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ABSTRACT
A successful vaccine needs to target multiple strains of an organism. Streptococcus pyogenes is an organism
that utilizes antigenic strain variation as a successful defence mechanism to circumvent the host immune
response. Despite numerous efforts, there is currently no vaccine available for this organism. Here we
review and discuss the significant obstacles to vaccine development, with a focus on how cryptic epitopes
may provide a strategy to circumvent the obstacles of antigenic variation.
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Vaccines are amongst the greatest medical achievements of
modern civilisation. Today, over 70 vaccines have been licenced
to prevent infection with approximately 30 different
organisms.1,2 Vaccine development has largely focused on the
concepts of live attenuated, sub-unit and whole-cell vaccine
designs. Of these one-third are sub-unit vaccines that contain
highly immunogenic immunodominant antigens capable of
producing antibodies to a single-strain of an organism.2,3

However, for several infectious diseases this approach is inef-
fective or is associated with major disadvantages. The challenge
is that many organisms are antigenically variable and due to
their diversity, polyvalent vaccines have been developed.
Examples include vaccines for Streptococcus pneumoniae and
Human Papilloma Virus.3

Streptococcus pyogenes (group A streptococcus, GAS) is an
important human pathogen for which vaccines are not yet
available. For this organism, antigenic diversity is extensive
and this challenges even a multivalent vaccine approach. An
alternative approach is to use cryptic epitopes because these
are poorly immunogenic in the native organism and they are
thus not under immune selection pressure.3 Although they
may not be recognised as a result of natural infection,4 they
can be highly immunogenic when presented in isolation
such as a peptide or a recombinant polypeptide fragment.
Furthermore, because they are conserved they may be able to
induce strain-transcending immunity. Cryptic epitopes can
thus be exploited in vaccine development. Despite their recog-
nised potential there is a paucity of literature on the descrip-
tion and utilisation of cryptic epitopes as vaccine candidates.
Here, we provide an in-depth review on the development and

potential use of two separate cryptic epitopes in a vaccine to
prevent infection with GAS.

GAS is a Gram-positive organism that primarily infects the
upper respiratory tract (URT) and the skin.5,6 It is responsible
for a wide array of infections ranging from superficial infections
such as streptococcal pharyngitis and pyoderma to invasive
necrotising fasciitis. The ‘post-streptococcal’ sequelae of
rheumatic fever (RF)/rheumatic heart disease (RHD) and post-
streptococcal glomerulonephritis are also of major concern.
GAS infections and their sequelae are responsible for more
than 500,000 deaths each year.5 In 2015 there was an estimated
319 400 deaths due to RHD.7

Immunopathogenesis and obstacles in GAS vaccine
development

Development of auto-reactive B and T-cells

Infection with GAS can lead to acute rheumatic fever (ARF),
which predominantly affects people living in resource-poor
settings. Subsequent streptococcal throat infections can cause
recurrent ARF. Single or repeated episodes of ARF can result in
RHD.8 The genetic susceptibility to RF/RHD is associated with
Class II MHC molecules (HLA-DR, DQ and DP) that present
peptides from extracellular pathogens to CD4C T-cells.9 These
include HLA-DRB1, HLA-DRB4, HLA-DQA1 and HLA-
DQB1.10 The aetiology of the disease is not well understood but
has been defined as an autoimmune illness (see below).11 The
streptococcal M-protein shares an alpha-helical coiled-coil
structure and antigenic cross-reactivity with cardiac myosin. This
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phenomenon was first described by Kaplan,12 and Zabriskie13 and
Meyeserian12 as antibody cross-reactivity. This is a significant hin-
drance to GAS vaccine development where it is critical that a vac-
cine does not induce auto-reactive B- and T-cell responses. The
evidence that an autoimmune pathogenic process might involve
the M-protein was highlighted in an early study in 1969 where 21
children were vaccinated with type-3 streptococcal M-protein.
Children received up to 33 injections of partially purified M-pro-
tein at doses of up to 1 mg per injection. Following vaccination,
although these children developed 18 GAS infections (tonsillitis/
pharyngitis), none were type-3 GAS infections. However, two of
these infections were followed by RF and one by probable RF.14

In other studies where subjects were immunized with three doses
of M-protein there were no reported serious adverse events.15,16

In 1979, the US Food and Drug Administration prohibited the
development of a GAS vaccine after considering the findings of
the independent advisory panel “Review of Bacterial Vaccines and
Bacterial Antigens”. The prohibition remained for nearly 30 years
and was lifted in 2006 when subunit vaccines were being
developed.17

The immunopathogenesis of group A streptococcal disease has
been studied and the autoimmune potential of the M-protein has
been identified in a number of previous studies reviewed exten-
sively by Cunningham.18,19 The B1B2/B2/B3A regions of the M-
protein were found to contain myosin-cross reactive epitopes,
with B2 peptide having 42% identity with cardiac myosin and
B1A inducing myocardial lesions.20 Therefore, the B-repeat region
of the M-protein has been excluded in GAS vaccine development.
Additionally, studies have also shown cross-reactivity between the
C-repeat region and cardiac and skeletal myosin,20-22 thus
strengthening the case for the development of minimal subunit
vaccines where host cross-reactive epitopes can be eliminated to
reduce the risk of ARF and RHD.

