption that the orig-
inal gene structure is not altered and the duplications occur in
some orthogonal ”dimension” [32–34]. Both models have their
assumptions that do not hold in reality but are motivated by
computational constraints: inferring the evolutionary history of
a genome with arbitrary duplications (that convert one string
to another, longer string, by copying arbitrary substrings to ar-
bitrary destinations) is an NP-hard problem (and is difficult to
solve even approximately) [35,36]. By considering all copy num-
ber gain or loss events in the same chromosomal arm as a sin-
gle event, we are, for the first time, able to compute an estimate
that provides an empirical upper bound to the statistical signif-
icance (P-value) of the subnetworks discovered. (Note that this
is not a true upper bound because a duplication event may in-
volve both arms of a chromosome, but that would be extremely
rare.) Through this upper bound, together with the lower bound
above, we can sandwich the true P-value and thus the signifi-
cance of our discovery.

Methods

The Combinatorial Optimization Formulation section below de-
scribes the combinatorial optimization formulations used by cd-
CAP to solve the problem of detecting conserved alteration pat-
terns and all its abovementioned variants. The Algorithmic De-
tails section describes implementation details for the 2 main
steps of cd-CAP’s solution. The Additional Constraints and Pa-
rameter Options subsection describes the implementation de-
tails for the 2 variants on the constraints imposed by cd-CAP.

Combinatorial optimization formulation

Consider an undirected and node-colored graph G = (V, E), repre-
senting the human gene or protein interaction network, with n
nodes where vj ∈ V represent genes and e = (vh, vj) ∈ E represent
interactions among the genes/proteins. A given sample/patient
Pi (among m samples in a cohort) has a specific coloring of G,
namely Gi = (V, E, Ci), where each node vi, j (corresponding to
node vj ∈ V) is colored with ≥1 possible colors to form the set
Ci, j (i.e., Ci maps vi, j to a possibly empty subset of colors Ci, j).
Each color represents a distinct type of alteration harbored by
a gene/protein: specific alteration types that we consider are
somatic mutation (single-nucleotide alteration or short indel),
copy number gain, copy number loss, or significant alteration
in expression (this set of alterations can be trivially expanded
to include genic structural alteration—micro-inversion or dupli-
cation, gene fusion, alternative splicing, methylation alteration,
non-coding sequence alteration) observed in a gene or its pro-
tein product. Note that Ci, j = ∅ implies that none of the alter-
ation types we consider are observed at vi, j. Also note that given
a node vj, its occurrences vi, j and vi ′, j , in respective samples Pi

and P ′
i , have ≥1 matching color if Ci, j ∩ Ci ′, j 
= ∅.

The main goal of cd-CAP is to identify conserved patterns of
(i.e., identically colored) connected subnetworks across a subset
of colored (sample) networks Gi. Consider a connected subnet-
work T = (VT, ET) of the interaction network G, where each node
vj ∈ VT is assigned a single color cj. Such a colored subnetwork
is said to be shared by a collection of patient networks {Gi: i ∈ I}
if the color cj assigned to each vertex vj is in the color set Ci, j of
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each vi, j(i ∈ I), i.e., c j ∈ ⋂
i∈I Ci, j for each vj ∈ VT. Note that vi, j is

said to be covered by a colored subnetwork if that colored sub-
network is shared by Gi (Fig. 1). Intuitively, a colored subnetwork
represents a conserved pattern or a network motif.

In the single-subnetwork mode, cd-CAP solves MCSI, a spe-
cific combinatorial problem to identify conserved patterns of
subnetworks. MCSI seeks to find the largest connected colored
subnetwork S of the interaction network G, that occurs in ex-
actly t (a user-specified number) samples P , such that each node
in S has the same color (assigned to it in S) in each sample
Pi ∈ P . Note that this formulation is orthogonal to that used in
Bomersbach et al. [23] and Hristov and Singh [24], where the goal
is to maximize the number of samples that share a fixed-size
subnetwork. Unlike these formulations, MCSI admits a gener-
alization of the a priori algorithm, which we use to solve it ef-
ficiently. Note that our formulation considers distinct types of
mutations (as colors) in the conserved alteration patterns, an-
other key improvement to alternative formulations used in the
literature [23,24].

In the multi-subnetwork mode, on the other hand, cd-CAP
aims to simultaneously identify multiple conserved subnet-
works that are altered in a large number of samples. In particu-
lar, it may aim to cover all nodes vi, j, in all m input sample net-
works Gi, with the smallest number of subnetworks T = (VT, ET)
shared by ≥1 sample network. We refer to this combinatorial op-
timization problem as the minimum subgraph cover problem for
(node) colored interaction networks (MSC-NCI). As shown below,
cd-CAP solves a slightly more constrained variant of this prob-
lem in the multi-subnetwork mode.

