
Citation: Liu, Y.; Chen, H.; Duan, W.;

Zhang, X.; He, X.; Nielsen, R.; Ma, L.;

Zhai, W. Predicting Egg Passage

Adaptations to Design Better

Vaccines for the H3N2 Influenza

Virus. Viruses 2022, 14, 2065.

https://doi.org/10.3390/v14092065

Academic Editor: Jihui Ping

Received: 18 August 2022

Accepted: 13 September 2022

Published: 17 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Predicting Egg Passage Adaptations to Design Better Vaccines
for the H3N2 Influenza Virus
Yunsong Liu 1,2 , Hui Chen 3 , Wenyuan Duan 1,2 , Xinyi Zhang 1,2, Xionglei He 4, Rasmus Nielsen 5,6,7,
Liang Ma 1 and Weiwei Zhai 1,2,8,*

1 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences,
Beijing 100101, China

2 University of the Chinese Academy of Sciences, Beijing 100049, China
3 Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research,

Singapore 138672, Singapore
4 MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life

Sciences, Sun Yat-sen University, Guangzhou 510275, China
5 Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94707, USA
6 Department of Statistics, University of California-Berkeley, Berkeley, CA 94707, USA
7 Globe Institute, University of Copenhagen, 1350 København, Copenhagen, Denmark
8 Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences,

Kunming 650223, China
* Correspondence: weiweizhai@ioz.ac.cn

Abstract: Seasonal H3N2 influenza evolves rapidly, leading to an extremely poor vaccine efficacy.
Substitutions employed during vaccine production using embryonated eggs (i.e., egg passage adap-
tation) contribute to the poor vaccine efficacy (VE), but the evolutionary mechanism remains elusive.
Using an unprecedented number of hemagglutinin sequences (n = 89,853), we found that the fitness
landscape of passage adaptation is dominated by pervasive epistasis between two leading residues
(186 and 194) and multiple other positions. Convergent evolutionary paths driven by strong epistasis
explain most of the variation in VE, which has resulted in extremely poor vaccines for the past decade.
Leveraging the unique fitness landscape, we developed a novel machine learning model that can
predict egg passage substitutions for any candidate vaccine strain before the passage experiment,
providing a unique opportunity for the selection of optimal vaccine viruses. Our study presents one
of the most comprehensive characterizations of the fitness landscape of a virus and demonstrates
that evolutionary trajectories can be harnessed for improved influenza vaccines.

Keywords: H3N2 influenza; passage adaptation; vaccine efficacy; epistasis; fitness landscape;
convergent evolution

1. Introduction

As a dominant seasonal RNA virus, influenza infects 5–15% of the total population,
leading to an annual mortality rate of more than half a million [1,2]. One of the major
approaches used for preventing influenza infection is vaccination [3]. Due to the virus’ rapid
evolution (i.e., antigenic drift) [4,5], the World Health Organization (WHO) organizes two
consultation meetings every year and attempts to minimize the mismatch between the vaccine
strains and circulating strains by selecting dominant circulating influenza strains as the vaccine
strains. Despite many years of effort, vaccine efficacy (VE) against influenza viruses, especially
the H3N2 subtype, remains extremely poor [6,7]. For example, the VE for the H3N2 type
showed two rapid declines from an intermediate efficacy of 40–50% to less than 10% in the
years 2011–2015 as well as the years 2016–2019 [8–15]. Understanding the viral and host
factors driving this low vaccine efficacy remains a pressing task for the field [16].

Since the 1940s, a conventional step in vaccine production has been the growing of
vaccine strains in embryonated eggs before mass production [17]. One of the key features

Viruses 2022, 14, 2065. https://doi.org/10.3390/v14092065 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14092065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-2837-8625
https://orcid.org/0000-0002-2258-0750
https://orcid.org/0000-0002-3032-5864
https://doi.org/10.3390/v14092065
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14092065?type=check_update&version=3


Viruses 2022, 14, 2065 2 of 16

distinguishing the egg and mammalian environments is the cellular receptor (i.e., sialylated
glycans) in different species, with alpha-2,3 glycosidic bonds (SAa-2,3Gal) found in birds
and alpha-2,6 glycosidic bonds (SAa-2,6Gal) in humans [18,19]. Due to differences in the
cellular environments, growing human adapted influenza viruses in embryonated eggs
leads to a strong positive selection, a process known as egg passage adaptation [19,20].
Many important residues in hemagglutinin (HA), such as 186 [21–24], 194 [25–27] and
219 [28], mutate frequently during egg passage. Since residues in the receptor binding
sites (RBS) of hemagglutinin overlap significantly with the antigenic sites (i.e., antigenic
sites A–E) [29,30], a significant proportion of egg passage substitutions in HA, such as
H156Q [31,32], L194P [25,27] and T160K [33], have been shown to greatly impact viral
antigenicity and, subsequently, vaccine efficacy. As the H3N2 influenza adapts to the
human host, which has been the case since its zoonotic transfer from birds to humans in
1968 [34], the extent of the egg passage adaptation in H3N2 influenza has continuously
increased [35], leading to extremely poor vaccine efficacy over multiple years [36].