M-protein sequence variation is associated with rheumatogenic
GAS strains associated with the development of ARF. Examples
includeM-types 5 (M5) and 6 (M6). ImmunizationwithM6 protein
was shown to induce valvulitis andmyocarditis in a Lewis rat model
with both CD4C and CD8C T-cells detected in valvular lesions.23

Additionally, immunization with human cardiac myosin generated
T-cells that recognized the M5 protein.24 Furthermore, passive
transfer ofM-protein A-repeat region-specific T-cells into na€ıve rats
produced valvulitis providing further evidence that M-protein-spe-
cific T-cells may be key mediators in valvular heart disease.25 M-
types 1, 3, 5, 6, 14, 18, 19, 24, 27 and 29 have been previously associ-
ated with ARF.26-31 The relationship between rheumatogenic GAS
strains and acute pharyngitis was evaluated in an epidemiological
study in the United States. A decrease in the prevalence of ARF was
associated with a significant reduction in the proportion of cases of
acute streptococcal pharyngitis in children caused by rheumatogenic
GAS types.30 In a more recent study, it was found that GAS strains
belonging to emm pattern D (skin pattern) contributed to 49% of
ARF-associatedGAS strains, thus also suggesting a role of skin infec-
tion in the development of ARF.32

Antigenic strain variation with GAS and the need
for repeat exposure to induce immune memory

A major hindrance to subunit vaccine development is the vast
sequence diversity of the virulence factor, the M-protein.

Strain-specific immunity is a result of the development of anti-
bodies to the immunodominant amino-terminal epitopes on
this protein.27 The M-protein is encoded by the emm gene.
There are over 200 distinct strains based on the serological M-
types and more than 230 emm types have been identified using
emm typing,33,34 the gold standard molecular typing method
that is based on the 50-end 150 nucleotides of the emm gene.35

Early studies by Kuttner and Lenert36 revealed the presence
of type-specific antibodies in children recovering from strepto-
coccal pharyngitis. A follow-up study found that type-specific
antibodies from adults recovering from GAS infection in the
URT were able to bind to homologous heat-killed streptococci
but not strains of heterologous types.37 In another study, type-
specific antibodies were shown to reduce the risk of homolo-
gous pharyngeal infections.38 Further studies by Lancefield
reported that human antisera to types 3, 6 and 13 protected
mice against homologous challenge with GAS to an extent
roughly proportional to the antibody concentration detected in
sera.39 This supported the notion that M-protein-specific
antibodies, post-pharyngeal infection with GAS, persist for
extended periods of time, and confer homologous strain-spe-
cific immunity.

However, there is very little knowledge on the acquisition
of immunity following GAS skin infection. We used a number
of epidemiologically distinct GAS strains to model the develop-
ment of acquired immunity to pyoderma and demonstrated
that infection leads to antibody responses to the serotype-spe-
cific determinants on the M-protein and short-lived protective
immunity to homologous strains. Memory B-cells do not
develop after a single infection and immunity is rapidly lost.4

Similarly, sequential infections with different strains resulted in
short-lived immunity only to the last strain to which the mice
had been exposed and not to any previous strains. However,
two sequential infections with the same strain within a short
time frame did induce enduring strain-specific immunity.
Along with antigenic-diversity, if the requirement for multiple
consecutive exposures to each serotype of GAS to induce a
memory response also occurs in humans, then this represents a
further serious impediment to the development of immunity to
GAS. The need for multiple infections to induce immunological
memory to a given strain begs the question of whether natural
infection post-vaccination will be able to boost and maintain
memory. This is a critical question for all vaccine candidates.
Mice exposed to multiple strains, either sequentially or simulta-
neously, did not develop antibodies to a conserved M-protein
vaccine peptide, J8, demonstrating that this epitope is cryptic to
the immune system.4 However, we have recently shown that
skin infection can boost J8-induced immunity and furthermore
that the infection serves to broaden the nature of immunity
by engaging other antigens such as SpyCEP.40

GAS vaccine development

GAS vaccine development is divided into M-protein and
non-M-protein-based approaches.41 M-protein-based vaccines
include fused recombinant peptides from the N-terminal
region of the M-protein from multiple emm types of GAS (6-,
26- and 30-valent vaccines),42-45 antigens from the conserved
C-repeat region of the M-protein, StreptInCor (containing
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selected T and B-cell epitopes),46 SV1 (containing five 14-mer
amino-acid sequences from differing C-repeat region)47 and J8/
J14, a cryptic epitope-based vaccine approach (containing a
single B-cell epitope from the C3 repeat region).48 Figure 1 rep-
resents a schematic of the M-protein with the location and
targets of M-protein-based vaccines in development. The non-
M-protein-based vaccines include virulence factors such as
SpyCEP49 and C5a peptidase,50 and group carbohydrates.51,52

A comprehensive discussion of M-protein and non-M-protein
GAS vaccines is summarized in Table 1.

