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Abstract
Polymyxin antibiotics are often used as a last-line defense to treat life-threatening Gram-negative pathogens. However, 
polymyxin-induced kidney toxicity is a dose-limiting factor of paramount importance and can lead to suboptimal treatment. 
To elucidate the mechanism and develop effective strategies to overcome polymyxin toxicity, we employed a whole-genome 
CRISPR screen in human kidney tubular HK-2 cells and identified 86 significant genes that upon knock-out rescued poly-
myxin-induced toxicity. Specifically, we discovered that knockout of the inwardly rectifying potassium channels Kir4.2 and 
Kir5.1 (encoded by KCNJ15 and KCNJ16, respectively) rescued polymyxin-induced toxicity in HK-2 cells. Furthermore, 
we found that polymyxins induced cell depolarization via Kir4.2 and Kir5.1 and a significant cellular uptake of polymyxins 
was evident. All-atom molecular dynamics simulations revealed that polymyxin  B1 spontaneously bound to Kir4.2, thereby 
increasing opening of the channel, resulting in a potassium influx, and changes of the membrane potential. Consistent with 
these findings, small molecule inhibitors  (BaCl2 and VU0134992) of Kir potassium channels reduced polymyxin-induced 
toxicity in cell culture and mouse explant kidney tissue. Our findings provide critical mechanistic information that will help 
attenuate polymyxin-induced nephrotoxicity in patients and facilitate the design of novel, safer polymyxins.
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Introduction

Multidrug-resistant (MDR) Gram-negative bacterial patho-
gens are a serious global threat to human health [1]. Poly-
myxins (i.e. polymyxin B and colistin), a group of polyca-
tionic lipopeptide antibiotics, are often used as a last-line 

therapy for MDR Gram-negative bacterial infections [2]. 
Polymyxins entered the clinic in the late 1950s [2], however, 
their use declined in the 1970s mainly due to the increas-
ing reports of nephrotoxicity following intravenous admin-
istration and the availability of newer, potentially less toxic 
antibiotics at that time [3]. Over the last two decades, the 
emergence of resistance to all other available antibiotics 
and a drying antibiotic discovery pipeline have witnessed 
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a resurgence of using polymyxins to treat life-threatening 
infections caused by Gram-negative pathogens [4].

Nephrotoxicity is the major dose-limiting factor for intra-
venous polymyxins and acute kidney injury can occur in up 
to 60% of patients with the currently recommended dos-
age regimens [5–7]. Clinical manifestations of polymyxin-
induced nephrotoxicity include hypercreatininemia, protein-
uria and oliguria [8–10]. Our previous studies found that 
significant cellular accumulation of polymyxins correlates 
with activation of death receptor, mitochondrial and endo-
plasmic reticulum apoptotic pathways, DNA damage and 
cell cycle arrest [11–13]. Previous pharmacological studies 
have shown that polymyxins undergo extensive reabsorp-
tion by renal tubular cells [14, 15], and several transport-
ers (e.g. PEPT2, megalin, and OCTN2) might contribute to 
the uptake [9, 12, 16]. However, we currently do not have 
a detailed molecular understanding of polymyxin-induced 
nephrotoxicity, and this lack of knowledge has limited the 
development of strategies for safe and effective administra-
tion of polymyxins.

In the present study, we conducted a genome-wide 
clustered regularly interspaced short palindromic repeats 
(CRISPR) knockout polymyxin resistance screen and iden-
tified 86 significant genes possibly mediating polymyxin 
toxicity in human kidney cells, amongst which the inwardly 
rectifying potassium channels were discovered as a major 
driver. Using cultured cell lines and explant cultured kid-
neys, we demonstrated that targeting the Kir potassium chan-
nels may be an effective approach to overcome polymyxin-
induced toxicity in kidney tubular cells.

Results

Whole‑genome screen identified genes required 
for polymyxin‑induced toxicity in HK‑2 cells

Human kidney proximal tubular cell line HK-2 cells have 
been previously established as a reliable model for nephro-
toxicity [16] and are sensitive to polymyxin treatment 
(Fig. 1A). To define the landscape of genes critical for 
polymyxin-induced toxicity, we conducted a genome-wide 
CRISPR knockout polymyxin resistance screen (Fig. 1B). 
Following transduction of Cas9-expressing HK-2 with a 
genome-scale single guide RNA (sgRNA) library [17], sin-
gle gene knock out cells were selected with puromycin for 
14 days and the cell mutant library was subsequently treated 
with 25 µM polymyxin B. After an additional 14 days of pol-
ymyxin incubation, DNA was extracted from surviving cells 
and used for quantification of sgRNA abundance (Fig. 1B). 
As expected, cells containing sgRNAs targeting known 
essential genes were depleted from the cell pool (Fig. S1) 
[18], demonstrating the satisfying reliability of this CRISPR 

screen. To identify the genes that, upon knockout, induced 
polymyxin resistance, we used the MAGeCK algorithm [19] 
to compare sgRNA abundance in HK-2 cells in the absence 
and presence of polymyxin B treatment. We found 86 genes 
(false discovery rate [FDR] < 0.05, fold change [FC] ≥ 2) 
whose knockout conferred resistance to polymyxin B tox-
icity in HK-2 cells (Fig. 1C and Data file S1). Gene set 
enrichment analysis (GSEA) showed that these genes were 
enriched in multiple pathways including potassium channels, 
responses to external stimuli, mTOR signaling, and endocy-
tosis (p < 0.05, Fisher’s exact test; Fig. 1D).

Our screen discovered that perturbations to several com-
plexes induced resistance to polymyxin treatment in HK-2 
cells. Specifically, potassium inwardly rectifying channel 
(Kir) subfamily J member 15 (KCNJ15) encoding Kir4.2 
and KCNJ16 encoding Kir5.1, scored as the top hits in this 
screen. Identification of several key genes in the Akt/mTOR 
complex, including tuberous sclerosis protein 1 (TSC1) and 
TSC2 suggested that the Akt/mTOR complex also plays a 
critical role in polymyxin-induced toxicity. Furthermore, we 
discovered that loss of endocytic component AP-2 complex 
subunit sigma (AP2S1, FC = 26.0) or AP-2 complex subunit 
mu (AP2M1, FC = 17.1) significantly enhanced polymyxin 
resistance, indicating that the AP-2 complex mediated endo-
cytosis plays a role in polymyxin toxicity. Consistent with 
our previous reports showing that polymyxins can cause 
apoptosis in human kidney proximal tubular and lung epi-
thelial cells [12, 20], we found that knockout of programmed 
cell death protein 10 (PDCD10, inhibiting Akt [21] and 
modulates apoptosis [22]; 41.2-fold enrichment) had a dra-
matic effect on polymyxin resistance.