The MSC-NCI problem, as described above, is parameter-free.
However, in a realistic multi-omics cancer dataset, the num-
ber of genes far exceeds the number of samples represented.
Under such conditions, the solution to the MSC-NCI problem
will primarily include subnetworks that are large connected
components that are shared by only 1 sample network. To ac-
count for this situation, we introduce the following parame-
ters/constraints akin to those for the MCSI formulation: (i) we
require that the nodes in each subnetwork have their assigned
color shared by ≥t samples (in the remainder of the discussion, t
is referred to as the ”depth” of a subnetwork); and (ii) we require
that each subnetwork returned contain ≤k nodes. Note that this
variant of the problem is infeasible for certain cohorts (consider
a particular node that has a unique color for a particular sample;
clearly requirement [i] cannot be satisfied if t > 1). Even if there
is a feasible solution, the requirement that each subnetwork in
T be of size ≤k makes the problem NP-hard (the reduction is
from the problem of determining whether G can be exactly par-
titioned into connected subnetworks, each with k nodes [37]).
As a result (iii) we introduce 1 additional parameter, l, the max-
imum number of subnetworks (each of size ≤k, and which are
color-conserved in ≥t samples), with the objective of covering
the maximum number of nodes across all samples. We refer to
the problem of identifying ≤l subnetworks of size ≤k, whose col-
ors are conserved across ≥t samples, so as to maximize the total
number of nodes in all these samples covered by these subnet-
works, as the MCSC problem. cd-CAP solves MCSC via ILP in its
multi-subnetwork mode.

Algorithmic details

In this section we describe the detailed algorithmic framework
of cd-CAP, which consists of 2 steps for both its single- and multi-
subnetwork modes. The key insight as the basis of our algorithm
is that in all instances of interest, only a limited number of genes

are colored in comparison with the total number of nodes nm.
This enables us to apply an exhaustive search method that is
designed for association rule mining [28] to build a list of all can-
didate subnetworks exactly and efficiently (e.g., in comparison
with the ILP or heuristic solutions in Bomersbach et al. [23] and
Hristov and Singh [24]). Note that our exhaustive search method
is an extension of the a priori algorithm, with the difference that
we require the candidate subnetworks to maintain connectivity
as they grow. As a result, we first compute the candidate sub-
networks (each with a distinct alteration pattern) with ≤k nodes,
and which are shared by ≥t samples in both modes. In the next
step, in the single-subnetwork mode, cd-CAP simply returns the
largest subnetwork among the candidate subnetworks, while in
the multi-subnetwork mode it solves the MCSC on the set of can-
didate subnetworks via the ILP formulation below.

First step of cd-CAP: Generating candidate subnetworks
We generate the complete list of candidate subnetworks with
minimum depth t by the use of the ”anti-monotone” property
[38]: if any subnetwork S has depth <t, then the depth of all of
its supergraphs S′⊃S must be <t. This makes it possible to grow
the set S of valid subnetworks comprehensively but without rep-
etition (described as ”optimal order of enumeration” in Maxwell
et al. [39]) through the following breadth-first network growth
strategy.

(1) For every colored node vi, j and each of its colors c�, we create
a candidate subnetwork of size 1 (i.e., with single node) con-
taining the node with color c�. All samples in which the node
is colored c� trivially share this subnetwork.

(2) We inductively consider all candidate subnetworks of size s
with the goal of growing them to subnetworks of size s + 1
as follows. For a given subnetwork T of size s, consider each
neighboring node u. For each possible color c′

� of u, we cre-
ate a new candidate subnetwork of size s + 1 by extending T
with u—with color c′

�. We maintain this subnetwork for the
next inductive step only if the number of samples sharing
this new subnetwork is ≥t; otherwise, we discard it.

The procedure is repeated until none of the subnetworks of
size s + 1 covers ≥t samples (typically in the single-subnetwork
mode), or until s = k − 1 (typically in the multi-subnetwork
mode). Once the procedure terminates, the single-subnetwork
mode simply returns all subnetworks constructed in the final
iteration (of size s). The multi-subnetwork mode requires addi-
tional processing as described below. Note, however, that dur-
ing the extension of T above, if the new node u does not reduce
the number of samples sharing it, T becomes redundant and is
not considered in the ILP formulation in the multi-subnetwork
mode.

Second step of cd-CAP: Solving MCSC for multi-subnetwork mode
Given the universe U = {vi, j | Ci, j 
= ∅ , i = 1, · · · , m; j = 1, · · · , n},
containing all the colored nodes in all the sam-
ple networks, and the collection of all subnetworks
S = {Ti | Ti is shared by ≥ t samples and contains ≤ k nodes},
our goal is to identify up to l subnetworks from the set S that
collectively contain the maximum possible number of elements
of the universe U .

After the list of all candidate subnetworks S is constructed
(as described in the previous subsection), we represent the MCSC
problem with the integer linear program below and solve it using
IBM ILOG CPLEX or Gurobi. A binary variable C[i, j] corresponds
to whether colored node vi, j was covered by ≥1 chosen subnet-
work, and binary variable X[i] corresponds to whether colored
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candidate subnetwork Ti was one of the chosen. Similarly Si, j

represents the set of all subnetworks of S that contain node vi, j

properly colored in them.