M-protein-based vaccines

To take advantage of the type-specific opsonic antibodies associ-
ated with the amino (N)-terminal region of the M-protein a
multivalent M-protein vaccine was designed. The hexa-valent
vaccine consisting of N-terminal subunits from 24, 5, 6, 19, 1
and 3 M-protein peptides was found to be immunogenic against
all six M-protein peptides and no cross-reactivity between
immune sera and human heart tissue was observed.42,44

However, this vaccinate candidate was constrained by type-spe-
cific protection.42,44 Therefore, the vaccine was advanced to a
26-valent N-terminal vaccine (StreptAvax), consisting of 26 N-
terminal subunits from North American GAS isolates.53

Although StreptAvax was shown to cross-opsonize non-vaccine
M-types, it offered limited theoretical coverage against strains in
many developing countries.45,53 The 26 emm types present in
the vaccine accounted for only 65% of all isolates in Africa, Asia,
Middle-East and Pacific region, with the theoretical coverage of
the vaccine in Africa being estimated to be 39% and in the Pacific

region, 23.9%.54 Regardless, this is the most advanced GAS vac-
cine candidate with the successful completion of a Phase II clini-
cal trial.55 The vaccine has since been refined to a 30-valent
vaccine consisting of 30 N-terminal subunits from North
America and Europe. The serotypes included in the vaccine
account for 98% of all cases of pharyngitis in the United
States and Canada, 90% of invasive disease cases in the United
States and 78% of invasive disease cases in Europe.56 The vaccine
was shown to induce antibodies in rabbits against 24 of 40 non-
vaccine serotypes.43,57 Recently, these observations have led to
the designing of M-protein-based vaccines utilizing an emm
cluster-typing system in combination with computational struc-
ture-based peptide modelling. The preliminary data are promis-
ing, however, further investigations are required to confirm the
feasibility of this approach.58

To elicit a broader range of protection, vaccine candidates
targeting the conserved C-terminal region of the M-protein
have been developed. StreptInCor, comprising 55 amino-acid
residues from the C2 and C3 conserved regions of the M5 pro-
tein was shown to be protective in BALB/c59, HLA class II
transgenic mice60 and SWISS mice.61 Protective efficacy was
demonstrated against M1, M5, M12, M22 and M87 GAS
strains.62 No autoimmune pathology was observed in heart or
other organs60 and an epidemiological study of Brazilian GAS
isolates predicted the protective coverage to be 71%.62 Another
C-terminal vaccine candidate in development is SV1, consisting
of five 14-mer amino-acid sequences (J14i variants) from differ-
ing C-repeat regions combined in a single recombinant
construct. Unlike the J8-DT vaccine candidate, SV1 maintains
alpha-helical structure without the need for additional flanking

Figure 1. Idealized schematic illustrating M-protein based vaccine targets. The amino-terminal region: 30-valent N-terminal vaccine consisting of four different multiva-
lent fusion proteins (containing eight or nine M-protein fragments)42; The B-repeat region: representing defined myosin cross-reactive epitopes20; The C1-C3 repeat
regions: SV1 vaccine consisting of five 14-mer amino-acid sequences (J14i variants) combined in a single recombinant construct46; The C2-C3 repeat regions: StreptInCor
vaccine containing immunodominant T (22 amino- acids) and B-cell (25 amino-acids) epitopes (bold residues) linked by eight amino-acid residues ([] boxed residues)58;
The C3 repeat region: Minimal B-cell cryptic epitope within p145 defined as J8, bold residues are those contained within M-protein (J8i), residues not in bold are from
GCN4 protein (not from M-protein).90
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sequence.47,63 Antibodies raised to SV1 were shown to bind to
each of the 5 J14i variants which are present in 97% of M-
proteins.47,63 The studies with the Lewis Rat model for valvulitis
suggested that the vaccine is safe and will elicit antibodies that
recognize a broad range of GAS serotypes.63 J14 has also been
combined synthetically with 7 amino-acid peptides from differ-
ent emm strains and induced protective antibodies in mice to
strains both represented by and not represented by the amino-
terminal sequences.64

An experimental vaccine J8-DT, targeting the conserved
domain of M-protein and conjugated to diphtheria toxoid
(focus of this review) has shown efficacy against multiple GAS
strains. The efficacy of J8-DT was further improved to protect
against covR/S mutant hypervirulent strains by incorporation
of a SpyCEP epitope (S2) (see below). J8 conjugated to CRM
197 (enzymatically inactive non-toxic form of DT) in combina-
tion with K4S2-CRM is currently in preparation for a Phase I
clinical trial.65-67

Non-M-protein-based vaccines

In recent years with the help of reverse vaccinology along with
proteomics, whole genome sequencing, bio-informatics and
microarray technology, a number of non-M-protein vaccine
candidates have been identified68 and are under pre-clinical
development. Their highly-conserved nature across various
serotypes and to date, no evidence of associated tissue cross-
reactivity, makes them an attractive target for vaccine
development.56 Non-M-protein-based vaccine candidates that
have been shown to play a role in immunity include C5a
peptidase,50,69-71 streptococcal fibronectin binding protein,72,73

streptococcal pyrogenic exotoxins A,74,75 B76 and C,77 S.
pyogenes cell envelope protease,49,65 serum opacity factor,78

streptococcal pili,79 and GAS carbohydrate.51,52,80 However, a
non-M-protein vaccine candidate has yet to progress into
human clinical trials. It is believed that despite the role that
non-M-protein antibodies play in GAS immunity, opsonic M-
protein specific antibodies will be critical for clearing GAS
infection.81 A combination of M-protein and non-M-protein
antigens could be exploited to improve protection which has
been demonstrated with the MJ8CombiVax (J8-CRMCK4S2-
CRM) vaccine.67 A detailed analysis of each of these vaccine
candidates is provided in Table 1.