To validate these observations, we generated individual 
knockout cells for the seven top-hit genes (2 sgRNAs/gene), 
namely KCNJ15, KCNJ16, KEAP1, NF2, SMARCA4, TSC2 
and MAU2. We confirmed that knockout of these genes con-
tributed to polymyxin B resistance in HK-2 cells (Fig. 1E).

Transcriptomics in HK‑2 cells following polymyxin B 
treatment supports CRISPR screen results

RNA-seq was conducted to verify the key pathways involved 
in polymyxin-induced toxicity. Following 24-h treatment 
with 100 µM polymyxin B, the expression of 1576 genes was 
significantly changed in HK-2 cells (Fig. 2A and Data file 
S2). A number of key pathways were significantly affected 
by the treatment, including ion channels, endocytosis, 
apoptosis, mTOR and SLC (solute carrier) transporter fam-
ily (Fig. 2B). Notably, the gene KCNJ16, top-ranked in the 
aforementioned CRISPR screen, was downregulated by 3.6-
fold (Fig. 2A). Several genes of clathrin-dependent endocy-
tosis were differentially expressed, including the downregu-
lated PLD1, EPN3 and DNM3 involved in cargo recruitment 
and clathrin lattice formation, and upregulated HSC70 
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Fig. 1  Identification of significant genes mediating polymyxin-
induced toxicity in HK-2 cells by CRISPR-Cas9 knockout screen. A 
Viability of HK-2 cells following 24-h treatment with 0–100 µM pol-
ymyxin B (n = 6). B Experimental scheme for CRISPR-Cas9 knock-
out screen. C Volcano plot showing positively selected sgRNAs (red 
dots in green background, p < 0.05) following polymyxin B treatment. 
The genes discussed in the main text are highlighted in bold and 
red color. D Significantly enriched Reactome pathways (p < 0.05). 

E Viability of independent gene knockout cells after polymyxin B 
treatment. Gene knockout cells were generated by CRISPR editing 
with guide RNAs. Two sgRNAs were chosen for each gene and are 
labelled with ‘_1’ and ‘_2’. Viability of gene knockout cells follow-
ing 25 µM polymyxin B treatment for 24 h were measured with XTT 
assay (n = 3). Two-tailed Student’s t-test was used to compare each of 
the gene knockout groups with the empty vector control. *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001
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chaperone genes that facilitated clathrin coat disassembly. 
The DEPTOR gene encoding an inhibitor of mTOR was 
downregulated by 3.9-fold, supporting our CRISPR results 
that loss of mTOR repressors TSC1 or TSC2 improved cell 
viability following polymyxin B treatment (Fig. 2B). A num-
ber of apoptotic genes were significantly changed, including 
downregulated MAPK10 (2.5-fold), upregulated DUSP10 
(2.7-fold), upregulated JUN (2.4-fold) and ATF3 (3.3-fold). 
Significant changes in expression were also observed for 
genes related to the SLC transporter family (Fig. 2B). Impor-
tantly, gene ontology (GO) semantic analysis showed a high-
level correlation between the differentially expressed genes 
and CRISPR-screen identified genes in cellular component 
(gene cluster semantic similarity = 0.93), molecular func-
tion (0.81) and biological process (0.75) (see pairwise gene 
semantic similarities in Fig. S2).

KCNJ15 and KCNJ16 are essential 
for polymyxin‑induced toxicity in HK‑2 cells

The two top scoring genes KCNJ15 (encoding Kir4.2) and 
KCNJ16 (encoding Kir5.1) in our CRISPR screen are both 
expressed in various kidney cell types [23, 24] and upon 

knockout a dramatic effect on polymyxin-induced toxicity 
(FC = 113 and FC = 109, respectively) could occur. Kir chan-
nels play a crucial role in maintaining the resting membrane 
potential [25]. To further explore the roles of both genes, we 
generated single gene knockout HK-2 cells (Fig. 3A). As 
Kir5.1 forms heterotetrametric channels with Kir4.2, knock-
out of Kir4.2 also reduced abundance of Kir5.1 (Fig. 3A). 
Consistent with our screen result, KCNJ15 KO and KCNJ16 
KO cells were resistant to the treatment with 10 and 25 μM 
polymyxin B (Fig. 3B).

Barium chloride  (BaCl2) is a universal Kir channel inhibi-
tor and blocks the channels at 3–200 µM [26]. Treatment 
of HK-2 cells with  BaCl2 (5–100 µM) had no observable 
effect on cell viability (Fig. 3C). To determine the effect of 
 BaCl2 on resistance to polymyxins, we pre-incubated HK-2 
cells for 10 min with 5–100 µM  BaCl2 prior to polymyxin B 
treatment (25 µM). Polymyxin B induced toxicity was com-
pletely rescued by the pre-incubation with 5–100 µM  BaCl2 
(Fig. 3C). The recently discovered Kir4.2 preferable inhibi-
tor VU0134992 [27] at 5 µM also protected cells against 
24-h treatment of 25 µM polymyxin B (Fig. 3D). Cell death 
was evident in wild-type cells following 25 µM polymyxin B 
treatment for 24 h and the majority of cells were floating and 

Fig. 2  Differential gene expression in HK-2 cells following poly-
myxin B treatment and pathway enrichment results. A Volcano plot 
showing differentially expressed genes (red) with FDR < 0.05 and 
FC ≥ 1.5. KCNJ15, KCTD5, and ERBB3 were CRISPR identified 
genes and are labelled in black. B Significantly enriched pathways 

with differentially expressed genes. FPKM: fragments per kilobase 
of exon per million reads mapped. Pathway names: A, Ion channel; 
B, Clathrin-dependent endocytosis; C, Apoptosis; D, mTOR; E, SLC 
transporter family
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propidium iodide (PI) positive (Fig. 3E). In comparison, cell 
death was minimal in KCNJ15 and KCNJ16 KO cells with or 
without treatment of 25 µM polymyxin B. Collectively, these 
results show that Kir4.2 and Kir5.1 play critical roles in pol-
ymyxin toxicity in HK-2 cells and the inhibitors  (BaCl2 and 
VU0134992) protect cells from polymyxin-induced toxicity.