Maximize
∑

vi, j ∈U
C [i, j]

such that
∑

Tp∈Si, j

X[p] ≥ C [i, j] (∀vi, j ∈ U )

∑

Ti ∈S
X[i ] ≤ l.

Additional constraints and parameter options

In addition to the exactly conserved colored subnetworks ob-
tained through the general MCSI or MCSC formulation as de-
scribed above, cd-CAP offers the user the ability to add or relax
constraints through new parameters, in both single- and multi-
subnetwork mode.

i) Colorful conserved subnetworks. In some of the datasets that
we analyzed, certain variant types (i.e., colors) were domi-
nant in the input to the extent that all subnetworks identified
by our method had all nodes colored identically. By insisting
that the identified subnetworks be ”colorful,” it is possible to,
e.g., capture conserved genomic alterations and their impact
on their interaction partners (form of expression alterations).
For this purpose we introduce the notion of a colorful subnet-
work, T, as a subnetwork that has ≥2 distinct colors repre-
sented in the coloring of its nodes, i.e., c�, ch ∈ ⋃

v j ∈T c j (c� 
=
ch). To identify colorful subnetworks instead of arbitrary sub-
networks, we update the first step of cd-CAP so that it specifi-
cally keeps track of colorful subnetworks (rather than all sub-
networks) in each iteration; this is because any colorful net-
work must contain a connected colorful subnetwork.

ii) Subnetworks conserved within error rate δ. To reduce the sen-
sitivity of cd-CAP to noise (that emerges during the assign-
ment of variant types to genes—due to limited precision of
sequence or statistical analysis methods) in the input data,
we provide the user the option to allow errors in identifying
conserved subnetworks. For that, cd-CAP provides the user
the option to specify an error rate δ that represents the frac-
tion of nodes in a subnetwork T that can have no assigned
color in any sample that shares T. We implemented this by
updating the first step of cd-CAP so that it expands the set
of samples that share each candidate subnetwork T to every
other sample where T occurs with ≤δ|T| color omissions.

Assessing the statistical and biological significance of
the networks identified by cd-CAP

Statistical significance of subnetworks identified by cd-CAP
It is possible to assess the statistical significance of the subnet-
works identified by cd-CAP by applying the conventional per-
mutation test [13,23,27] on the color assignments of nodes, un-
der the assumption that each gene is altered independently: let
Ci, j represent the set of colors assigned to a node vi, j and let
Ci = {(vi, j , Ci, j )} represent the entire set of color assignments to
nodes vi, j in network Gi. We can obtain a random permutation
of the color assignment C ′

i by independently shuffling each color
c ∈ ∪jCi, j across the nodes of Gi, which results in an assignment

of a new color set C ′
i, j to each node vi, j, under the constraint that

the total number of nodes with each color c is preserved. For a
subnetwork T = (VT, ET) of size k covering t samples returned
by cd-CAP in the single-subnetwork mode, we can carry out a
permutation test as follows. First we generate a permuted color
assignment (as described above) for each sample. Then we run
cd-CAP in the single-subnetwork mode (possibly with the op-
tion [i] or [ii] as described in the previous section) and identify
the largest subnetwork that covers ≥t samples. We repeat this
sufficiently many (by default 1,000) times to compute P1, T, the
number of times we end up with a subnetwork of size ≥k in ≥t
samples, normalized by the number of attempts. We can use P1, T

as an empirical P-value for subnetwork T of size k.
P1, T forms an empirical lower bound for the P-value of T

rather than an accurate estimate because it ignores the in-
terdependencies among gene alteration events (i.e., node col-
ors). In particular, whole-chromosome or chromosome arm–
level copy number amplifications/deletions are commonly ob-
served in cancer; such events must be reflected in the permu-
tation test we use. To address this issue, we apply the following
procedure to compute P2, T as an empirical upper bound for the
P-value of T, under the assumption that copy number alterations
take place in whole chromosome arms. For a given color E, cor-
responding to either copy number gain or loss events, let Ni, E de-
note the number of nodes with color E in Gi. For each chromoso-
mal armA, consider the set of nodes Vi,A that have been assigned
≥1 color in Gi. Now we can reassign colors to vertices such that (i)
colors E corresponding to copy number gain or loss are assigned
to all genes in a chromosome arm simultaneously; specifically,
the set of nodes Vi,A in a chromosome arm A are all assigned the
same color E independently with probability NE/

∑
j |Ci, j | (which

guarantees that the expected number of nodes with color E in Gi

is preserved); (ii) the remaining colors (not related to copy num-
ber gain or loss) are assigned randomly to those nodes with-
out a color assignment thus far (as described in the computa-
tion for P1, T). This process provides a new randomly permuted
color assignment C ′′

i , which we use to obtain an empirical upper
bound on the P-value of a subnetwork T discovered by cd-CAP.
For that we perform this process simultaneously in all Gi and
check whether the largest subnetwork shared by ≥t samples ex-
ceeds the size of a subnetwork T (identified on the input dataset
by cd-CAP). We repeat this process sufficiently many times and
record the number of times the largest subnetwork obtained in-
deed exceeds the size of T; that value normalized by the number
of times the process is executed is the value P2, T, the empirical
upper bound on the P-value of T. The true P-value of T must be
in the range [P1, T, P2, T] (provided that chromosome arms form
the largest units of alteration).

