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When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However,
quiterapidly, thebrainfindsstructureandmeaningintheseincomingsignals,helpingustopredictandprepareourselvesforfutureactions.This
skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive
patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment’s
statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we
track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning
of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing)
versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefron-
tal, cingulate, sensory–motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (in-
cluding the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that
facilitate our ability to extract behaviorally relevant statistics to make predictions.
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Introduction
Making predictions about future events challenges us to extract
structure from streams of sensory signals that initially appear

incomprehensible. Typically, event structures in the natural
environment contain regularities of variable complexity from
simple repetitive patterns to more complex probabilistic combi-
nations. For example, when learning a new piece of music or a
new language, we extract simple repetitive patterns (e.g., tones,
syllables) and more complex contingencies (e.g., melodies or
phoneme pairs) that determine the probability with which events
occur. Learning to extract these statistics allows us to interpret
incoming signals rapidly and predict upcoming events. Despite
the fundamental importance of this type of statistical learning for
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Significance Statement

Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible.
Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment
contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine
behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to changes in the environment’s
statistics. We provide evidence for an alternate route for learning complex temporal statistics: extracting the most probable
outcome in a given context is implemented by interactions between executive and motor corticostriatal mechanisms compared
with visual corticostriatal circuits (including hippocampal cortex) that support learning of the exact temporal statistics.
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sensory interpretation and prediction, we know surprisingly little
about its neural basis.

Previous work on statistical learning has focused on simple
repetitive patterns or associative pairings. Behavioral studies pro-
vide evidence that mere exposure (i.e., without explicit feedback)
to co-occurring stimuli can drive learning of contingencies (for
reviews, see Perruchet and Pacton, 2006; Aslin and Newport,
2012). For example, observers become familiar with structured
patterns after exposure to items (e.g., shapes, tones, or syllables)
that co-occur spatially or appear in a temporal sequence (Saffran
et al., 1999; Chun, 2000; Fiser and Aslin, 2002; Turk-Browne et
al., 2005). Here, we investigate the functional brain mechanisms
that mediate our ability to adapt to changes in the environment’s
statistics and learn behaviorally relevant structures for making
predictions.

We combine behavioral measures with multisession fMRI
(before and after training) to examine the neural mechanisms
that mediate learning of temporal sequences that change in their
statistics from repetitive patterns to more complex probabilistic
contingencies. To do so unencumbered by past experience, we
tested participants with sequences of unfamiliar symbols, in
which the complexity of the sequence structure changed unbe-
knownst to the participants (see Fig. 1). We increased sequence
complexity by manipulating the memory order (i.e., context
length) of the Markov model used to generate the sequences. In
particular, we presented participants first with sequences that
were determined by frequency statistics (i.e., occurrence proba-
bility per symbol) and then by more complex, context-based sta-
tistics (i.e., the probability of a given symbol appearing depends
on the preceding symbol). Participants performed a prediction
task in which they indicated which symbol they expected to ap-
pear after exposure to a sequence of variable length. Following
previous statistical learning paradigms, participants were ex-
posed to the sequences without trial-by-trial feedback.

Our behavioral results show that individuals adapt to the en-
vironment’s statistics; that is, they are able to extract predictive
structures of different complexity. Further, we show that learning
of predictive structures relates to individual decision strategy;
that is, individuals differed in their decision strategies, favoring
either probability maximization (i.e., extracting the most proba-
ble outcome in a given context) or matching the exact sequence
statistics. We used this variability in decision strategy to inve-
stigate fMRI activity. We find that distinct corticostriatal
mechanisms mediate the two strategies: matching engages oc-
cipitotemporal regions (including the hippocampus) and ventral
caudate, whereas maximizing engages dorsolateral prefrontal,
cingulate, sensory–motor regions, and basal ganglia (dorsal cau-
date, putamen). This provides evidence for differentiated corti-
costriatal mechanisms that support learning of behaviorally
relevant statistics for making predictions.

Materials and Methods
Observers
Thirty-four participants (mean age � 21.8 years, male and female) par-
ticipated in the experiments (main experiment: n � 23; control experi-
ment: n � 11). The data from two participants were excluded from
further imaging analysis due to excessive head movement (�3 mm). All
observers were naive to the aim of the study, had normal or corrected-
to-normal vision, and gave written informed consent. This study was
approved by the University of Birmingham Ethics Committee.