Polymyxin B induces cell depolarization in HK‑2 cells

Kir channels are involved in  K+ homeostasis and play a 
major role in determining membrane potential in many cell 
types, including renal epithelial cells [28]. Considering 
that Kir4.2 and Kir5.1 mediated polymyxin-induced toxic-
ity (Fig. 3) and the differential expression of several volt-
age-gated channels was evident (Fig. 2B), we hypothesized 
that polymyxin-induced nephrotoxicity involved disrup-
tion of  K+ homeostasis and cell membrane polarization. 
Therefore, we employed patch-clamp electrophysiology in 

wild-type, KCNJ15 KO and KCNJ16 KO HK-2 cells. The 
resting membrane potentials were not significantly differ-
ent across all three groups (Fig. 4A). The input resistance 
of HK-2 cells was very high but consistent between groups 
(Fig. 4B), suggesting that a small current would exert a 
large effect on membrane potential. In ‘current clamp 
mode’, polymyxin B (50 µM) induced a significant revers-
ible depolarization (24.5 ± 5.0 mV, p = 0.006) in wild-
type cells (Fig. 4C). However, this depolarization did not 
occur in KCNJ15 KO or KCNJ16 KO cells (KCNJ15 KO 
4.7 ± 2.3 mV, p = 0.238; and KCNJ16 KO 10.6 ± 6.1 mV, 
p = 0.147; Fig. 4C). Next, the current/voltage (IV) rela-
tionship of the membrane was determined by ramping or 
stepping the membrane from − 120 to + 20 mV in voltage 
clamp mode. Treatment of HK-2 cells with 50 µM poly-
myxin B induced an inward current at negative membrane 
potentials which reversed close to 0 mV (green trace in 
Fig. 4D). This inward current did not occur in KCNJ15 

Fig. 3  Knockout or inhibition of Kir4.2 and Kir5.1 prevented pol-
ymyxin-induced toxicity in HK-2 cells. A Western blot showing the 
expression levels of KCNJ15 and KCNJ16 after knockout; actin was 
used as an internal control. B Viability of wild-type HK-2, KCNJ15 
KO and KCNJ16 KO cells following 24-h exposure to 10 and 25 µM 
polymyxin B (n = 6). C Viability of HK-2 cells following 24-h 
exposure to 0–100  µM  BaCl2 with or without 25  µM polymyxin B 
(n = 5). D Viability of HK-2 cells following the treatment of 0–25 µM 

VU0134992 alone or in combination with 25  µM polymyxin B for 
24 h (n = 3 for controls, and n = 4 for treatment groups). E Morpholo-
gies of wild-type, KNCJ15 KO, and KCNJ16 KO HK-2 cells with the 
treatment of 25 µM polymyxin B or polymyxin B with the combina-
tion of 50 µM  BaCl2, or 5 µM VU0134992 to wild-type cells. Two-
way ANOVA was employed for multi-group comparisons and Tuk-
ey's multiple comparison test was employed for post-test. *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001
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KO cells (Fig. 4D) nor in the presence of  BaCl2 (data not 
shown). At − 80 mV, the polymyxin B induced current had 
an amplitude of – 15.2 ± 4.2 pA (significantly different 
from the control) and a reversal potential of 0.6 ± 6.1 mV 
(Fig. 4D). These results further confirmed that polymyxin 
B induced an inward current and cell depolarization in 
wild-type but not KCNJ15/16 KO cells.

Using a voltage-sensitive dye Bis(1,3-dibutylbarbitu-
ric acid) trimethine oxonol (DiBAC) as an independent 
approach, we observed significant membrane depolari-
zation in HK-2 cells following 1-h treatment with 25 μM 
polymyxin B, but not in KCNJ15 KO or KCNJ6 KO cells 
(Fig.  4E). Flow cytometry showed that 50.0% of cells 
were DiBAC-positive following 1-h polymyxin B treat-
ment, whereas polymyxin did not cause significant changes 

Fig. 4  Polymyxin B induced significant electrophysiological changes 
and membrane depolarization in HK-2 cells. A The resting membrane 
potential in wild-type, KCNJ15 KO and KCNJ16 KO cells (n = 34, 
18 and 10, respectively). B Input resistances in wild-type, KCNJ15 
KO and KCNJ16 KO cells (n = 20, 18 and 10, respectively). C In cur-
rent clamp mode, polymyxin B induced approximately 30 mV depo-
larization in WT cells and this was reversible. Depolarization was 
not induced in KCNJ15 KO cells. Polymyxin B induced membrane 
potential changes are shown aside (n = 9, 10 and 7, respectively). D 
In voltage clamp mode, polymyxin B induced a statistically signifi-
cant inward current (green) in wild-type HK-2 cells (n = 8), but not 

in KCNJ15 KO cells (n = 8). The current and reversal potential values 
are shown aside. E Fluorescent signal detection in HK-2 cells with 
DiBAC, 25  μM polymyxin B, and DiBAC plus 25  μM polymyxin 
B. F Proportions of DiBAC-positive in wild-type, KCNJ15 KO, and 
KCNJ16 KO HK-2 cells measured by flow cytometry. G Propor-
tions of DiBAC-positive HK-2 cells in the control and  BaCl2 (10 μM) 
groups with or without 25 μM polymyxin B treatment measured by 
flow cytometry (n = 5 for WT and n = 4 for KOs). Data are shown 
as box and whisker plots. One-way (for WT) or two-way (for KOs) 
ANOVA was employed for multi-group comparisons. **p < 0.01; 
****p < 0.0001
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in KCNJ15 KO or KCNJ6 KO cells (Fig. 4F). After 24 h, 
70.0% of cells were DiBAC-positive following polymyxin 
B treatment, compared with 7.4% in the untreated group, 
polymyxin B induced membrane depolarization was allevi-
ated to 17.8% by 10-min pre-treatment with 10 µM  BaCl2 
(Fig. 4G). Taken together, these results demonstrate that in 
HK-2 cells polymyxin-induced toxicity involves the disrup-
tion of  K+ homeostasis and depolarization.

Polymyxin B bound and opened Kir4.2 in molecular 
dynamics simulations

We used a homology structure model of Kir4.2 channel 
(Fig. 5A) and polymyxin  B1 to perform all-atom molecular 
dynamics simulations of their interactions. Polymyxin  B1 
molecules spontaneously bound to the extracellular region of 
Kir4.2 that was embedded in a dipalmitoylphosphatidylcho-
line (DPPC) bilayer (Fig. 5B). Specifically, the key residues 
responsible for the recognition and binding of polymyxin  B1 
were identified based on their minimum distance (less than 
0.4 nm) from polymyxin  B1, including 96Q, 97L, 98G, 99E, 
100S, 101 N, 102S, 103 N, 109 M, 110 K, 111 V, 112D, 
113S, 130Y, 131G, 132 V, 134S, 135I, 137E and 138E 
(Fig. 5B). The key structural moieties of polymyxin  B1 scaf-
fold in this interaction were also elucidated, i.e. the fatty acyl 
group, Thr2, Dab3, Dab8 and Dab9 (Fig. 5B). Notably, we 
discovered that the interaction between polymyxin  B1 and 
Kir4.2 increased the open probability of the channel. In the 
absence of polymyxins, the average distance between the 
loops of the channel extracellular gate was only approxi-
mately 0.51 nm, while it dramatically increased to 1.34 nm 
in the presence of polymyxin  B1 (Fig. 5C). Our findings 
from all-atom molecular dynamics simulations indicate that 
polymyxins directly interact with the Kir4.2 channel and 
induce its open-state conformation.