Pathway enrichment analysis
We tested the set of genes in the subnetworks obtained by cd-
CAP for enrichment against gene sets corresponding to path-
ways present in the Molecular Signature Database version 6.0
[40]. A hypergeometric test–based gene set enrichment analysis
[40] was used for this purpose. A false discovery rate ≤0.01 was
used as a threshold for identifying significantly enriched path-
ways.

Association between cd-CAP–identified subnetworks and patients’
survival outcome
To assess the association between each cd-CAP–identified sub-
network T with patients’ survival outcome, we used a risk score
based on the (weighted) aggregate expression of all genes in the
subnetwork T. The risk score (S) of a patient is defined as the sum
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of the normalized gene expression values in the subnetwork,
each weighted by the estimated univariate Cox proportional-
hazard regression coefficient [41], i.e., S = ∑k

i βi xi j . Here i and j
represent a gene and a patient, respectively; β i is the coefficient
of Cox regression for gene i; xij is the normalized gene expres-
sion of gene i in patient j; and k is the number of genes in the
subnetwork. The normalized gene expression values were fitted
against overall survival time with living status as the censored
event using univariate Cox proportional-hazards regression (ex-
act method). On the basis of the risk score values, patients were
stratified into 2 groups: low risk (patients with S < mean of S)
and high risk (patients with S ≥ mean of S). Note that only those
patients who are covered by the subnetwork are considered for
the analysis above. In fact, with respect to survival outcomes,
the set of patients covered by a subnetwork identified by cd-CAP
would not necessarily differ from those who are not, because
the latter set is likely to be highly heterogeneous with respect to
cancer subtypes.

Results
Datasets and data processing

TCGA tumor variant data
We obtained somatic mutation, copy number aberration (CNA),
and RNA sequencing–based gene expression data from 3 dis-
tinct cancer types: GBM [42], BRCA [43], and COAD [29] from
TCGA datasets (detailed information can be found in Supple-
mentary Section 1). In addition, we distinguish 4 commonly ob-
served molecular subtypes (i.e., luminal A, luminal B, triple-
negative/basal-like, and HER2-enriched) from the BRCA cohort.
For each sample, we obtained the list of genes that harbor so-
matic mutations, CNAs, or are expression outliers as per below.

Somatic mutations. All non-silent variant calls that were
identified by ≥1 tool among MUSE, MuTect2, SomaticSniper, and
VarScan2 were considered.

CNAs. CNA segmented data from the National Cancer In-
stitute Genomic Data Commons were further processed using
Nexus Copy Number Discovery Edition version 9.0 (BioDiscovery,
Inc., El Segundo, CA) to identify aberrant regions in the genome.
We restricted our analysis to the most confident CNA calls, se-
lecting only those genes with high copy gain or homozygous
copy loss.

Expression outliers. We used HTSeq-FPKM-UQ normalized
RNA sequencing expression data to which we applied the gener-
alized extreme studentized deviate (GESD) test [44]. In particu-
lar, we used the GESD test to compare the transcriptome profile
of each tumor sample (one at a time) with that from a number
of available normal samples. For each gene, if the tumor sam-
ple was identified as the most extremely deviated sample (us-
ing critical value α = 0.1), the corresponding gene was marked
as an expression outlier for that tumor sample. This procedure
was repeated for every tumor sample. Finally, comparing the tu-
mor expression profile of these outlier genes with the normal
samples, their up- or downregulation expression patterns were
determined.

Interaction networks
We used the following human protein interaction networks in
the identification of the most significant subnetworks specific
to the cancer types mentioned above: (i) STRING version 10 [45]
protein interaction network, which contains high-confidence
functional PPIs. Self-loops and interactions with missing HUGO
Gene Nomenclature Committee symbols were discarded and in-

teraction scores were normalized (divided by 1,000) to obtain a
reliability score in the range [0, 1]. Only high-confidence interac-
tions with a combined score of ≥0.9 were selected. (ii) STRING
network with only experimentally verified edges. (iii) Human
Protein Reference Database (HPRD) version 9 [46]. (iv) REACTOME
version 2015 [47].

Maximal colored subnetworks across cancer types

We used cd-CAP to solve the MCSI problem exactly on each of the
protein interaction networks we considered on all cancer types,
for every feasible value of network depth. As can be easily ob-
served, the depth and the size of the identified subnetwork are
inversely related. We say that a network depth value is feasi-
ble if (i) the depth is ≥10% of the cohort size, (ii) the maximum
network size for that depth is ≥3, and (iii) the number of ”can-
didate” subnetworks is ≤2 million per iteration when running
cd-CAP for that depth.