Identifying a cryptic target for a GAS vaccine

Bessen and Fischetti82 demonstrated the protective potential of
the conserved region of the M-protein against GAS. Mice were
immunized intranasally with synthetic peptides from the
highly-conserved C-repeat region of the M-protein, which had
been covalently linked to cholera toxin B subunit (CTB). These
peptides corresponded to antigenic epitopes shared by many
emm types. It was found that intranasal immunization with the
cross-reactive epitopes coupled to CTB led to significant pro-
tection against pharyngeal colonisation by GAS. In parallel,
Jones and Fischetti83 showed that antibodies to the amino-ter-
minal region of the M-protein, but not the conserved central
region, were opsonic. Contrary to that, we demonstrated that a
conserved region peptide, p145 (a 20-mer peptide from the

‘C3-repeat’ region), was able to induce opsonic antibodies in
mice post-immunization.84 The opsonization assay used sta-
tionary phase rather than log-phase organisms that are used in
the ‘classical’ Lancefield assay. It was hypothesized that the
diminished hyaluronic acid (HA) capsule associated with sta-
tionary phase GAS will allow better access of antibodies to the
C-repeat region of the M-protein.85 p145 peptide was identified
by scanning the conserved C- region of the M-protein of
GAS.22,84 p145-specific affinity purified human antibodies col-
lected from a highly endemic region of Australia, were also
shown to be opsonic.86 These findings suggested that p145
might be a suitable vaccine candidate. However, there were
concerns regarding host tissue cross reactivity. Human studies
suggested that while humoral responses may initiate RF/RHD,
the key mediators of heart lesions are auto reactive T-cells. By
molecular mimicry these T-cells also recognize heart tissue pro-
teins. Heart infiltrating T-cell clones isolated from RHD
patients have been shown to recognize GAS M5 protein and
heart tissue proteins/peptides.87,88 It was deemed prudent to
define the minimal epitope within p145 that was immunogenic
and able to induce opsonic antibodies.

The structure of the M-protein is a coiled-coil alpha helix
and it was critical that the minimal epitope maintains helical
folding in order to induce antibodies that recognize the native
protein. To promote alpha-helical coiled-coil confirmation,
small sequences (12 amino-acids in length) from p145 were
flanked with a GCN4 peptide (from a DNA binding protein of
yeast known to promote an alpha helical coiled-coil).89

Chimeric peptides designated J1 to J9 were used to map the
minimal epitope within p145 using age-stratified sera from
Indigenous Australians living in a highly streptococcal endemic
region86 (Table 2). Sera from over 90% of individuals in the
20C years age group recognized peptides J1, J2, J7, and J8 but
the recognition of these peptides was much less in children
(approximately 20%).86 The epitopes were thus cryptic in that
many years of exposure were required to induce an antibody
response. Additional studies revealed that human antibodies to
p145 could opsonize multiple serotypes of GAS including
strains that exhibited slight differences in the p145 minimal
epitope sequence.90 Monoclonal antibodies from mice immu-
nized with p145 recognized J7, J8 and J9.91 These three peptides
induced a significant antibody response to themselves (titre
>12,800), although only J8 could induce an antibody response
to p145. Having noted the potential of J7, J8 and J9, an addi-
tional chimeric peptide, termed J14, was synthesized from
amino-acids 7–20 of p145 (amino-acids found within J7, J8
and J9).92 p145 antisera bound to J14 and antisera from mice
immunized with J14 recognized J7, J8, J9 and p145. J8 and J14
did not induce p145-specific T-cell responses in mice, which
was seen as a bonus in terms of the safety profile of the
vaccine.91 Within p145, the T-cell epitopes were mapped to J2
and J3. This corresponds to residues 3–14 located at the
amino-terminal region of p145.91 Thus, a minimal cryptic B-
cell epitope (J8) was defined, and this did not contain a poten-
tially deleterious T-cell epitope from GAS, yet was able to stim-
ulate antibodies that could opsonize GAS.91 Although J8 did
not contain a GAS-derived T-cell epitope recognized by mice,
it does nevertheless contain one or more T-cell epitopes. J8 has
12 amino-acids copying the M-protein sequence, but also
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contains an additional 16 non-streptococcal amino-acids
(GCN4 protein) that form part of the T-cell epitope of J8.89,91

The immunogenicity of the J8 peptide was determined using
different adjuvants.48 Quackenbush (outbred) and B10.BR mice
were immunized with J8 peptide and lymph node cell prolifera-
tion to the peptide was determined for each mouse. For the
Quackenbush mice, lymph node cells from only 2 of the 20
mice proliferated, whereas T-cells from 7 of the 8 immunized
B10.BR mice responded to the J8 peptide.48