Inhibition or knockout of KCNJ15/16 
prevented uptake of polymyxin B in HK‑2 cells 
without affecting its antibacterial activity

As polymyxin intracellular accumulation is indispensable 
to its toxicity, we evaluated polymyxin B uptake in HK-2 
cells using a polymyxin-specific monoclonal antibody [13]. 
Our result showed that the intracellular accumulation of 
polymyxin B was blocked by either  BaCl2 or knockout of 
KCNJ15 or KCNJ16 (Fig. 6). These results demonstrated 
that KCNJ15 and KCNJ16 played critical roles in the cel-
lular uptake of polymyxin B in HK-2 cells and reduction of 
intracellular uptake prevented its toxicity (Fig. 3).

Subsequently, we assessed whether this pharmaceuti-
cal intervention affected the antibacterial activity of poly-
myxins against three critical Gram-negative pathogens, 
Pseudomonas aeruginosa, Acinetobacter baumannii and 
Klebsiella pneumoniae. In the presence of 50 µM  BaCl2 or 
5 µM VU0139942, the antibacterial activity of polymyxin 
B did not change (Table S1). This result demonstrated that 
Kir inhibitors can rescue polymyxin-induced kidney tox-
icity without compromising the antibacterial activity of 
polymyxins.

Kir inhibitors rescued polymyxin‑induced cell 
apoptosis and cell death in kidney culture

Our earlier results showed that Kir channels mediated 
polymyxin nephrotoxicity by enabling an influx of this 
toxic antibiotic into HK-2 cells. We further examined the 
ability of Kir channel inhibitors to suppress polymyxin-
induced toxicity using mouse kidney explant culture, a 3D 
tissue model containing living nephrons [29, 30]. Based 
on the cell culture data (Fig. 3B, C), the protective effect 
of 50 µM  BaCl2 and 5 µM VU0134992 was examined in 

Fig. 5  Molecular models of Kir4.2 channel with polymyxin  B1. 
A The Kir4.2 channel model is shown in NewCartoon presentation 
(subunits are in yellow, blue, grey and purple). B Binding of poly-
myxin  B1 to the Kir4.2 channel. Polymyxin  B1 are shown in green, 

and the binding amino acids are in red. C Gate distance of the chan-
nel in the inactivate state (orange) and the state after polymyxin  B1 
bound. Purple balls represent  K+ atoms. Independent simulations 
were conducted three times
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the kidney explant. Propidium iodide staining in explant 
culture after 24-h polymyxin B treatment (25, 50 and 
100 µM) showed that kidney toxicity was induced in a 
concentration-dependent manner and was suppressed 
by pre-treatment with the universal Kir inhibitor  BaCl2 
(50 µM) or Kir4 inhibitor VU0134992 (5 µM) (Fig. S3). 
We used the TUNEL assay and 3D confocal microscopy 
to quantify polymyxin-induced apoptosis (Fig. 7A–C). 
Apoptosis occurred in 19.7 ± 4.3% of kidney cells fol-
lowing 24-h polymyxin B treatment, significantly higher 
than the 9.4 ± 1.0% in the untreated controls (Fig. 7A, 
B). The Kir inhibitors  BaCl2 (50 µM) and VU0134992 
(5 µM) markedly reduced apoptotic cell death to a level 
(9.9 ± 3.2% for  BaCl2 and 11.4 ± 3.0% for VU0134992) 
similar to that of the untreated controls, demonstrating a 
protective effect by both inhibitors (Fig. 7B). We previ-
ously showed that polymyxins cause apoptosis in proxi-
mal tubular cells [7, 13]. Therefore, we tested whether 
this also occurred in the kidney explant culture and 
quantified apoptotic cells in proximal tubular  (LTL+) 
in the explant cultures. Compared to the untreated con-
trol, polymyxin B treatment resulted in two-fold higher 
cell apoptosis in proximal tubular cells, which was again 
significantly reduced by supplementation with  BaCl2 or 
VU0134992 (Fig. 7C). Single-cell RNA-sequencing data 
confirmed the co-expression of Kcnj15 and Kcnj16 in 
proximal tubules at the embryo stages of E15.5 (similar 
to the experimental stage of the kidney explant culture) 
and E18.5 (Fig. 7D). Overall, these results support a key 
role of KCNJ15 and KCNJ16 in polymyxin-induced apop-
tosis in kidney tissue and the protective effects of their 
inhibitors.

Discussion

Current dosage regimens of the last-line therapy polymyx-
ins are suboptimal [31], primarily because their nephro-
toxicity precludes dose escalation and pharmacokinetic/
pharmacodynamic optimization against Gram-negative 
‘superbugs’ [14, 32]. Previous studies suggest that sig-
nificant accumulation of polymyxins in kidney proximal 
tubular cells might lead to the nephrotoxicity [14, 15, 
45, 46]; however, the precise mechanism of polymyxin-
induced nephrotoxicity remains unclear. In the present 
study, we employed CRISPR-Cas9 genome editing to gen-
erate a genome-wide gene knockout library of HK-2 cells 
and screened the knockouts for resistance to polymyxin-
induced cell death. Unexpectedly, we discovered that the 
inwardly rectifying potassium channels Kir4.2 (KCNJ15) 
and Kir5.1 (KCNJ16) mediated polymyxin uptake and tox-
icity in HK-2 cells.

Individual knockout of KCNJ15 or KCNJ16 in HK-2 
cells attenuated polymyxin-induced membrane depo-
larization, reduced intracellular accumulation of poly-
myxin B, and significantly increased resistance to poly-
myxin B-induced toxicity (Figs. 3 and 6). Several Kir 
channel inhibitors/regulators protected HK-2 cells from 
polymyxin-induced toxicity. In the present study, 10-min 
incubation with a Kir channel inhibitor  BaCl2 prior to 
polymyxin B exposure completely protected cells from 
polymyxin-induced cell death (Fig. 3C). Kir5.1 forms a 
heterotetramer with either Kir4.1 or Kir4.2 [28]. Kir4.2 
and Kir4.1 shares 60% similarity in the structure [33], 
while the expression level of Kir4.1 was negligible in 

Fig. 6  Intracellular accu-
mulation of polymyxin B 
in wild-type, KCNJ15 KO 
and KCNJ16 KO HK-2 cells 
with the treatment of 25 µM 
polymyxin B and 50 µM  BaCl2 
for 6 h. A Polymyxin B was 
immunostained with polymyxin 
antibody and visualized using 
Alexa Fluor-594 dye (red). The 
nucleus was counterstained 
with DAPI (blue). B The plots 
showing mean fluorescence 
intensities from each group. The 
value from control group has 
been deducted and the mean 
value from each replicate was 
plotted (n = 4)
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HK-2 cells as shown by RNA-seq (Data File S2); never-
theless, we do not exclude similar responses to polymyxin 
B where Kir4.1 is expressed. Inward/outward flow can be 
prevented when  Ba2+ binds to the inside of the Kir4.2 or 
Kir5.1 pore and blocks the channels [25].