The number of maximal solutions of cd-CAP as a function of
feasible network depth for each cancer type (COAD, GBM, BRCA
luminal A, and BRCA luminal B) is shown in Fig. 2A–D on STRING
version 10 PPI network with high-confidence edges (see Supple-
mentary Figs 2–5 for the results on alternative PPI networks). In
general, for a fixed network size, the number of distinct net-
works of that size decreases as the network depth increases.
One can observe that the ends of ”valleys” in the colored plots in
Fig. 2A–D correspond to the largest depth that can be obtained
for a given subnetwork size.

In the remainder of the article we focus only on the single
colored subnetwork of each given size that has the maximum
possible depth (corresponding to the ends of the ”valleys” in
the plots). (If, for a given subnetwork size and the correspond-
ing maximal depth, cd-CAP returns >1 subnetwork, they are ig-
nored.)

Many of the subnetworks that we focused on, especially
those with large depth, only consisted of expression outlier
genes (typically all upregulated or all downregulated) (Fig. 2A–
D), across all 4 cancer types. In the luminal A dataset, for
example, cd-CAP identified a subnetwork of 8 downregulated
genes with a network depth of 90 (Fig. 2E), consisting of genes
EGFR, PRKCA, SPRY2, and NRG2, known to be involved in the
EGFR/ERBB2/ERBB4 signaling pathways (Fig. 2F). EGFR is an im-
portant driver gene involved in the progression of breast tumors
to advanced forms [48], and its altered expression is observed in
a number of breast cancer cases [30]. The subnetwork also in-
cluded MET, another well-known oncogene [49], and is enriched
for members of the Ras signaling pathway, which is also known
for its role in oncogenesis and mediating cancer phenotypes
such as overproliferation [50].

cd-CAP additionally identified some (uni-colored) copy num-
ber gain networks, typically with lower depth: a prominent ex-
ample is in the COAD dataset with depth 163 (out of 463 pa-
tients in the cohort). This network forms the core of larger (max-
imal) subnetworks that cd-CAP identifies for lower depth values;
it corresponds to a copy number gain of the chromosomal arm
20q—a well-known CNA pattern highly specific to COAD tumors
[29]. Another subnetwork that cd-CAP identified in 15% of the
422 BRCA luminal A samples corresponds to a copy number gain
on chromosome 1 that is again a known aberration associated
with breast cancer [30].

Note that cd-CAP also identified several multi-colored sub-
networks. The benefits of cd-CAP’s ability to identify multi-
colored subnetworks are demonstrated in Supplementary Fig. 1,
which summarizes the results of a comparison between cd-
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Figure 2: Conserved colored subnetworks. (A–D) Number of maximal solutions and the size of the conserved colored subnetwork obtained using the MCSI formulation,

as a function of network depth t, in each of 4 cancer types analyzed, on STRING version 10 (with high-confidence edges) PPI network. The horizontal axis denotes the
depth (number of patients) of the network. For the blue curve, the vertical axis denotes the maximum possible network size (in terms of the number of nodes) and
thus it is strictly non-increasing by definition. For the curves with different colors, the vertical axis denotes the number of distinct networks with network size equal to

that indicated by the blue curve. As can be seen, the red curves depict networks where all nodes have a copy number gain, the yellow curves depict networks where all
nodes are expression outliers, and purple curves depict colorful networks (with ≥2 distinct colors). A total of 41 subnetworks across all cancer types (10 COAD, 4 GBM,
11 luminal A, and 16 luminal B) correspond to the ends of ”valleys” in the color plots and were further analyzed. Two of the most interesting ones are provided here,
both of which are uni-colored. The number in parentheses next to each node represents the univariate Cox proportional-hazards regression coefficient estimated for

each gene, used as its weight in the risk score calculation to stratify patients into 2 distinct risk groups. (See Methods section for details). (E–G) One of the 11 maximal
colored subnetworks identified in the BRCA luminal A dataset. It consists solely of downregulated expression outlier genes and has depth 90 (patients). (E) The colored
subnetwork (with 8 nodes) topology. (F) Pathways dysregulated by alterations harbored by the genes in the subnetwork; these genes are involved in the epidermal
growth factor receptor (EGFR), ERBB2, and fibroblast growth factor receptor (FGFR) signaling pathways. (G) Kaplan-Meier plot showing the significant association of the

subnetwork, with patients’ clinical outcome. Patients ”covered” by the subnetwork were stratified into 2 groups, high risk (8 patients) and low risk (82 patients), on the
basis of their gene expression levels (see Methods for details). (H–J) One of the 10 maximal colored subnetworks identified in the COAD dataset; it consists solely of
copy number amplified genes and has a depth of 163 (patients). Genes in this subnetwork belong to the same chromosomal locus 20q13. (H) The colored subnetwork
(with 9 nodes) topology. (I) Pathways dysregulated by the alterations harbored by the genes in the subnetwork; these genes are involved in signal transduction and the

apoptotic process. (J) Kaplan-Meier plot showing the significant association of the subnetwork with patients’ clinical outcomes (73 high risk vs 83 low risk patients).