In addition to sequence analysis, deep mutational scanning experiments examining
the joint effects of multiple key residues in several H3N2 strains revealed a dynamically
evolving fitness landscape [37–39], suggesting that the effects of individual substitutions in
hemagglutinin depend on the genetic background of the strain. In the case of egg passage
adaptation, a recent structural and functional study discovered that two dominant egg
passage substitutions, G186V and L194P, are mutually exclusive, driven by their disruptive
effects on the binding pocket [40]. These findings suggest that egg passage substitutions
are often non-independent and might depend on the genetic background of the focal strain.
Even though many sequencing and functional studies have been carried out in order to
characterize individual substitutions in different egg-passaged strains [21–28,31–33], the
joint effects of multiple egg passage mutations and how they might affect vaccine efficacy
are still poorly understood.

In this study, using an unprecedent number of HA sequences (n = 89,853) sequences
from the GISAID database [41] and a probabilistic approach known as mutational
mapping [42,43], we explored the temporal dynamics of egg passage adaptation, focusing,
in particular, on how substitutions across multiple egg passage residues might act coop-
eratively to drive the fluctuations in VE that have been observed over the past decade.
We found that the fitness landscape of egg passage adaptation is governed by pervasive
epistatic interactions between major egg-passage residues and the adaptive walks are
constrained to only a few convergent evolutionary paths. Through machine learning
approaches, we showed that the evolutionary trajectories of egg passage adaptation can
be predicted precisely for any candidate vaccine virus ahead of the passage experiment,
providing a unique means of selecting optimal strains for vaccine production.

2. Results
2.1. Data Curation and Passage Annotation

From the GISAID database, we obtained all the influenza H3N2 hemagglutinin HA1
sequences recorded since 1968 (n = 96,745), including 58% of sequences collected after the
year 2016. After multiple QC steps (Methods), 89,853 high-quality sequences were retained
for subsequent analysis (denoted as dataset D1, Methods). Since there were multiple identical
sequences in the dataset, we further created a non-redundant dataset of unique sequences
(n = 37,938, denoted as dataset D2) to reduce the computational burden for further analyses.
We used D2 for most of the analyses, unless stated otherwise. In addition to collecting the
sequences, we also curated passage histories of all the sequences [44] and found that most
of the sequences were grown in cell lines (e.g., MDCK or SIAT, Figure 1A) and only a small
fraction of sequences were passaged in embryonated eggs (n = 716 in D2, Methods).



Viruses 2022, 14, 2065 3 of 16

Viruses 2022, 14, x FOR PEER REVIEW 3 of 16 
 

 

addition to collecting the sequences, we also curated passage histories of all the sequences 

[44] and found that most of the sequences were grown in cell lines (e.g., MDCK or SIAT, 

Figure 1A) and only a small fraction of sequences were passaged in embryonated eggs (n 

= 716 in D2, Methods).  

 

Figure 1. The temporal dynamics of egg passage adaptation. (A) The passage histories of the strains 

in the dataset (D1). (B) The phylogenetic relationships of all the sequences (Dataset D2). The inset 

illustrates the branches supporting egg passage adaptation (i.e., “egg branches”), which included 

both monophyletic groups for the egg-passaged sequences (i.e., “egg clade”), as well a single egg-

passaged sequence (i.e., “egg terminal”). (C) The eighteen residues driving egg passage adaptation. 

The top bars indicate the number of nonsynonymous and synonymous changes (for a given sample 

history). The middle rows indicate the significance of the three statistical tests (Methods). The 

bottom plot shows whether the 18 residues are in the RBS (receptor binding sites) or antigenic 

domains A–E. (D) The temporal changes in the frequencies of substitutions at the 18 residues (only 

a few key residues, 156, 160, 219, 225, 194 and 186, are labelled). (E) The temporal changes in the 

frequency of different substitutions at residue 194. (F) The temporal changes in the frequency of 

different substitutions at residue 225. 

Figure 1. The temporal dynamics of egg passage adaptation. (A) The passage histories of the strains
in the dataset (D1). (B) The phylogenetic relationships of all the sequences (Dataset D2). The inset
illustrates the branches supporting egg passage adaptation (i.e., “egg branches”), which included both
monophyletic groups for the egg-passaged sequences (i.e., “egg clade”), as well a single egg-passaged
sequence (i.e., “egg terminal”). (C) The eighteen residues driving egg passage adaptation. The top
bars indicate the number of nonsynonymous and synonymous changes (for a given sample history).
The middle rows indicate the significance of the three statistical tests (Methods). The bottom plot
shows whether the 18 residues are in the RBS (receptor binding sites) or antigenic domains A–E.
(D) The temporal changes in the frequencies of substitutions at the 18 residues (only a few key
residues, 156, 160, 219, 225, 194 and 186, are labelled). (E) The temporal changes in the frequency
of different substitutions at residue 194. (F) The temporal changes in the frequency of different
substitutions at residue 225.
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2.2. Strong Positive Selection in the Key Residues Drives Egg Passage Adaptation

After multiple sequence alignment, we inferred the phylogenetic relationships of
all the sequences [45] (Figure 1B, Methods). To capture the egg passage mutations, we
focused on substitutions along the terminal branches of the egg sequences (Figure 1B).
In addition to standalone terminals (denoted as egg terminals), multiple egg-passaged
sequences can sometimes form a monophyletic clade (denoted as the egg clade, Figure 1B),
and convergent mutations observed in multiple strains can be “mapped” (i.e., inferred)
to internal branches, even though egg passaging and, hence, egg passaging adaptation
likely occurred independently in each of our lab experiments. We thus defined branches
of interests (denoted as egg branches) as all the branches in the egg clades, as well as egg
terminals (i.e., red branches in Figure 1B).