The above hypothesis was verified by our electrophysi-
ological experiments which showed that polymyxin B 
activated a channel carrying an inward current (Fig. 4D) 
likely as a result of modulating Kir activity upon bind-
ing. Although the current was small, it drastically altered 

Fig. 7  Polymyxin-induced toxicity in mouse kidney explant cul-
tures with or without Kir inhibitors. A TUNEL staining (magenta) 
of explanted kidneys labelled with LTL (proximal tubules, cyan) 
and DAPI (nuclei, blue) after treatments with 50  μM polymyxin B 
(PMB), 5 μM VU0134992 (VU) and 50 μM  BaCl2 alone or in combi-
nation. Scale bar = 30 μm. Dashed boxes in the top image panel indi-
cate magnified proximal tubule regions shown below.  TUNEL+  LTL+ 
cells are marked with arrowheads. B Quantification of polymyxin-

induced apoptotic cells relative to the total number of cells in each 
sample (n = 4). ****p < 0.0001. C Assessment of relative levels of 
polymyxin-induced apoptosis in tubules with or without polymyxin 
treatment (n = 4). ***p < 0.001. D Expression levels of Kcnj15 and 
Kcnj16 in mouse developmental kidneys on embryonic day E15.5 and 
E18.5. Average gene expression levels (blue-red) and the percentage 
of cells within a cluster that expressed the gene (circle size) are dis-
played according to the legends
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membrane potential within minutes (Fig. 4C, E-G) owing 
to the high input resistance of these cells. For example, in 
a 5 GΩ cell such as HK-2 (Fig. 4B), a membrane current of 
1 pA would change the membrane potential by 5 mV. This 
explains the apparent ‘noisiness’ of the membrane poten-
tial traces in Fig. 4C, including the transient depolarizing 
events in both traces. As expected, knocking out KCNJ15 
or KCNJ16 (Fig. 4C), or addition of  Ba2+ (Fig. 4F) coun-
teracted this effect and attenuated polymyxin B-induced 
membrane depolarization. Here, we also employed all-atom 
molecular simulations [34] to unveil the molecular nature 
of polymyxin B binding to the potassium channel Kir4.2. 
As the crystal structure of Kir4.2 has not been published, 
a homology model of Kir4.2 was built based on the exist-
ing crystal structure of a closely related Kir2.2 channel 
(PDBID:3SPI) [35]. Interestingly, spontaneous binding of 
polymyxin B dramatically increased opening of the channel 
(Fig. 5C), which very likely led to the initial instant inward 
flow of potassium (Fig. 4D).

Nephrotoxicity has been the major safety concern for 
many drugs in the clinic, including polymyxins. Kidney 
cells contain a large number of specialized ion channels and 
transporters acting in concert to reabsorb useful substances 
from glomerular filtrate and drugs can also be reabsorbed 
by these transporters [36]. Voltage-gated potassium and 
calcium channels (KCNN4, KCNK2, KCNQ3, KCNQ5 and 
CACNA1H) were significantly downregulated in human kid-
ney HK-2 cells following polymyxin B treatment (Fig. 2B), 
indicating an adaptive cellular response attempting to limit 
uptake of this toxic peptide. Intracellular concentrations of 
polymyxins in HK-2 cells can reach ~ 2000 to 5000 times 
higher than extracellular concentrations [16]. At least three 
transporters megalin [37], PEPT2 [38] and OCTN2 [39] 
have been shown to play a key role in polymyxin uptake. 
However, none of these transporters was identified in our 
CRISPR screen. The expression of megalin was below the 
detection limit in the RNA-seq results (Data file S2); while 
PEPT2 and OCTN2 very likely can compensate for each 
other if only one transporter lost its function. For the first 
time, we discovered that polymyxin uptake was affected 
by Kir functionality given that knockout of KCNJ15 or 
KCNJ16, or pre-treatment with Kir inhibitor  BaCl2 led to an 
almost complete reduction in intracellular accumulation of 
polymyxin B (Fig. 6). These results also experimentally con-
firmed that intracellular accumulation of polymyxins leads 
to apoptosis and cell death [16]. Membrane depolarization 
likely serves as a primary response to polymyxin treatment 
and the state of many transporters and ion channels may 
change as a result of the altered membrane potential (Fig. 4) 
[36].

Apart from Kir channels, polymyxin-induced toxic-
ity in HK-2 cells possibly involves endocytosis-mediated 
uptake (Fig. 1D). This is supported by our CRISPR and 

transcriptomic data (Figs. 1C and 2B). Notably, AP2S1 and 
AP2M1, encoding the key subunits AP-2, were top-ranked 
in our CRISPR screen; this is the first time that they have 
been shown to be associated with polymyxin-induced tox-
icity. Additionally, a number of other clathrin-dependent 
endocytic genes were identified by our CRISPR screen and 
transcriptomics, particularly those involved in initial cargo 
recruitment, clathrin lattice formation and endosome traf-
ficking (Figs. 1D and 2B). We have previously shown that 
polymyxin B is co-localized with early endosomes in lung 
epithelial cells A549 [40]. Taken together, these results 
suggest that AP-2 mediated clathrin-dependent endocyto-
sis might contribute to polymyxin uptake in human kidney 
tubular cells. Since knockout of KCNJ15 or KCNJ16, or 
pre-treatment with  BaCl2 substantially reduced polymyxin 
B accumulation in HK-2 cells (Fig. 6), we postulate a cross-
talk between Kir channels and endocytosis in polymyxin B 
uptake that warrants further investigation. In addition, our 
CRISPR screening showed that knockout of mTOR repres-
sors TSC1, TSC2 and NF2 enhanced viability of HK-2 cells 
(Figs. 1C and 2B). mTOR is a major regulator of cellular 
activities, including microtubule organization, lipolysis, 
lipid biosynthesis, autophagy and cell proliferation [41]. Our 
results indicate that, when exposed to polymyxins, activation 
of mTOR is vital for cell survival [40].

Finally, our proof-of-concept study using mouse kidney 
explant confirmed in proximal tubules the co-expression 
of Kcnj15 and Kcnj16 at the embryo stages of E15.5 and 
polymyxin-induced substantial toxicity (Fig. 7). Impor-
tantly, Kir inhibitors VU0134992 and  BaCl2 significantly 
attenuated polymyxin-induced toxicity in proximal tubules 
of the mouse kidney explant which is close to the embryo 
stage of E15.5 (Fig. 7). Both Kcnj15 (KCNJ15) and Kcnj16 
(KCNJ16) are highly expressed in proximal tubule in the 
kidneys of adult mice [42], rats [43] and humans [44]. Pre-
vious studies have shown that polymyxins mainly accumu-
lated in kidney proximal tubular cells in rats and mice [45, 
46]. Collectively, our cell culture and mouse explant data 
confirm that significant intracellular accumulation of poly-
myxins mediated by Kir 4.2 and Kir5.1 plays a major role 
in polymyxin-induced nephrotoxicity.