Development of a conjugate GAS vaccine

Immunological responsiveness to a vaccine is determined by T-
cells being able to recognize processed fragments of an antigen
(via the major histocompatibility molecule II [MHC II]).
Failure of J8 to stimulate T-helper cells in an outbred popula-
tion would limit its suitability as a vaccine. Therefore, J8 was
conjugated to the carrier protein, diphtheria toxoid (DT), and
the conjugate was used to immunize mice which were subse-
quently challenged via the skin or mucosal routes.48

J8-DT administered subcutaneously with Alum protected
against streptococcal pyoderma and bacteraemia.65 In this
study, a scarification method was used to mimic superficial
skin infection. Vaccinated mice had significantly reduced bacte-
rial burden in the skin in comparison to non-vaccinated mice.
In addition, vaccinated mice either did not develop a systemic
infection or cleared infection significantly faster compared to
the non-immunized cohort.65 The vaccine was shown to induce
a memory response using an adoptive transfer assay. J8-DT-
immunized mice were rested for 10–12 weeks and splenocytes
or purified B or T-cells were then transferred to na€ıve immuno-
deficient SCID mice. Adoptive transfer of splenocytes from
immunized mice or B-cells from immunized mice along with
T-cells from either immunized or na€ıve mice resulted in the
recipients being immune and showing significantly reduced
bacterial burden in the skin and blood following challenge
infection. At the time of challenge, the reconstituted SCID mice
did not have detectable J8-specific antibodies in their serum.65

These data thus demonstrated that mice could be protected
even if they did not have serum antibodies at the time of chal-
lenge, providing they had memory B-cells. Presumably the
memory B-cells responded quickly to the infection, producing
opsonizing antibodies.

Pre-clinical data on immunogenicity and safety of J8-DT
demonstrated no abnormal heart tissue pathology in a Lewis
rat model for cardiac valvulitis.92 In addition, a dose escalating
toxicology assessment of J8-DT in rabbits demonstrated no
treatment-related or toxicologically significant effects.92 The
vaccine has been tested in a pilot Phase I clinical trial and was
shown to be immunogenic with no serious adverse events
reported in the study (manuscript submitted).

J8-DT-mediated systemic protection required J8-specific
IgG to mediate GAS clearance from the site of infection.65,66,93

However, protection against URT infection may require an IgA
response.94,95 We observed that intramuscular immunization
with J8-DT/Alum resulted in high serum J8-specific IgG titres
but no salivary J8-specific IgA titres. Following intranasal
challenge there was minimal protection as demonstrated from
estimating bacterial burden in nasal secretions, throats and
Nasal Associated Lymphoid Tissue (NALT; a murine homolog
to human tonsils).96

We explored different approaches to induce mucosal immu-
nity. Immunization of mice with J8-DT/CTB (cholera toxin B,
CTB) (and J14-DT/CTB) led to protection following challenge
via the URT route.97 However, CTB is not a suitable adjuvant
for human studies. We therefore explored other potential
approaches to induce mucosal immunity. Immunization with
J14 formulated with bacterial outer membrane proteins (J14/
proteosomes) and administered intranasally to outbred mice
resulted in J14-specific IgA in saliva and a decreased colonisa-
tion in mice post-challenge with GAS.94 In a further study, J14
was incorporated into a lipopeptide construct to which a uni-
versal T-cell epitope and a self-adjuvanting lipid moiety, Pam
(2)Cys, were attached.98 This vaccine formulation (P25-P2C-
J14) induced salivary J14-specific antibodies, which coincided
with reduced throat colonisation post-intranasal GAS chal-
lenge.99 More recently we have explored the use of liposomes
composed of neutral lipids encapsulating DT and displaying
lipidated J8 on their surface (J8-Lipo-DT). This liposome con-
struct induced peptide-specific IgA and protected against intra-
nasal GAS challenge.96

Anti-J8 antibodies are not observed following a GAS infec-
tion of mice. Additionally, there is a lack of anti-J8 antibody
secreting cells (ASCs) in the spleen and long lived plasma cells
(LLPCs) in the bone marrow.4 In contrast, following immuni-
zation with J8-DT, significant numbers of J8-specific ASCs

Table 2. List of synthetic peptides of p145.

P145: L R R D L D A S R E A K K Q V E K A L E

J1: Q L E D K V K Q L R R D L D A S R E A K E E L Q D K V K
J2: L E D K V K Q A R R D L D A S R E A K K E L Q D K V K Q
J3: E D K V K Q A E R D L D A S R E A K K Q L Q D K V K Q L
J4: D K V K Q A E D D L D A S R E A K K Q V Q D K V K Q L E
J5: K V K Q A E D K L D A S R E A K K Q V E D K V K Q L E D
J6: V K Q A E D K V D A S R E A K K Q V E K K V K Q L E D K
J7: K Q A E D K V K A S R E A K K Q V E K A V K Q L E D K V
J8: Q A E D K V K Q S R E A K K Q V E K A L K Q L E D K V Q
J9: A E D K V K Q L R E A K K Q V E K A L E Q L E D K V Q L
J14: K Q A E D K V K A S R E A K K Q V E K A L E Q L E D K V K