Given the observed sequences at the leaf nodes of a phylogeny, the mutational map-
ping method is a stochastic sampling procedure used to sample possible mutational histo-
ries of the sequences [42]. It provides one of the most efficient approaches for exploring
patterns of adaptive evolution over very large phylogenies (e.g., n > 1000) [42,43,46]. The
mutational histories include both the ancestral states of all internal nodes and changes
along each branch. Using maximum likelihood estimates of the phylogenetic tree and
mutational parameters (e.g., the GTR model and rate parameters across sites, Methods),
these sampled evolutionary histories form the basis for exploring the temporal dynamics
of the adaptive change. The advantage of this method is that it can model uncertainties
regarding inferred ancestral states while incorporating complex mutational models [42,46].

Based on the sample histories derived from the mutational mapping method, we
employed three statistical tests to identify the amino acid positions driving the egg pas-
sage adaptation. Particularly, when we first examined whether more nonsynonymous
mutations occurred than expected by chance relative to the rate of synonymous mutations
(the positive selection test), we identified 18 residues strongly driving the egg passage
adaptation (Figure 1C, Methods). The intensity of the positive selection across these
18 residues is extremely strong, with an overall A(nonsyn)/S(syn) ratio as high as 31.72
(e.g., 793 nonsyn and 25 syn for a randomly sampled history). In addition, we found that
egg passage substitutions mainly occur in two important residues, 186 and 194, with many
other residues, such as 156, 219 and 225, also experiencing frequent mutations (Figure 1C).
Even though most of the residues were in our previous studies [35,36], two new residues,
160 and 225, are identified in this work. Inspecting the properties of these 18 residues, we
found that most of them overlap with known functional domains, such as the receptor
binding sites (RBS) and antigenic B and D domains (Figure 1C), implying that receptor
binding or host factors might drive egg passage adaptation.

We further tested whether a given residue tends to have more mutations along the egg
branches than expected by chance (the enrichment test) and whether there are convergent
mutations at a given residue along egg branches (the convergent test, Methods). Many
residues showed significant results in both tests, indicating that adaptive mutations are
enriched in egg branches and tend to be highly convergent mutations. Taken together, our
findings suggest that the egg passage adaptation was driven by strong positive selection at
a set of key residues.

2.3. Strong Temporal Fluctuations in Egg Passage Adaptation

The sample histories derived from the mutational mapping method provide a unique
means of examining the temporal trajectories of egg passage substitutions in different
residues. When we estimated the rate of mutation of the egg passage, we found that the
substitution rate can be as high as 0.00144/site/passage (Methods). Using the frequency of
substitution of each residue in different time windows along the egg branches (Methods),
we found that several residues, including 186, 194 and 219, have rapidly increasing frequen-
cies of substitution, suggesting that the intensity of positive selection at these positions has
become significantly stronger in recent years (Figure 1D). Interestingly, the substitution
frequencies of the two newly identified residues, 160 and 225, have been elevated greatly
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since the year 2000, in accordance with their recent appearance in egg passage adaptation
(Figure 1D). When breaking down the overall substitution at a given residue into individual
mutation types at the amino acid level, we found that different positions have distinct mu-
tational profiles that change over the years. For example, residue 194 shifted from showing
multiple types of changes (e.g., L194I or L194P) in its history to showing only the L194P
substitution in recent years (Figure 1E). On the contrary, residue 225 has multiple substitution
types that have occurred in recent years (Figure 1F). In summary, egg passage adaptation has
a dynamic history of substitution, with strong temporal fluctuations over time.