In addition, apoptosis was also observed in the stroma 
and other tubular segments of the mouse kidney explant. 
This is very likely due to a limitation of mouse kidney 
explant culture, as all cell types (e.g. proximal and distal 
tubular cells) were exposed to polymyxins in culture media. 
However, in vivo after filtration by glomeruli, polymyxin 
concentration significantly increases in renal proximal 
tubule, where the interaction of polymyxin molecules with 
the Kir channels may lead to substantially higher intracel-
lular uptake and toxicity in proximal tubular cells than in 
other renal cell populations (e.g. in distal tubule). Indeed, a 
recent in vitro study using human kidney organoids reported 
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a similar broad cellular toxicity (e.g. in distal tubule and 
interstitial cell populations) of cisplatin, a chemotherapeutic 
agent which selectively targets proximal tubules in vivo [47]. 
Further studies are warranted to examine polymyxin impair-
ment and the localisation of Kir 4.2 and Kir5.1 in other renal 
cell types with immunostaining.

In summary, we discovered several key genes mediating 
polymyxin-induced toxicity in human renal tubular HK-2 
cells using whole-genome CRISPR screen in combination 
with transcriptomics validation. Our study is the first to 
reveal that the inwardly rectifying potassium channels Kir 
4.2 (KCNJ15) and Kir5.1 (KCNJ16) mediate polymyxin-
induced nephrotoxicity through membrane depolarization 
and cellular uptake. Our results will expedite the discov-
ery of safer new-generation polymyxins that do not inter-
act with these channels via a chemical biology approach. 
Importantly, our findings provide a novel approach to atten-
uate polymyxin-induced nephrotoxicity by targeting the 
inwardly rectifying potassium channels Kir 4.2 and Kir5.1, 
which may rescue their clinical utility against Gram-negative 
‘superbugs’.

Materials and methods

Animal study approval

All animal studies were approved by Monash University 
Animal Ethics Committee MARP-2 under the approval 
number 22271.

Chemicals and cell culture

Polymyxin B (Beta Pharma, Zhejiang, China) solution 
was prepared in Milli-Q™ water (Millipore, Melbourne, 
 Australia) and filtered through 0.22-μm syringe filters 
 (Sartorius, Melbourne, Australia). Cell viability was 
detected with XTT staining using 200 μg/mL XTT (Santa 
Cruz Biotechnology, Dallas, TX, USA) combined with 
25 μM phenazine methosulfate (Sigma-Aldrich, Saint Louis, 
MO, USA) in culture medium for 2 h at 37 °C. Absorbance 
was measured at 475 and 660 nm using an Infinite M200 
plate reader (Tecan group Ltd., Zürich, Switzerland). Mouse 
monoclonal anti-polymyxin B IgM antibody (Invitrogen, cat 
number: MA1-40133) and goat anti-mouse IgM conjugated 
with Alexa Fluor-594 were purchased from Thermo Fisher 
Scientific Australia Pty. Ltd (Melbourne, Australia). Rabbit 
multiclonal anti-Kir4.2 (KCNJ15) and anti-Kir5.1 (KCNJ16) 
antibodies were purchased from Alomone Labs (Jerusalem, 
Israel). The primary anti-actin antibody and goat anti-rabbit 
HRP-conjugated secondary antibody were produced from 
Sigma-Aldrich. All the other reagents were purchased from 

Sigma-Aldrich (Australia) and were of the highest commer-
cial grade available unless otherwise stated.

Human kidney 2 (HK-2) cell line was purchased from 
American Type Culture Collection (Manassas, VA, USA) 
and cultured in keratinocyte serum free media supplemented 
with human recombinant epidermal growth factor 1–53 and 
bovine pituitary extract (KSFM, Invitrogen, Foster, CA, 
USA). Cells were incubated at 37 °C with 5%  CO2.

Pooled sgRNA libraries

The human Brunello pooled sgRNA library was used in this 
study (Addgene cat number: 73179) [17]. In total, there were 
76,441 single guide RNAs (sgRNAs) targeting 19,114 genes 
[17] with approximately four sgRNAs targeting each gene 
plus 1000 non-targeting controls. The lentiviral vector with 
a puromycin resistance marker was employed to construct 
the sgRNA library [48].

Construction of Cas9‑expressing HK‑2 cell line

To construct the Cas9-expressing cell line, HK-2 cells were 
infected with Cas9-containing lentivirus in the presence of 
0.5 µg/mL polybrene. On the following day, the medium was 
replaced with fresh KSFM containing 4 µg/mL blasticidin. 
Culturing with blasticidin was continued for 6 days before 
Cas9 activity was validated with a lentiviral vector contain-
ing GFP and a sgRNA targeting GFP as reported [18].

Genome‑scale CRISPR‑Cas9 knockout screen 
and data processing

CRISPR screening was carried out with the HK-2 cell 
line considering the following reasons. Firstly, HK-2 cells 
express the majority of the genes involved in kidney func-
tion [49]. Secondly, the HK-2 cell line is proliferative and 
amenable to genetic manipulation, which are essential to 
CRISPR screening and subsequent validations [17–19]. 
In our CRISPR screen, lentiviral particles containing the 
pooled sgRNA library were transduced to Cas9-expressing 
HK-2 cells with a multiplicity of infection (MOI) of 0.3 and 
a ratio of ~ 500 cells per sgRNA. Following transduction, 
infected cells were selected with 2 µg/mL puromycin for 
14 days. The toxicity screen was performed in duplicates 
and each pooled mutant cell library replicate was divided 
into pre-drug, control and polymyxin B (treatment) groups. 
Polymyxin B (25 µM) was added to the treatment group 
to kill ~ 80% of cells, with the medium replenished once at 
day 7. After 14 days, cells were harvested from the con-
trol and treatment groups for genomic DNA extraction 
using NucleoSpin Blood XL (Clontech, Japan). The spe-
cific regions containing sgRNA were amplified for DNA 
sequencing using Illumina NextSeq500 as described [18]. 
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SgRNA abundance was quantified using the PoolQ algo-
rithm, and the MAGeCK algorithm [19] was used to identify 
sgRNAs enriched in these samples. The fold change of rela-
tive sgRNA abundance was determined by comparing the 
average log-transformed sgRNA abundance with and with-
out polymyxin B treatment. Genes with a combination of 
FDR < 0.05 and FC ≥ 2 were considered as positive. Pathway 
enrichment was carried out with Reactome database [50].