Bold residues are those contained within p145.
Underlined residues represent the T-cell epitope contained within p145.
Highlighted residues represent the B-cell epitope contained within p145.
�Adapted from Hayman et al. 1997. 91
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were observed in the spleens of mice. Furthermore, following
sequential infections of J8-vaccinated mice with different
strains of GAS, the numbers of J8-specific ASCs increased sig-
nificantly and the degree of protective immunity similarly
increased. Thus, while J8 is cryptic following infection of na€ıve
mice, J8-specific B-cells (induced by vaccination with a J8 con-
jugate vaccine) can nevertheless be boosted by infection4,41,94

J8, being highly conserved and cryptic, overcomes the bar-
rier of antigenic variability found within circulating GAS
strains. In a recent study by Sanderson-Smith et al., 2014,99 J8
was found to have high sequence homology among differing
emm types; 173 of the 175 emm types, collected globally, con-
tained either the J8 or J8.1 allele.99 These two J8 allelic sequen-
ces are immunologically cross-reactive. Antisera raised to both
allelic sequences recognize the parent peptide (p145) equally
(unpublished data). Further supporting these data is a study
from Cambodia where 28% and 69% of the isolates carried the
J8 or J8.1 allele respectively, thus, predicting the theoretical cov-
erage of the vaccine to be 97%.100 Likewise, in another study
carried out in Lao, where among 124 GAS isolates, 34 emm
types were observed: 15% and 82% of the isolates predicted to
contain the J8 or J8.1 allele respectively and the theoretical cov-
erage of the J8 vaccine was predicted to be 97%.101 These stud-
ies provide encouraging data supporting the potential of
cryptic epitope J8 in combating one of the major impediments
to GAS vaccine development – antigenic strain variation. This
is further strengthened by extensive animal studies where
immunization with vaccines based on cryptic epitopes (J8-DT
or J8-DTCK4S2-DT) provided protection against GAS strains
from multiple emm types belonging to different clades and
emm clusters.65-67

Pathogenesis of covR/Smutant GAS strains

While J8-DT is a highly efficacious vaccine that protects against
multiple GAS strains of various emm types, its efficacy against
hyper-virulent covR/S mutant strains is compromised. The
covR/S system plays an important role in regulating »15% of
the genome of which a majority includes virulence gene expres-
sion (mostly virulence factors responsible for invasiveness of an
isolate during infection).102 Several virulence factor genes are
upregulated as a result of covR/S mutation including S.pyogenes
cell envelope proteinase (SpyCEP, cepA), streptodornase of
serotype 1 (Sda1, sda1), streptolysin O (SLO, slo), streptococcal
inhibitor of complement (SIC, sic) and the hyaluronic acid cap-
sule synthesis operon (HA, hasABC).103 SpyCEP, a CXC che-
mokine protease is a cell wall anchored serine protease that can
also be released as a soluble enzyme.104 SpyCEP can cleave
human interleukin-8 (IL-8) and KC and MIP-2 in mice,
thereby disrupting neutrophil chemotaxis to the site of infec-
tion and assisting GAS to become systemic.104 Invasive blood
isolates have been shown to have increased SpyCEP activity
compared to non-invasive isolates.105 The role of neutrophils
in SpyCEP mediated pathogenesis of GAS was demonstrated
utilising human microvascular endothelial cells where infection
with GAS DcepA mutant (gene encoding SpyCEP, cepA,
deleted) led to significantly higher neutrophil chemotaxis in
comparison to a covR/S mutant GAS strain. In addition, it was
demonstrated that covR/S mutant GAS survived neutrophil

killing significantly more than DcepA mutant bacteria.106 Fur-
thermore, following subcutaneous skin-infection covR/S
mutant GAS demonstrated increased lesion size which corre-
lated with histopathological analysis where an impaired neutro-
phil recruitment to the site of infection was noted.106

Hypervirulent covR/S mutant GAS have been associated
with reduced colonisation capacity.103 However, covR/S mutant
GAS displayed enhanced ability to establish URT infection in a
mouse model when compared to a DcepA mutant.105 On the
contrary, in the same study the observations were reversed
when the contribution of SpyCEP to GAS adherence and inva-
sion was examined using HEp-2 human epithelial cells. The
DcepA mutant was found to be »3 fold more adherent and »2
fold more invasive than the covR/S mutant parent strain.105

These data are supported by another study where covR/S
mutant GAS had significantly decreased adherence to HEp-2
cells and HaCaT keratinocytes in comparison to wild-type
GAS.103 covR/S mutant GAS were found to have significantly
more hyaluronic acid capsule than wild-type GAS. Hypercap-
sulation was associated with impaired adherence through the
masking of GAS adhesins and extracellular binding proteins.103

SpyCEP is highly conserved between GAS isolates.104,107

Initial studies by Rodriguez-Ortega et al., 2006,68 using a whole
genome proteomic bioinformatic approach identified SpyCEP
(Spy0416) as a potential vaccine candidate that led to partial
protection following intranasal infection with M23 GAS. In
another study, SpyCEP immunization led to reduced dissemi-
nation of GAS to the blood and spleen following challenge.49