2.4. Pervasive Epistatic Interactions Driving Egg Passage Adaptation

By inspecting the temporal dynamics of substitutions in different residues, we ob-
served multiple residues with similar trends. For example, substitution frequencies at
two dominant residues, 186 and 194, are both monotonically increasing, and two newly
identified residues, 160 and 225, simultaneously increased around the year 2000 (Figure 1D).
When we clustered the temporal trends of the most frequent (amino acid) substitutions (e.g.,
G186V and L194P), we found that multiple residues tend to have concerted evolutionary
trajectories (Figure 2A), suggesting potential epistatic interactions driving the egg passage
adaptation. We noted that the mutations tabulated here are occurring de novo in different
phylogenetic lineages, and the concerted evolutionary trajectories are, therefore, not a conse-
quence of linkage. Since the mutational mapping method allows us to infer the history of the
mutations along all the egg branches, we tested whether substitutions in two residues tend
to co-occur along the same egg branch (Figure 2B). For example, when the L194P substitu-
tion mutates on a branch, we found that D225G, T160K, and T203I tend to co-occur together
(Figure 2C). In contrast, the mutation G186V does not seem to co-occur with L194P, despite
having a similar temporal trend (Figure 2A). This suggests that similar temporal trajectories
might not imply a positive correlation. In order to systematically investigate whether
substitutions at two residues tend to occur more (i.e., co-occurrence) or less frequently (i.e.,
mutually exclusive) than expected by chance, we applied the contingency test and identi-
fied multiple positive (n = 16) and negative (n = 6) interactions between all the pairs among
the 18 residues (Methods). For example, the two dominant residues 186 and 194, despite
having similar temporal trends, tend to occur in a mutually exclusive manner along the egg
branches (Figure 2D and Supplementary Figure S1, p-value < 10−6) [40]. More strikingly,
all the negative interactions are between these two dominant residues and other positions.
In order to visualize the epistatic relationship, we plotted the epistatic network of these
18 residues. Interestingly, residues 186 and 194 each form a subnetwork with positive
interactions within each subnetwork but pervasive negative interactions between subnet-
works (Figure 2E). The two newly identified residues, 160 and 225, positively interact
with the two dominant residues, as well as multiple residues from the two subnetworks,
which might have enabled them to mutate very frequently in recent years. In summary, we
found that egg passage adaptation is driven by concerted changes across multiple residues,
resulting in a rich epistatic network headed by two dominant residues, 186 and 194. The
highly epistatic nature of egg passage substitutions revealed a multimodal fitness land-
scape, where substitutions at dominant residues drive convergent mutational paths during
passage adaptation (see later sections).
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Figure 2. The epistatic landscape of egg passage adaptation. (A) Clustering temporal trajectories
of the most frequent substitutions across the 18 residues (Methods). (B) Cartoon illustration of
the tests of the co-occurrence relationship between two amino acid sites along the egg branches.
(C) Examples of co-occurrence relationships between substitutions at different amino acid sites. The
first column shows the substitution type at the first amino acid site, the second column indicates
the second amino acid site, and the third column plots the types of substitutions occurring at
the second amino acid site. Each line represents the history along one egg branch. In order to
better illustrate different combinations of mutations, we colored the co-occurrence pattern based on
different co-occurring amino acid positions (second column). Red: position 203; yellow: position 225;
dark purple: position 160. (D) Positive and negative epistatic interactions between the 18 residues.
Dot size indicates the level of significance. (E) The epistatic network between the 18 residues. Red
and blue lines indicate positive and negative epistatic relationships. We have “clustered” the set
of residues into discrete groups based on their epistatic properties. Residue 186 has a core group
of positively epistatic residues, which tend to have negative epistatic relationship with the cluster
centered around residue 194. The same pattern applies to the cluster around residue 194. Residues
160 and 225 tend to have positive epistatic relationships with two clusters surrounding 186 and 194.

2.5. Passage Adaptation Drives Low Vaccine Efficacy, as Observed Consistently over the Years

We previously demonstrated that there was a strong negative correlation between the
strength of egg passage adaptation and vaccine efficacy (VE) during years 2010–2015 and
that 75% of the variation in VE could be explained by egg passage adaptation [36]. As the
adaptation was found to have strong temporal fluctuations (Figure 1D), we wondered how
the temporal dynamics of adaptive evolution might affect vaccine efficacy over the years
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and whether the recent drop in vaccine efficacy over 2016–2019 can be attributed to the
effects of egg passage adaptation.

One important observation worth emphasizing is that the extent of positive evolution
in the egg medium is extremely strong (i.e., often having zero or only a few synonymous
changes, Figure 1C). Thus, the traditional metric used for measuring the extent of positive
selection (i.e., dN/dS) is often exceedingly large and makes it difficult to capture temporal
fluctuations in the extent of adaptive evolution. We thus developed multiple statistics
measuring different aspects of this extreme form of positive selection. With the updated
list of positively selected residues, as well as a greater number of sequences relative to
our previous study [36], we first calculated a previously developed statistic known as the
enrichment score (ES) [36]. The ES was defined as the ratio of the frequency of the allele
(amino acid) in the egg strains (pegg) to the frequency of the allele in all the strains (pall)
(i.e., pegg/pall, calculated for the full dataset D1, Methods). Highly adaptive alleles that are
strongly selected in embryonated eggs tend to be enriched in egg-passaged isolates, while
being uncommon in the non-egg strains, resulting in a high ES. Therefore, the ES is a useful
measure of the relative selective advantage of a particular allele in egg passage conditions.
Plotting the ESs of all alleles in the 18 residues, we found that there are many residues with
very high enrichment scores, indicating a strong convergent or parallel evolution of increasing
frequencies of these alleles in the egg-passaged strains (Supplementary Figure S2).

For a given sequence in the database, the enrichment scores of the alleles at the
18 residues can be used to define an 18-dimensional vector for that sequence. When
we reduced the 18-dimensional vector for all 89,853 sequences down to two dimensions
using principal component analysis (PCA), we found that most of the sequences cluster
around a point (denoted as C(x0,y0)) close to the origin, indicating no signal of egg passage
adaptation for most of the sequences (Supplementary Figure S3, Methods). However,
sequences deviating from the origin were grouped in discrete islands and were mostly
egg-passaged strains (Supplementary Figure S3 inset). Thus, we previously defined the
adaptive distance (AD) of a given strain [36] as the distance between the coordinates of
that strain and C(x0, y0). The AD correlates with the level of egg passage adaptation and
provides a unique metric for integrating the signal of adaptation across all the residues. In
our previous study, we found a strong negative correlation between the AD and VE [36].
With the larger dataset, we found a similar landscape for the AD, and the two leading PCs
were dominated by residues 186 and 194, respectively (Supplementary Figure S3B).