CAP and a limited version of cd-CAP that does not differentiate
mutation types. The figure shows that, especially in COAD and
GBM, the survival outcomes of samples that include the cd-CAP–
identified subnetworks differ significantly from those sameples

that do not include such subnetworks. In the BRCA dataset,
because all subnetworks of interest involve differentially ex-
pressed genes, the difference between survival outcomes is in-
significant.
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A complete list of subnetworks of focus (from STRING ver-
sion 10 with high-confidence edges), across all cancer datasets,
is provided in Supplementary Table 2. For each of these subnet-
works, and for each patient covered by a particular subnetwork,
we calculated a risk score defined as a linear combination of the
normalized gene expression values of the genes in the subnet-
work weighted by their estimated univariate Cox proportional-
hazards regression coefficients (see Methods section for details).
On the basis of the risk score values, the patients covered by the
subnetwork were stratified into 2 risk groups (high and low risk).

The expression outlier subnetwork that we mentioned above
for the luminal A dataset was the most significant among all
subnetworks identified in this dataset (Fig. 2G). The patients in
the high-risk group have poor overall survival outcome, suggest-
ing the clinical importance of the subnetwork identified by cd-
CAP.

Another copy number gain subnetwork shared among 163
patients in the COAD dataset (Fig. 2H) was composed of genes
from chromosome locus 20q13, likely indicating a single chro-
mosomal amplification event. Intriguingly, these genes form
a linear structure on the protein interaction network. Among
them is a group of functionally related genes consisting of
transcription factors and their regulators (genes CEBPB, NCOA3,
NCOA6, UBE2C, UBE2V1), which are known to be involved in
the intracellular receptor signaling pathway (Fig. 2I). CEBPB and
UBE2C are also involved in the regulation of the cell cycle [51].
At the other end of the linear subnetwork, there are MMP9 and
SDC4, established mediators of cancer invasion and apoptosis
[52,53]. We also confirmed that these genes are highly predic-
tive of patients’ survival outcome (Fig. 2J). All these results seem
to support the finding that cd-CAP–identified subnetworks are
functionally important with potential clinical relevance.

Maximal colorful subnetworks across cancer types

We used cd-CAP to solve the maximum conserved colorful sub-
network identification problem in each of the 4 protein inter-
action networks and each cancer type that we considered (see
section Additional Constraints and Parameter Options for de-
tails). Again, cd-CAP was run with every feasible value (as de-
fined above) of network depth. The number of maximal solu-
tions of cd-CAP as a function of network depth for each can-
cer type (COAD, GBM, BRCA luminal A, and BRCA luminal B) is
shown in Fig. 3 A–D on the STRING version 10 PPI network with
high-confidence edges (see Supplementary Figs 2–4 for the re-
sults on alternative PPI networks). Note that we pay special at-
tention to subnetworks with ≥1 sequence-altered gene (i.e., a
gene that is somatically mutated or copy number altered) be-
cause the sequence alteration(s) may explain expression level
changes in the remaining genes of the subnetwork (Fig. 3E pro-
vides such an example).

One such COAD subnetwork is composed of several overex-
pressed genes and 1 copy number gain gene, covering 108 pa-
tients (Fig. 3E). This subnetwork is mainly enriched for genes
involved in ribosome biogenesis (Fig. 3F). Cancer has long been
known to place an increased demand on ribosome biogenesis
[54], and increased ribosome generation has been reported to
contribute to cancer development [55]. The biological relevance
of this subnetwork is also supported by survival analysis, which
shows a strong differentiation between the high-risk and low-
risk groups; see Fig. 3G.

Another subnetwork that we observed in 58 BRCA luminal A
samples consists of 4 copy number gain genes, an overexpressed
gene, and 2 underexpressed genes, including EGFR (Fig. 3H). All

copy number gain genes and the overexpressed gene are lo-
cated in chromosome 1q, commonly reported in breast cancer
[30]. The subnetwork involves an interesting combination of the
downregulation of the cancer gene EGFR and the amplification
of a group of genes involved in T-cell receptor signaling (PTPRC,
CD247, and ARPC5; see Fig. 3I). Thus, we may surmise that the
covered population of patients potentially have a relatively low
cancer proliferation index with higher anti-tumor immune re-
sponse, which can be highly relevant indicators with respect to
clinical outcome. Indeed, this subnetwork is significantly asso-
ciated with patients’ survival (Fig. 3J).

Multiple-subnetwork analysis across cancer types

We next sought to detect up to 5 subnetworks per cancer type
that collectively cover the maximum possible number of colored
nodes by solving the MCSC problem on the STRING version 10.5
network (with experimentally validated edges). The subnetwork
extension error rate was set to 20%, and we restricted the search
space to subnetworks that do not consist only of expression out-
lier nodes, in order to obtain what we believe to be more bio-
logically interesting results. The network depth t was chosen for
each dataset in a way that made it possible to construct all candi-
date subnetworks of maximum possible size while keeping the
total number of candidate subnetworks <2 × 106, making the
problem solvable in a reasonable amount of time. We set t to 69
(15% of the patients), 62 (10% of the patients), and 110 (10% of the
patients) respectively, for the COAD, GBM, and BRCA datasets.
Supplementary Table 1 shows the size, per sample depth, and
the coloring of the nodes in the resulting subnetworks.