Similarly, intranasal immunization with rSpyCEP significantly
reduced covR/S mutant GAS dissemination from URT to blood
liver or spleen.49 Furthermore, SpyCEP vaccination has been
shown to reduce the intensity of intranasal infection with
bioluminescent GAS (covR/S wild-type).108 However, bacterial
counts in nasal tissues on day-4 post-infection were not
significantly different between vaccinated and control groups,
indicating that SpyCEP alone was unlikely to be a viable vac-
cine candidate.108

Development of a combination vaccine to broaden
the scope of J8-DT

The data on the mechanism of J8-DT-mediated protection
highlighted a critical role of neutrophils.65 Following skin chal-
lenge with covR/S wild-type GAS, vaccinated neutrophil-
depleted mice suffered significantly higher bacterial burdens in
skin and blood when compared to vaccinated neutrophil-suffi-
cient mice.65 These data suggested that J8-DT may have com-
promised efficacy against strains of GAS that have a mutation
in the covR/S regulon, preventing neutrophil ingress to the site
of infection and hampering phagocytosis. This was supported
by histological examination that demonstrated a lack of neutro-
phils at the site of infection.65 To protect neutrophil-attracting
CXC chemokines from degradation, antibodies were generated
using a truncated recombinant SpyCEP fragment (rSpyCEP:
amino-acid residues 35–587)49 combined with J8-DT. Vaccina-
tion with this combination vaccine (J8-DTC rSpyCEP) led to
significant protection against pyoderma and bacteraemia.65 In-
vitro studies showed that anti-SpyCEP antibodies protected IL-
8 from degradation mediated by supernatants from covR/S
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mutant GAS strains.106 These data demonstrated that J8-DT
and rSpyCEP act synergistically to opsonize GAS (with anti-J8
antibodies) and to block IL-8 degradation (with anti-SpyCEP
antibodies). The combination vaccine resulted in profound
protection against covR/S wild-type and mutant GAS skin
challenges.

The combination J8-DTCrSpyCEP is promising; however,
rSpyCEP is a large protein, which may have the ability to
induce an unwanted autoimmune response. Although rSpyCEP
has been previously used as a vaccine candidate with no known
side effects49; to eliminate any potential risks that may impede
future vaccine progress, epitope mapping of rSpyCEP was
undertaken. Peptide S2 (AA 205–224) was recognized by anti-
sera from rSpyCEP-immunized mice. Antibodies generated to
S2 could completely protect IL-8 from SpyCEP-mediated pro-
teolysis.66 We also demonstrated that human plasma samples
with a confirmed antibody response to GAS could only partially
protect IL-8 from degradation, suggesting that native SpyCEP
may be cryptic or subdominant conferring a survival advantage
to the organism.67 Like J8, S2 is highly conserved with 95%
homology found between the vaccine candidate S2 and S2.1
(Table 3), further suggesting that it is not under immune pres-
sure. Both rSpyCEP- and S2-antisera also protected the related
mouse chemokine, MIP-2, against degradation. Subsequently,
mice vaccinated with the combination vaccine (J8-DTCS2-DT)
and challenged via the skin route with stationary or log phase
covR/S mutant organisms had significantly reduced bacterial
burden in skin and blood when compared to PBS controls.66

Furthermore, histological examination revealed that immu-
nized mice had a large influx of neutrophils to the site of infec-
tion. Mucosal immunity was also assessed in the context of J8
and S2 mediated protection. J8 and S2 expressed on the surface
of liposomes (J8/S2-Lipo-DT) and administered to mice intra-
nasally elicited J8- and S2-specific IgA titres that were compa-
rable to the titres induced by the individual vaccine constructs
(J8-Lipo-DT and S2-Lipo-DT respectively).96 Following intra-
nasal-challenge with 5448AP GAS (a covR/S mutant), immu-
nized mice had significantly reduced bacterial colonisation in
comparison to PBS controls in throat swabs and NALT.96

Recently a more soluble derivative of S2 (S2 with four Lysine
residues; K4S2) in combination with J8-DT has demonstrated
comparable efficacy.67 A comprehensive summary of cryptic/B-
cell epitopes utilized in vaccines designed by our group is pre-
sented in Table 4.

Animal models in GAS vaccine development

GAS is a human-specific pathogen; consequently, use of an ani-
mal model to study vaccine efficacy and immunopathogenesis
of the organism poses several challenges. GAS isolated from
humans rarely show natural virulence for mice and serial

passaging is required to increase the virulence of the organism.
Additionally, lack of responsiveness to GAS superantigens fur-
ther limits the utility of animal models to assess vaccine efficacy
in the context of humans; colonization is often difficult to
achieve and true pharyngitis does not occur.109 A potential way
forward would be to develop a human GAS pharyngeal chal-
lenge model and efforts to implement this strategy are currently
underway.110