Interestingly, when we plotted the proportions of different alleles in the egg-passaged
sequences of the vaccine strains over the years (there are multiple egg-passaged sequences
for a given vaccine strain in the database, see Supplementary Figure S4), we observed
two sharp increases in the frequency of allele V at residue 186 over years 2013–2016 and
allele P at residue 194 over years 2016–2019 exactly matching two rapid declines in the VE,
suggesting that these two residues, together with their positively interacting changes, may
drive the strong temporal fluctuations in the VE (Supplementary Figure S4). It is interesting
to observe that the short recovery of the vaccine efficacy in 2016 seems to have occurred at
the time junction where the vaccine strains’ mutational preference changed from G186V to
L194P, driven by strong negative epistasis between the two residues. Taken together, these
findings indicate that passage adaptation has driven the low vaccine efficacy consistently
in the last decade.

2.6. A Machine Learning Model Predicting the Trajectories of Egg Passage Adaptation

From the analysis of the epistatic relationships between the 18 residues, we unraveled
a fitness landscape with a rich epistatic network dominated by two negatively interacting
residues, 186 and 194. Extensive epistasis leads to convergent adaptive walks in the fitness
landscape during the egg passage adaptation. Since substitutions at residues 186 and 194
are often associated with a poor vaccine efficacy, the fitness landscape empowered by the
epistatic network allows us to predict how a given candidate vaccine virus (CVV) will
evolve in the direction of a certain evolutionary path, which might be dominated by residue
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186 or 194 during the egg passage (Figure 3A). We thus constructed a computational tool:
PEPA (Predicting Egg Passage Adaptation) that can predict the egg passage adaptation for
any CVV before the passage experiment. The predictive model in PEPA can us help to select
suitable CVVs with evolutionary trajectories unlikely to have mutations that negatively
impact the vaccine efficacy (e.g., L194P). PEPA trains Random Forest or XGBoost on the
labeled ancestral sequences before the egg passage adaptation and predicts whether the
input sequence will have egg passage mutations at the two important residues, 186 or 194
(Figure 3B, Supplementary Figure S5, Methods). By using a cross-validation design, PEPA
achieved an overall accuracy of ~80% for predicting the residue changes in 186 and ~85% for
predicting the residue 194 (Figure 3C). By comparison, we found that the XGBoost method
predicts adaptive changes more accurately and robustly than the Random Forest model
(Figure 3C). Based on its excellent performance, PEPA will be a powerful computational
tool for guiding strain selection in future vaccine development studies.
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Figure 3. The fitness landscape and machine learning models. (A) A cartoon illustration of the
fitness landscape of the egg passage adaptation. As residues 186 and 194 are two dominant codons
correlated with vaccine efficacy, we thus summarized the evolutionary trajectories of egg passage
adaptation into three possible evolutionary paths: (1) those with substitutions in residue 186 (no
change in residue 194), (2) trajectories with substitutions in residue 194 (no change in residue 186) or
(3) no changes in any of the two residues. (B) A schematic flow of the PEPA (Predicting Egg Passage
Adaptation) (Methods). In the cross-validation, we trained the model on 80% of all the egg-passaged
sequences (n = 688) and tested the model on the other 20% of the data. (C) The performance of the
Random Forest and XGBoost model.
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3. Discussion

Using an unprecedent number of HA1 sequences from the GISAID database and a
probabilistic approach known as mutational mapping, we found that egg passage adapta-
tion has strong temporal fluctuations and is dominated by two major residues: 186 and 194
(Figure 1C). Substitutions in several important residues, including 186, 194, 160 and 225, are
becoming increasingly frequent, suggesting that egg passage adaptation is growing progres-
sively stronger. Analyzing the evolutionary trajectories of egg passage adaptation revealed
an epistatic network, where residues 186 and 194 each form a sub-network with positive
epistasis within each subnetwork but negative epistasis between subnetworks (Figure 2E).
This epistatic network suggests that concerted changes across multiple residues drive egg
passage adaptation. The temporal fluctuations in these residues were found to correlate
with multiple cycles of rapid decline in vaccine efficacy (Supplementary Figure S4). In
addition, leveraging the highly convergent nature of egg passage adaptation, we built a
machine learning model, PEPA, that can predict the evolutionary trajectories of any candi-
date vaccine virus before the egg passage experiment, providing a unique opportunity for
the selection of optimal strains in future vaccine production.

Egg passage adaptation provides one of the most extreme examples of adaptative
evolution [47], with an estimated A(nonsyn)/S(syn) ratio of >30, a value rarely observed in
any naturally evolving system [48]. This strong adaptation leads to repeated convergent or
parallel evolutions, with specific mutations (e.g., G186V or L194P) contributing a majority
of the changes involved in egg passage adaptation [35] and strong epistatic interactions
between mutations in multiple residues. The reason for this extremely strong selection
is likely rooted in the divergent cellular environments of avian and human cells. When
influenza H3N2 originally crossed the species boundary in 1968, it was a bird-adapted
virus with an initial capability of circulation in human populations, but since then, it has
increasingly adapted to the human cellular and immunological environment [18,19]. As it
evolves to increasingly adapt to the human host, it is becoming similarly maladapted to the
avian environment, with increasing positive selection during egg-passaging. Unique com-
binations of amino acid substitutions (i.e., epistasis) facilitate the growth of embryonated
eggs, leading to convergent patterns of evolutionary trajectories depending on the initial
starting sequence. In addition, the number of significant codon positions has also increased
from 12 to 18 in recent years [35]. As egg-passage adaptation becomes stronger over time,
vaccine efficacy continuously declines. An additional factor that might contribute to this
pattern is the fact that the circulating influenza strains may adapt to become maximally
different at the sequence level from the optimally egg-adapted sequences, possibly due
to selection imposed by the avoidance of vaccine-mediated immunity. In other words,
circulating strains that differ maximally from the egg-adapted sequences are more likely to
escape vaccine-induced immunity when vaccines are produced by egg passaging.