We note that the subnetworks identified in the GBM dataset
had the lowest depth (10–15% of the samples). The COAD and
BRCA datasets, on the other hand, have much larger depth (re-
spectively, 30–48% and 15–32% of the samples). Smaller subnet-
works of the GBM dataset solely consist of copy number gain
genes on chromosome 7q, a known amplification in GBM [56].
The 2 large subnetworks each contain a single gene with copy
number gain (SEC61G and EGFR, respectively) accompanied by
several of overexpressed genes. The BRCA dataset exhibits a
similar pattern: each of the 4 large subnetworks contain a single
copy number gain gene from chromosome 8q (NSMCE2 in 1 and
MYC in the remaining 3 subnetworks). Subnetworks detected in
the COAD dataset were much more colorful and recurrently con-
served in a larger fraction of samples than those in the other
datasets. All genes with copy number gain are located in chro-
mosome 20q.

We identified a subnetwork with 15 nodes (11 genes with
copy number gain, 1 overexpressed, and 3 underexpressed
genes) in 149 COAD patients (Fig. 4A). All 11 copy number gain
genes belong to chromosome 20q. IL6R, PLCG1, PTPN1, and HCK
are involved in cytokine/interferon signaling to activate immune
cells to counter proliferating tumor cells [57] (Fig. 4B). UBE2I, AU-
RKA, and MAPRE1 are involved in cell cycle processes. This sub-
network was found to be associated with patients’ survival out-
come (Fig. 4C).

We identified another subnetwork with 15 nodes (14 over-
expressed and 1 copy number gain genes) in 313 breast cancer
patients (Fig. 4D). Genes in this subnetwork are involved in cell
cycle processes (Fig. 4 E). In particular the cell cycle checkpoint
processes were dysregulated, which is known to drive tumor ini-
tiation processes [58]. The subnetwork was found to be associ-
ated with patients’ survival outcomes (Fig. 4 F), suggesting its
potential clinical relevance.
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Figure 3: Colorful maximal subnetworks. (A–D) Number of maximal solutions and the size of the conserved colorful subnetwork obtained using the MCSI formulation,
as a function of network depth t, in each of the cancer types analyzed on the STRING version 10 (high-confidence edges) PPI network. The horizontal axis denotes
the depth (number of patients) of the network. For the blue curves, the vertical axis denotes the maximum possible network size (in terms of the number of nodes)

and thus it is strictly non-increasing by definition. For the curves with different colors, the vertical axis denotes the number of distinct networks with network size
equal to that indicated by the blue curve. As can be seen, the purple curves depict colorful subnetworks and the green curves depict networks that include 1–2 nodes
that are not expression outliers. A similar analysis was performed on the STRING version 10 (experimentally validated edges), REACTOME, and HPRD PPI networks.
A total of 104 colorful subnetworks corresponding to the ends of ”valleys” of the plots were identified across the 4 cancer types in all the above PPI networks. Two of

the most interesting ones are provided here. The number in parentheses next to each node represents the univariate Cox proportional-hazards regression coefficient
estimated for that gene, used as its weight in the risk score calculation to stratify the patients into 2 distinct risk groups (see Methods section for details). (E–G) One of the
maximal colorful subnetworks identified in the COAD dataset, consisting of ≤2 non-expression outlier (for this case copy number gain) genes, with depth 108 (patients).
(E) The colored subnetwork (with 9 nodes) topology, obtained from STRING version 10 (with experimentally validated edges) PPI network. (F) Pathways dysregulated by

alterations harbored by the genes in the subnetwork; these genes are involved in ribosome biogenesis and RNA processing. (G) Kaplan-Meier plot showing the significant
association of the subnetwork with patients’ clinical outcomes (59 high-risk vs 47 low-risk patients). (H–J) One of the maximal colorful subnetworks identified in the
luminal A dataset with no color restrictions, with depth of 58 (patients). (H) The colored subnetwork (with 8 nodes) topology, obtained in the REACTOME PPI network.
(I) Pathways dysregulated by the alterations harbored by the genes in the subnetwork. (J) Kaplan-Meier plot showing the significant association of the subnetwork with

patients’ clinical outcomes (30 high-risk vs 30 low-risk patients).