Despite these limitations, mouse models provide a com-
plex multi-factorial immune system that cannot be recapitu-
lated in an in-vitro environment. The recent emergence of
humanized mice is a pivotal step in the advancement of
translational vaccine research. Humanized mice expressing
human MHC recognize GAS superantigens111 and therefore
can be utilized to assess vaccine efficacy against clinical
GAS isolates that rarely show natural virulence in mice.
Humanized plasminogen mice can be used to model GAS
invasive disease in humans. Since GAS streptokinase has a
higher affinity for human plasminogen than mouse plas-
minogen, these mice can mimic the activation of human
plasminogen by streptokinase which is vital for systemic
dissemination.112 Another alternative would be to use non-
human primate (NHP) models that are biologically closer
to humans. Streptococcal pharyngitis has been previously
assessed in NHPs.113,114 In addition, different experimental
vaccine candidates inducing significantly different level of
protection in two different mouse models;112 suggests that
progression to human clinical trials requires standardisation
of animal models for the advancement of GAS vaccine
development.112 Overall, a combination of various readouts
(in-vivo protection studies in mouse and in-vitro opsono-
phagocytic assays) may provide valuable insight into the
mechanistic aspects as well as protective efficacy of vaccines
in humans.

Many pre-clinical studies in GAS vaccine development rely
on hypothesis-driven research in mice. Recently, the translation
of mouse data into humans has been questioned. A recent study
claimed that genomic responses in mouse models correlate
poorly with the human condition.115 A subsequent report
reevaluated the same gene expression dataset in a more rigor-
ous and less biased manner and reported the exact opposite
findings.116 To combat the caveats associated with in-vivo
research, rigorous standards need to be implemented when
undertaking mouse studies. Proper use of controls, sufficient
statistical power to determine cohort sizes and attention to data
interpretation will improve the translational impact of these
experiments.117 Additionally, discounting the practicality and
the utility of mouse-based research may compromise future sci-
entific discoveries.118 Thus, an ongoing discussion on mouse
models in all disease states is necessary to advance translational
research in a more efficient and effective way.

Table 3. Multiple sequence alignment of S2 variants.

S2: N S D N I K E N Q F E D F D E D W E N F
S2.1: N S D N I K E N Q F G D F D E D W E N F

� � � � � � � � � � � � � � � � � � �

S2 sequence alignment performed using bioinformatics program (Clustal Omega; http://www.ebi.ac.uk/Tools/msa/clustalo/). Data representing 95% homology between
S2 and S2.1. An � (asterix) indicates positions which have single, fully conserved residues. Single amino-acid polymorphism represented in bold. A total of 96 BLAST hits
returned with 62 hits containing 100% homology with S2 and 34 hits containing 100% homology with S2.1.
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Other cryptic vaccines in preclinical development

The implementation of cryptic epitopes as vaccine candidates is
not unique to GAS vaccine development and has been employed
in other fields as well. Plasmodium spp. parasites evade immu-
nity through switching antigen expression and/or by expressing
antigens that exist in multiple allelic forms. However, some
important antigens/epitopes are cryptic and such as not under
immune pressure. The circumsporozoite protein (CSP) protein
is found on the surface of sporozoites (introduced into the blood
stream following a mosquito bite). The amino-terminal region
of the CSP is responsible for liver invasion by sporozoites.119 A
cryptic, 21 amino-acid epitope, from the amino-terminal region
of the CSP protein, was identified that induced antibodies
capable of blocking liver cell invasion.120 However, in the native
state the epitope was not immunogenic, protecting the parasite’s
ability to invade hepatocytes.120

Bacillus anthracis is the causative agent of anthrax in ani-
mals and humans. Anthrax toxin is composed of a protective
antigen (PA), a cell binding protein, and two enzyme compo-
nents. PA-based vaccination has shown protective efficacy
following anthrax challenge.121-123 The licensed Bioanthrax/
AVA vaccine, composed predominantly of PA, requires mul-
tiple injections and yearly boosts to maintain immunity. It
has also demonstrated a high degree of reactogenicity.124-126

PA-specific neutralising antibody repertoire has been shown
to be limited to a few dominant specificities thus leaving the
vaccine vulnerable to B.anthracis strains resistant to PA-spe-
cific humoral immunity.127,128 A protective cryptic antigen
within PA was identified that could elicit humoral immunity
and potent neutralisation of lethal toxin in-vitro.128 Immuni-
zation with full-length PA did not induce antibodies specific
for the epitope.128

Conclusion

Vaccine development strategies have primarily focused on dom-
inant epitopes; however, immunodominance can be a hindrance
to the progression of a vaccine due to its common association
with antigenic polymorphism. Therefore, a focus should be
placed on defining cryptic epitopes that induce protective
immune responses to a vast array of antigenically variable
organisms. While cryptic epitopes are not recognized, or recog-
nized poorly, as a result of natural infection,4 they can induce
antibodies that may recognize the organism and induce strain-
transcending immunity.65,66

The cryptic epitope, J8, is minimal and this enhances its
safety profile, and S2 contains only 20 amino-acids. They
work synergistically to induce strain-transcending immunity
that prevents infection with virulent streptococci. This strat-
egy of identifying non-dominant/cryptic epitopes has been
successfully applied to a few organisms that readily evade
immunity and enable the design of highly immunogenic and
effective vaccines.
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