Poor vaccine efficacy is often caused by a mismatch between the vaccine strains and the
circulating strains [16]. As shown here, the strength of passage adaptation is highly predictive
of the vaccine efficacy. A characterization of the fitness landscape of egg passage adaptation
provides a unique means for guiding the choice of vaccine strains. The high predictability
of egg passage adaptation allows us to select vaccine strains with evolutionary trajectories
that are less likely to include the mutations that reduce vaccine efficacy during egg passage.
For example, the G186V substitution, if occurring alone, increases the replication efficiency
significantly in embryonated eggs but has a minimal impact on viral antigenicity [21–24].
Moreover, due to its negative epistasis with residue 194, substitutions in residue 186 can
effectively block further substitutions in residue 194. Moreover, due to extensive epistatic
relationships, one can imagine the benefits of editing specific mutations to create future
vaccine strains to encourage the passage adaptation towards a path that is less likely to cause
reduced vaccine efficacy. Thus, the fitness landscape can be employed to both predict and
“design” the adaptive path for a better vaccine.

There are a number of interesting directions worth pursuing in the future. First of
all, even though many residues have frequent egg passage substitutions, the functional
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consequences of these substitutions have not been fully tested. For example, residue 225 is
not present in any of the important functional domains (e.g., RBS or antigenic regions). We
hypothesize that some of these substitutions might be compensatory mutations following
mutations in other codon positions. Nevertheless, it will be important to experimentally test
the functional consequences of these mutations and explore their links to vaccine efficacy
in the future. Secondly, even for residues subject to existing functional experiments (e.g.,
testing the antigenic properties), their links to vaccine efficacy can still be further affected by
their mutational frequencies in vaccine strains (e.g., residue 160, Supplementary Figure S4),
as well as the genetic background of the target strain. The study of temporal dynamics
of egg passage adaptation provides an important platform for further refining important
residues driving the low vaccine efficacy that has been observed over the years. Thirdly,
we found that not only is the set of residues driving egg passage adaptation changing (e.g.,
from 12 to 18 residues), but the intensity of egg passage adaptation at different residues
is also very dynamic. Considering the fact that vaccine production using embryonated
eggs will likely continue for some time, it will be important for the field to develop new
strategies for adapting to the dynamic landscape of egg passage adaptation. Lastly, in
evolutionary biology, predicting a “future evolution” is quite difficult because of stochastic
nature of evolution. The unique fitness landscape created by the highly epistatic network
offers us a powerful machine learning model that can predict egg passage adaptation ahead
of the passage experiment. In our work, the egg-passaged sequences constitute a minor
proportion of the GISAID database. In other words, the model was only tested on a subset
of influenza strains with egg-passaged sequences. It would be interesting to further test the
accuracy of PEPA on more egg-passaged strains in the future. Moreover, as the predictive
model only focused on the two dominant residues, it is important that we extend the model
to predict substitutions in other codon sites (e.g., 160 or 225) in the future.

Taken together, this study’s findings provide one of the most complete characteriza-
tions of the fitness landscape of any organism. They demonstrate how epistatic interactions
drive viral evolution during egg passaging along predictable evolutionary paths in a multi-
modal viral fitness landscape. Our results also show that a detailed understanding of this
fitness landscape can be harnessed to design effective vaccines for seasonal influenza.

4. Materials and Methods
4.1. Influenza Data Curation and Passage History Annotation

From the Global Initiative on Sharing All Influenza Data Epiflu (GISAID) database
(https://www.gisaid.org/, 15 September 2020), we downloaded 96,745 hemagglutinin HA1
sequences for the H3N2 influenza and their associated passage annotations (Table S1). In
order to filter for viral strains of high quality, we removed sequences with (1) lengths
that are too short (sequence length < 987), (2) unknown bases (not ATCG or degen-
erate bases), or (3) extremely long branches in the phylogenetic relationship (possibly
due to low sequencing quality). After multiple QC steps, 89,853 sequences were re-
tained for subsequent analysis (denoted as dataset D1). Due to extensive sequencing
efforts over recent years, the GISAID database contains many identical sequences, and we
thus created one non-redundant dataset consisting of only unique sequences (n = 37,938,
denoted as dataset D2).

Using the GISAID database, passage histories of the influenza sequences were collected
from viral sequences submitted to the public database by individual researchers [44]. The
passage histories were annotated using different syntaxes by individual researchers. For
example, “E” and “EGG” can both indicate egg passage. In order to standardize the passage
history, we used an approach similar to DuPai et al. [44] in order to curate passage histories
for the entire dataset. In total, there were 9 passage categories, including Original (28,643),
SIAT (15,288), RhMK (3002), Others (294), Mix (8463), Egg (989), NA (15,642), MDCK (6112)
and Unknown Cell (11,420), for the “all sequences” dataset (D1) (Table S2). Likewise,
the corresponding passage histories in the data set of unique sequences (D2) included:

https://www.gisaid.org/
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Original (10546), SIAT (5173), RhMK (1332), Others (144), Mix (4444), Egg (716), NA (7082),
MDCK (3127) and Unknown Cell (5599).