Empirical P-value estimates confirm the significance of
cd-CAP–identified networks

To evaluate the significance of cd-CAP’s findings, we performed
the permutation test described earlier 1,000 times on each can-
cer type for each possible setting of subnetwork constraints.
Supplementary Tables 2–3 and Figure 6 demonstrate the distri-
bution of the empirical P-value upper bound estimates with the

STRING 10 (high-confidence edges) PPI network, while the lower
bound results look similar to what is presented in the figure and
thus are omitted. In the permutation tests all cd-CAP–identified
subnetworks (without additional constraints) of size 2–5 were
composed solely of expression-altered genes; in contrast, there
are several larger copy number variation–rich subnetworks ob-
served in the TCGA COAD dataset and others, further confirming
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Figure 4: Multiple Subnetwork Analysis. Two of the largest subnetworks identified across the COAD, GBM, and BRCA datasets (5 networks were identified per cancer
type) through the MCSC formulation of cd-CAP on the STRING version 10.5 (with experimentally validated edges) PPI network. The number in parentheses next to

each node represents the univariate Cox proportional-hazards regression coefficient estimated for that gene, used as its weight in the risk score calculation to stratify
the patients into 2 distinct risk groups (see Methods section for details). (A–C) The largest of the 5 COAD subnetworks with a network depth of 149 (patients). (A) The
subnetwork topology (with 15 nodes). (B) Pathways dysregulated by alterations harbored by the genes in the subnetwork. (C) Kaplan-Meier plot showing the significant
association of the subnetwork with patients’ clinical outcomes (69 high-risk vs 78 low-risk patients). (D-F) The largest of the 5 BRCA subnetworks with a network depth

of 313 (patients). (D) The subnetwork topology (with 15 nodes). (E) Pathways dysregulated by the alterations harbored by the genes in the subnetwork. (F) Kaplan-Meier
plot showing the significant association of the subnetwork with patients’ clinical outcomes (33 high-risk vs 278 low-risk patients).

the significance of our findings. Colorful subnetworks presented
in Fig. 3 are even less likely to occur at random (we therefore omit
empirical P-value estimates for the networks in Fig. 3).

Discussion

In this article we introduce a novel combinatorial framework
and an associated tool named cd-CAP that can identify (≥1) sub-
networks of an interaction network where genes exhibit con-
served alteration patterns across many tumor samples. Com-
pared with the state-of-the-art methods (e.g., [22,24]), cd-CAP
differentiates alteration types associated with each gene (rather
than relying on binary information of a gene being altered or not)
and simultaneously detects multiple alteration type conserved
subnetworks.

cd-CAP provides the user with 2 major options. (i) In single-
subnetwork mode, it computes the largest colored subnetwork
that appears in ≥t samples. This option exhibits significant
speed advantage over available ILP-based approaches; its a
priori–based algorithmic formulation allows flexible integration
of special constraints (on maximal subnetworks)—not only sim-
plifying complicated ILP constraints but also further reducing
the number of candidate subnetworks in iteration steps (a good
example for this is the ”colorful conserved subnetworks” as in-
troduced in section Additional Constraints and Parameter Op-
tions). However, the identified subnetworks are required to be
conserved; i.e., each node only admits 1 alteration type among
the samples sharing it (although we have relaxed constraints

that allow each sample to have a few nodes without any alter-
ations, i.e., colors). In the future, we may be able to extend the
definition of a network to include nodes with color mismatches
(e.g., according to the definition in [21] or [22]) with a modifica-
tion to cd-CAP’s candidate subnetwork generation algorithm. (ii)
In multi-subnetwork mode, it solves the MCSC problem to cover
the maximum number of nodes in all samples with ≤l colored
subnetworks (l is user defined) via ILP. In the future we aim to
refine the MCSC formulation with a reduced number of param-
eters and hope to develop exact or approximate solutions.

Subnetworks identified by cd-CAP in COAD, GBM, and BRCA
datasets from TCGA are typically enriched with genes harbor-
ing gene expression alterations or copy number gain. Notably,
we observed that genes in subnetworks with copy number am-
plification are universally located in the same chromosomal lo-
cus. Many of these genes have known interactions and are func-
tionally similar, demonstrating the ability of cd-CAP to capture
functionally active subnetworks, conserved across a large num-
ber of tumor samples. These subnetworks seem to overlap with
pathways critical for oncogenesis. In the datasets analyzed, we
observed cell cycle, apoptosis, RNA processing, and immune sys-
tem processes that are known to be dysregulated in a large frac-
tion of tumors. cd-CAP also captured subnetworks relevant to
the EGFR/ERBB2 signaling pathways, which have distinct expres-
sion patterns in specific subtypes of breast cancer [30,59]. Sur-
vival analysis of cd-CAP–identified subnetworks also highlighted
their potential for clinical relevance. In the future, it may be pos-
sible to use tissue-specific interaction data (such as [60] or [61])
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to capture subnetworks with gene interactions that are more rel-
evant to a specific cancer and tissue type.

Availability of supporting data and materials

Supporting data and an archival copy of the code are available
via the GigaScience database, GigaDB [62].

Availability of source code and requirements
� Project name: cd-CAP
� Project home page: https://github.com/ehodzic/cd-CAP
� Operating system(s): Platform independent
� Programming language: C++
� Other requirements: make (version 3.81 or higher), g++ (GCC

version 4.1.2 or higher), and IBM ILOG CPLEX Optimization
Studio

� License: MIT License
� SciCrunch RRID: SCR 016843

Additional files

Supplementary file is cd CAP sup.pdf.
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