Gene knockout by CRISPR‑Cas9 editing

Two sgRNAs for each gene were chosen and cloned into 
pXPR_BRD003 vector separately [18]. Top ranked genes 
KCNJ15, KCNJ16, KEAP1, MAU2, NF2 and TSC2 were 
selected for validation. Lentiviral vectors were produced 
in HEK293T cells after transfection with 1250 ng pXPR_
BRD003 containing sgRNA, 250  ng VSVG, 1250  ng 
psPAX2 with  Lipofectamine® 2000 (Invitrogen). Viruses 
were collected at 48 h and freeze stocked at – 80 ℃ before 
being transduced into Cas9-expressing HK-2 cells. The 
transduced cells were then selected with 2 µg/mL puromy-
cin. Viability of the gene knockout cells was measured with 
cell proliferation kit XTT after 24-h treatment with 25 µM 
polymyxin B.

RNA‑seq and data analysis

Total RNA of HK-2 samples was extracted using TRIzol 
Reagent (Invitrogen) and checked on NanoDrop (Thermo 
Fisher Scientific) and Agilent 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, USA) before sequencing 
(150 bp paired-end) by Genewiz (Shanghai, China). Raw 
reads were aligned to human genome GRCh38.94 using sub-
junc [51] and summarized using featureCounts [52]. Genes 
with < 10 counts of aligned reads across all samples were 
excluded in analysis to reduce the noise [53]. Differentially 
expressed genes were identified using limma package [54] 
with a combination of fold change ≥ 1.5 and false discovery 
rate (FDR, by Benjamini–Hochberg algorithm) adjusted p 
value < 0.05. Gene set enrichment analysis was conducted 
using clusterProfiler [55, 56]. Functional relativeness 
between the CRISPR screen and gene differential expres-
sion results were examined by calculating gene semantic 
similarity using GOSemSim with GO terms [56].

Western blot

Western blot was conducted as previously reported [57]. 
Specifically, wild-type, KCNJ15 KO and KCNJ16 KO HK-2 
cells were collected with centrifugation. Cells (~ 1 ×  106) 
from each group were lysed with RIPA buffer (Invitrogen). 
Proteins were separated on a pre-casted SDS gel (Bio-Rad 
Hercules, CA, USA), and then transferred to a HybondTM-C 

Extra nitrocellulose membrane (Amersham Biosciences, 
Little Chalfont, UK). The primary antibodies for Kir4.2 
(KCNJ15) and Kir5.1 (KCNJ16) were applied to detect the 
expression of both channels, and the primary actin antibody 
was used as an internal control. The membranes were visu-
alized with Amersham ECL TM Prime Western Blotting 
Detection Reagents under an Amersham Imager 680 (GE 
Healthcare Bio-Sciences Corp, Marlborough, MA, USA).

Functional validation of Kir4.2 and Kir5.1

HK-2 cells were dis-attached with trypsin and plated at 
10,000 per well in a 96-well plate. Cells were treated with 
polymyxin B at 5–100 µM for 24 h and cell viability was 
measured with XTT. For the inhibitor experiments, cells 
were incubated with polymyxin B (25 µM), in combination 
with  BaCl2 (5–200 µM), or VU0134992 (0–50 µM) for 24 h. 
Polymyxin B was added 10 min after the addition of the 
other agent unless otherwise stated and cell viability was 
measured with XTT. Data are presented as percentage to the 
respective untreated controls.

To examine polymyxin B uptake, HK-2 cells (wild-type 
and KOs) were plated 50,000 per well in a 24-well plate on 
13 mm diameter round coverslips. After overnight attach-
ment, cells were treated with 25 µM polymyxin B for 6 h, 
with or without  BaCl2. The cells were then immuno-stained 
with mouse primary polymyxin antibody (Thermo Fisher 
Scientific) and goat anti-mouse Alexa Fluor-594 secondary 
antibody (Thermo Fisher Scientific), and the cell nuclei were 
counterstained with 4ʹ,6-diamidino-2-phenylindole (DAPI, 
Sigma-Aldrich). Images were taken using a Leica SP8 con-
focal microscope (Leica, Germany). The mean fluorescence 
intensity was measured by Image J [58] and the values were 
used after deducting from the non-treatment control. Four 
independent experiments were carried out.

To detect changes in cell membrane potential, HK-2, 
KCNJ15 KO, KCNJ16 KO cells were allowed to attach for 
24 h before treatment with 25 µM polymyxin B for 1 h in 
a 24-well plate. DiBAC (20 pg/mL, Sigma–Aldrich) was 
added to each well and images were collected by a Leica 
DMi8 fluorescence microscope. The number of DiBAC-
positive cells was measured with flow cytometry (NovoCyte, 
USA).

Patch clamp electrophysiological measurements

Electrophysiological activity was measured via patch-clamp 
in whole-cell voltage clamp or current clamp mode using 
an Axopatch 200A series amplifier controlled by pCLAMP 
(version 10, Molecular Devices, USA). A coverslip con-
taining HK-2 cells was placed in a recording bath (Warner 
Instruments, Hamden, CT, USA). The cells were continu-
ously superfused at 1.5 mL/min at room temperature (25 °C) 
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with Hanks balanced salt solution (HBSS, pH 7.4) contain-
ing NaCl 137 mM,  NaHCO3 4 mM,  NaH2PO4 0.3 mM, 
KCl 5.4 mM,  KH2PO4 0.44 mM,  MgCl2 0.5 mM,  MgSO4 
0.4  mM, glucose 5.6  mM, HEPES 10  mM, and  CaCl2 
1.5 mM. Recording pipettes (Clarke Glass, USA) were 
pulled using a micro-pipette puller (Flaming-Brown, Sutter 
Instruments, USA) and fire-polished to form a smooth tip 
(Narishige, Japan). The pipette tips had a resistance of 2.5–5 
MΩ. Electrodes were filled with a solution containing KCl 
130 mM, MgATP 2 mM,  MgCl2 1.2 mM, HEPES 10 mM, 
and EGTA 2 mM (pH 7.4). Cells were held at – 60 mV at the 
beginning and currents were recorded with voltage stepped 
from –120 to + 20 mV in 10 mV steps for 500 ms or when 
voltage ramps were applied (0.9 V/s).

Electrophysiological data were digitized at 5–20 kHz and 
analyzed using Clampfit 10 (Axon Instruments, USA). To 
determine the effect of polymyxin B, the current in the con-
trol solution was subtracted from the data recorded in the 
presence of polymyxin B at 50–250 µM. All data recorded 
are presented in the figures.