4.2. Sequence Alignment and the Phylogenetic Inference

We used MAFFT (Multiple Alignment using Fast Fourier Transform, version 7.464) [49]
to perform the multiple sequence alignment of the two datasets (D1 and D2, with –auto
option). IQ-TREE [45] (version 2.1.1) was used to infer the phylogenetic relationships of
all the sequences with the GTR + I + Gamma model. Maximum likelihood estimates of
the evolutionary parameters, including the phylogenetic tree and branch length estimates,
evolutionary rates for each nucleotide position and the parameters of the GTR model, were
used for the subsequent mutational mapping inference. The ETE Toolkit [50] was used for
visualizing the phylogenetic tree (Figure 1B).

4.3. Inferring the History of Mutations Using Mutational Mapping

The mutational mapping method is a probabilistic procedure used to infer the history
of mutations along the phylogeny for a given set of sequences [42,43,51]. The histories
of mutations include both the ancestral states of all the internal nodes and the muta-
tional changes along each branch. The inference procedure consists of three major steps:
(1) calculating the conditional likelihood of the internal nodes recursively from the leaves
of the tree up to the root, using the Felsenstein’s pruning algorithm [52], in which the con-
ditional likelihoods at internal nodes are the joint probabilities of observing all descendants
of the focal node of interest and the latent nucleotide states in the node; (2) sampling the
state of the internal nodes recursively from the root of the tree down to the leaves; and
(3) sampling the possible histories of the mutations conditioning on the states of the two
nodes at the ends of each branch (edge). In this work, we employed the uniformization
method [51], where we first sampled the number of changes along each branch and sub-
sequently sampled the evolutionary path conditioning on the number of changes. With
these three steps, we can efficiently sample possible evolutionary histories of the sequences
according to their posterior probability [42,43].

4.4. Statistical Tests Identifying Residues Driving Egg Passage Adaptation

We developed three statistical tests to detect the residues driving egg passage adapta-
tion. In the enrichment test, we asked whether mutations occurring at a specific residue
tend to occur on the egg branches more often than expected by chance (Figure 1B). Let the
total number of mutations in a specific residue across the whole tree be N and the number
of mutations along the egg branches in this residue be n (n ≤ N). Assuming that mutations
arise independently on the tree, the probability of a random mutation occurring on the
egg branches is pe =

Te
T , where Te is the total length of the egg branches and T is the total

tree length. The p-value for a specific residue is then calculated as the tail probability of
observing at least n mutations using a binomial distribution Bin(N, pe):

Pr(X ≥ n) =
N

∑
i=n

(
N
i

)
pi

e(1− pe)
N−i

In the positive selection test, we focused on mutations along the egg branches and
examined whether the number of nonsynonymous substitutions (NN) was larger than
expected when compared to the synonymous mutations (NS). For a given residue, the
mutational history along the egg branches for a given sample history can be represented
as a collection of codon statuses and their duration times. Specifically, we denoted all the
sampled M codon statuses across the egg branches as {Si ∈ C, i = 1, 2 . . . , M} and the
corresponding duration times as {Ti, i = 1, 2, . . . , M}, where C is the set of sampled codon
states along the egg branches and Ti is the associated branch length at codon state Si. For a
given codon state Si, we define p(Si) as the conditional probability of a nonsynonymous
change if a random mutation occurs in this codon, which can be computed as:
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p(Si) =
qN(Si)

qN(Si) + qS(Si)

where qN(Si) and qS(Si) are the total substitution rates to nonsynonymous and synony-
mous one-step neighboring codons of Si. To be more specific, for a given codon Si,
there are m one-step nonsynonymous neighboring codons and n one-step synonymous
neighboring codons. Thus, qN(Si) and qS(Si) can be computed as qN(Si) = ∑m

j=1 qSi ,Sj ,
qS(Si) = ∑n

j=1 qSi , Sj , where qSi ,Sj is the rate of the transition between codons with state Si
and Sj and can be retrieved from the transition matrices at the three nucleotide positions in
the codon [53]. We computed the overall probability of nonsynonymous mutations along
the egg branches for a given codon as a weighted average:

pN =
∑M

i=1(p(Si)× Ti)

∑M
i=1(Ti)

Thus, the p-value for this specific residue was then calculated as the tail probability of
observing at least NN nonsynonymous mutations using a binomial distribution:

Bin(NN + NS, pN).

The convergence test examines whether mutations from a given codon status tend to
occur repeatedly (convergently) with specific neighboring codons. For example, for a given
codon with status C, there will be I one-step neighboring codons, denoted as:

CC = {C1, . . . , CI : ∀i, Ci is onestep neighboring codon to C }. (1)

After obtaining a sample history from the mutational mapping of the egg branches,
the observed number of mutations from C to its neighboring codon Ci ∈ CC can be counted
as nC,i. Thus, the observed frequencies of the C → Ci mutation can be computed as
fC,i =

nC,i
∑i nC,i

, ∀i = 1, . . . , I.. In order to measure the level of convergence, we used the

homogeneity score (H), defined as HC = ∑I
i=1 f 2

C,i. The convergence test is conducted by
examining whether the observed HC is larger than expected.

In order to generate the empirical null distributions of the H scores, we performed
random (unconditional) simulations according to the rate matrix inferred from the three
nucleotide positions in the codon conditioning on the starting codon states for the given
codon on the egg branches [42]. For any C, the H score calculated from the kth simulation

is HC,k. Thus, we obtained the empirical p-value for the observed HC as p =
∑k

i=1 I(HC≤HC,i)
k ,

where I(A) is the indicator of event A. In this study, we performed k = 1000 simulations.
For all statistical tests, multiple test corrections for all amino acid positions were

performed using the false discovery rate (FDR) [54]. In order to account for uncertainties in
the mutational mapping, we took an average of the FDR corrected p-values across multiple
histories (n = 100). Amino acid positions with a mean q-value of < 0.05 in the positive
selection test were inferred to be positions driving egg passage adaptation.

4.5. Temporal Dynamics of Egg Passage Adaptation across Residues

We defined the frequency of substitution for a given residue during a time interval
as the mean number of substitutions in that residue per egg-passaged sequence within
the given time interval. For example, let us assume that there is a set of n egg-passaged
sequences in a given time window. After mutational mapping, for any sequence i in the
set, there are xij substitutions at codon position j. Then, the frequency of substitution

of codon j in this time window is calculated as f j =
∑n

i=1 xij
n . Substitutions occurring on

the internal branches within egg clades are counted in all their descendant sequences,
as these substitutions are presumed to be convergently evolved and to have occurred
independently of each other in the lineages leading to the leaf nodes. In order to estimate
the rate of mutation of the egg passage, we took the estimated terminal branch lengths and
divided them by the associated number of egg passages.
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4.6. An Epistatic Network of Residues Driving Egg Passage Adaptation

We used the contingency test to investigate whether pairs of residues tend to have
substitutions along egg branches more or less frequently than expected if the mutations
occur independently of each other (Figure 2B). In particular, for each pair of residues, we
categorized all egg branches into B00 (no mutation in either residue), B01 (no mutation in
the first residue but has mutations in the second residue), B10 (has mutations in the first
residue but no mutation in the second residue) and B11 (has mutations in both residues).
We categorized possible pairs of residues into positively (co-occurring) and negatively
(mutually exclusive) interacting residues. The network structure reflecting these interacting
relationship was drawn in R using igraph (https://igraph.org/, 15 September 2020), and
the network modules are available at (https://www.rdocumentation.org/packages/dna/
versions/2.1-2/topics/network.modules, accessed on 15 September 2020).

4.7. Enrichment Score (ES)

The enrichment score (ES) [36] of a given allele (amino acid) at a particular amino acid
position is defined as the Pegg/Pall, where Pegg is the frequency of the amino acid at the
position in the egg strains and Pall is the allele frequency in all the known strain histories
(i.e., excluding “Others”, “Mix”, “NA” and “Unknown Cell”).

4.8. Vaccine Strains and Vaccine Efficacy (VE)

Vaccine strains for the H3N2 influenza virus developed in recent years (2010–2019) were
retrieved from the Center for Disease Control and Prevention (CDC) website (https://www.
fludb.org/brc/vaccineRecommend.spg?decorator=influenza, accessed on 15 September 2020).
Egg-passaged sequences of the vaccine strains were retrieved from the GISAID database.
Vaccine efficacy data were also retrieved from the CDC (https://www.cdc.gov/flu/vaccines-
work/past-seasons-estimates.html, accessed on 15 September 2020) [8–15].

4.9. A Machine Learning Model for Predicting Egg Passage Adaptation

We developed a machine learning model in PEPA (Predicting Egg Passage Adaptation)
to predict substitutions at the two dominant residues, 186 and 194, for a given candidate
vaccine virus (CVV). We used the inferred ancestral sequences of egg-passaged sequences as
the sequences for training the model before egg passage. According to the mutational histories
inferred from the mutational mapping at a specific residue (e.g., 186 or 194), each ancestral
sequence can be labelled as mutated or non-mutated. For multiple egg-passaged sequences
within an egg clade, we randomly sampled one sequence, yielding a dataset of 688 sequences
for the model. Since the proportion of mutated sequences is often small (i.e., unbalanced
label), we applied an up-sampling procedure [55] to increase the number of sequences in the
mutated category, thus producing a balanced dataset for the model training. We used Python
package scikit-learn [56] to train the Random Forest and/or XGBoost models. We adopted a
cross-validation procedure, which randomly selects 80% of the data for training and leaves
20% of the data for testing. The model performance was evaluated for its accuracy, precision,
and recall, as well as the F1 score, calculated based on test sets from 100 replicate runs. The
predictive model is available at https://github.com/LiuYunsongIOZ/Mutational_Mapping
(accessed on 15 September 2020).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14092065/s1. Table S1: GISAID data acknowledgement table
for the sequences, Table S2: Passage histories of the dataset, Figure S1. Examples of co-occurrence
relationships between substitutions at different amino acid sites, Figure S2. Boxplot for the ES
scores at the 18 residues, Figure S3. PCA of 89,853 sequences based on ES scores at 18 residues,
Figure S4: Vaccine efficacy and frequencies of different substitutions, Figure S5: The flow chart of the
machine learning model.
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