All‑atom molecular dynamics simulations 
of interactions between polymyxins and Kir4.2

A homology model of Kir4.2 channel was built in the 
SWISS-MODEL server based on the crystal structure 
of Kir2.2 channel (PDBID: 3SPI) [59]. CHARMM-GUI 
membrane builder module was employed to assemble the 
complex containing the Kir4.2 and DPPC bilayer [60]. SPC 
water model and 0.1 M potassium chloride were used to 
hydrate and neutralize the system. The simulation system 
contains approximately 270,000 atoms in total. In the simu-
lations, 4 polymyxin  B1 molecules were added in the top 
water layer by randomly replacing the water molecules. 
After energy minimization and six-step equilibration, 200-
ns all-atom molecular dynamics simulations were conducted 
for each system to examine the conformational dynamics 
of Kir4.2 in the presence and absence of polymyxins. All 
molecular dynamics simulations were performed using 
GROMACS 2018 with the Monash University M3 MAS-
SIVE supercomputer [61]. Other simulation parameters were 
set to match unbiased all-atom molecular dynamics simula-
tions [62].

Antibacterial activity of polymyxin B in the presence 
of Kir inhibitors

Activity of polymyxin B against P. aeruginosa PAO1, A. 
baumannii AB5075 and K. pneumoniae MKP103 was 
determined in the absence and presence of 50 μM  BaCl2, or 
5 μM VU0139942 using broth microdilution method [63]. 
Briefly, experiments were performed in 96-well polypropyl-
ene microtiter plates with concentrations of polymyxin B 

(0.125–64 mg/L) in cation-adjusted Mueller–Hinton broth 
(Oxoid, UK). The lowest concentrations that inhibited vis-
ible bacterial growth after a 20-h incubation at 37 °C were 
compared.

Kidney explant culture and treatments

Kidneys were harvested on embryonic day E13.5 from 
C57BL/6 J mice and cultured on a transwell insert in a 
6-well plate in DMEM with 10% FCS for 24 h as previously 
reported [29, 30]. The medium was then replaced with fresh 
medium containing (i) polymyxin B (25, 50, or 100 µM), 
(ii) 5 µM VU0134992 alone, (iii) 50 µM  BaCl2 alone, (iv) 
5 µM VU0134992 plus 50 µM polymyxin B, or (v) 50 µM 
 BaCl2 plus 50 µM polymyxin B. Treated kidneys were cul-
tured for an extra 20–24 h, taking them to a developmental 
stage approximately equivalent to E15.5. A subset of kidney 
cultures were stained with propidium iodide (PI) and Hoe-
chst 33342 for 10 min, then washed three times and fixed in 
4% polyformaldehyde (PFA) for imaging. For the TUNEL 
assay, samples were fixed in 4% PFA for 10 min and stained 
with Click-iT™ TUNEL Alexa Fluor™ 647 Imaging Assay 
(Molecular Probes, Thermo Fisher Scientific). Proximal 
tubules were detected using biotinylated Lotus Tetragonolo-
bus Lectin (LTL, Vector Laboratories, Inc. Burlingame, 
CA, USA) and were revealed with fluorescence-labelled 
streptavidin (Invitrogen). Nuclei were counterstained with 
DAPI. Kidneys labelled with the TUNEL assay, DAPI and 
LTL, were mounted in 50% (v/v) glycerol on a glass bottom 
dish and images were taken using AS 980 Zeiss at 40 × oil 
immersion with a z-stack between 15 and 35 sections at 
a 2-μm step-size (30 to 70 µm thick). Quantification was 
conducted in the following steps: (i) calculation of the total 
number of apoptotic (TUNNEL-positive) cells and the num-
ber of total (DAPI-positive) cells using the 3D counter and 
3D iterative threshold plugins in Image J, respectively [64, 
65]; (ii) For calculation of the same parameters as above in 
the tubules, the proximal tubule outline (LTL-positive) was 
drawn on each image to create a binary mask, and the 3D 
counter plugin and iterative threshold plugin were used for 
counting TUNEL-positive and DAPI-positive cells, respec-
tively. The representative images in Fig. 7A are flattened 
stacks (maximum intensity projections) of four slices for 
each condition (8-μm in total). Due to the intensity dispar-
ity of apoptotic cells in the tissue, the TUNEL channel was 
binarized to facilitate visualization of the apoptotic cells.

Expression levels of Kcnj15 and Kcnj16 in kidneys 
of fetal mice

The expression data of E18.5 were generated and pro-
cessed as previously described and are available at the 
Gene Expression Omnibus database (GSE108291) [66]. 
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Embryonic E15.5 kidneys were dissected and dissoci-
ated in 500 μL ACC UTA SE™ (Stemcell Technologies, 
Vancouver, Canada) at 37 °C for 6–8 min. Samples were 
gently agitated by pipetting every 2 min, washed with cold 
phosphate-buffered saline (PBS) containing 0.05% bovine 
serum albumin (BSA), and pelleted by centrifugation (400 g, 
5 min). Cell concentration was determined using a hemocy-
tometer and adjusted prior to the generation of single-cell 
libraries using 10 × Chromium v3 kits (10 × Genomics). 
Samples were sequenced at Murdoch Children’s Research 
Institute, Australia. Sequencing data were processed using 
Cell Ranger (v1.3.1, 10 × Genomics) and aligned to mm10 
with STAR (v2.5.1b) [67]. Subsequent analysis was per-
formed in R using Seurat (v3.1.4) [68]. Quality control for 
the E15.5 dataset involved the removal of cells with < 1500 
genes, or > 8% mitochondrial gene content. Doublets were 
identified and filtered out using Scrublet [69] or the HTODe-
mux function in Seurat [70]. Following all quality control 
steps, the E15.5 dataset consisted of 18,549 genes and 3294 
cells. Cell cycle effects were regressed out and gene expres-
sion data were normalized using SCTransform, followed by 
clustering at resolution 0.8. Cluster identity was determined 
as per to our previous analysis [66] then manually curated 
to generate 13 broad clusters comparable between the two 
developmental time-points. The E15.5 dataset is available 
upon request. Seurat’s DotPlot and FeaturePlot functions 
were employed for plotting and visualization. The aver-
age expression scale was used to compare expression lev-
els between different clusters. The values were scaled such 
that 0 represents the mean expression of the gene across the 
whole dataset and a value of 2 shows that the gene expres-
sion in that cluster is two standard deviations above the 
mean. For percent expression, it shows the percentage of 
cells in that cluster which expressed the gene of interest.

Statistical analysis

Data analysis and graphing were performed with Graph-
Pad Prism 9.0 (GraphPad Software Inc., San Diego, CA, 
USA), unless otherwise stated. Data are presented as box 
and whisker plots and were normally distributed with 
homogeneous variance as determined by Shapiro–Wilk 
normality test. One-way or two-way analysis of variance 
(ANOVA) were employed for multi-group comparisons, 
followed by Tukey's multiple comparison test for p values. 
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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