Stimuli
Stimuli comprised four symbols chosen from the Ndjuká syllabary
(Turk-Browne et al., 2009; see Fig. 1a). These symbols were highly dis-

criminable from each other and were unfamiliar to the observers. Each
symbol subtended 8.5° of visual angle and was presented in black on a
midgray background. Experiments were controlled using MATLAB and
the Psychophysics toolbox 3 (Brainard, 1997; Pelli, 1997). For the behav-
ioral training sessions, stimuli were presented on a 21-inch CRT monitor
(ViewSonic P225f 1280 �1024 pixel, 85 Hz frame rate) at a distance of 45
cm. For the pretraining and posttraining fMRI scans, stimuli were pre-
sented using a projector and a mirror setup (1280 � 1024 pixel, 60 Hz
frame rate) at a viewing distance of 67.5 cm. The physical size of the
stimuli was adjusted so that angular size was constant during behavioral
and scanning sessions.

Sequence design
To generate probabilistic sequences of different complexity, we used a
temporal Markov model and manipulated the memory order of the se-
quence, which we refer to as the context length.

The Markov model consists of a series of symbols in which the symbol
at time i is determined probabilistically by the previous k symbols. We
refer to the symbol presented at time i, s(i), as the target and to the
preceding k-tuple of symbols (s(i � 1), s(i � 2), . . . s(i � k)) as the
context. The value of k is the order or level of the following model:

P�s�i� � s�i � 1�, s�i � 2�, . . . , s�1�� � P�s�i� � s�i � 1�,

s�i � 2�, . . . , s�i � k��, k � i

The simplest k � 0 th order model is a random memory-less source. This
generates, at each time point i, a symbol according to symbol probability
P(s) without taking account of the previously generated symbols.

The order k � 1 Markov model generates symbol s(i) at each time i
conditional on the previously generated symbol s(i � 1). This introduces
a memory in the sequence; that is, the probability of a particular symbol
at time i strongly depends on the preceding symbol s(i � 1). Uncondi-
tional symbol probabilities P(s(i)) for the case k � 0 are replaced with
conditional ones, P(s(i) � s(i � 1)).

At each time point, the symbol that follows a given context is deter-
mined probabilistically, making the Markov sequences stochastic. The
underlying Markov model can be represented through the associated
context-conditional target probabilities. We used four symbols that we
refer to as stimuli A, B, C, and D. The correspondence between stimuli
and symbols was counterbalanced across participants.

For Level 0, the Markov model was based on the probability of symbol
occurrence: one symbol had a high probability of occurrence, one low
probability, whereas the remaining two symbols appeared rarely (see Fig.
1b). For example, the probabilities of occurrence for the four symbols
A–D were 0.18, 0.72, 0.05, and 0.05, respectively. Presentation of a given
symbol was independent of the stimuli that preceded it.

For Level 1, the target depended on the immediately preceding stim-
ulus (see Fig. 1b). Given a context (the last seen symbol) only one of two
targets could follow; one had a high probability of being presented and
the other a low probability (e.g., 80% vs 20%). For example, when sym-
bol A was presented, only symbols B or C were allowed to follow, and
symbol B had a higher probability of occurrence than symbol C.

Task design
We tested learning of temporal structures that differed in their complex-
ity; that is, sequences determined by simple frequency statistics (Level 0)
and more complex sequences defined by context-based statistics (Level
1). To define the complexity of our sequences, we quantified the average
past–future mutual information in the sequences generated by stochastic
sources (Grassberger, 1986), providing a statistic that has been applied in
a number of probabilistic contexts (Shaw, 1984; Li, 1991). For Markov
models of order 0 or 1, complexity is expressed as the difference between
the entropy of the marginal symbol distribution and the entropy rate of
the Markov chain (Li, 1991). This measure quantifies the average reduc-
tion in uncertainty of the next symbol in a sequence when the memory
of the generating source is taken into account. For 0-order Markov mod-
els, the complexity is 0 because the source itself is memory-less. For
Markov models of order 1, conditioning on the last symbol will reduce

Wang et al. • Brain Mechanisms for Learning Temporal Structure J. Neurosci., August 30, 2017 • 37(35):8412– 8427 • 8413



the uncertainty. For example, for the first-order Markov model that we
used, the marginal symbol probabilities are equal, resulting in entropy
close to the maximum value of two bits. However, conditional on the last
symbol, only two symbols are allowed with unequal probabilities, result-
ing in lower entropy rate and therefore higher complexity (1.28).

To investigate whether participants adapt to changes in the temporal
structure, we ensured that the sequences across levels were matched for
properties (i.e., number or identity of symbols) other than complexity.
Further, we designed the stochastic sources from which the sequences
were generated so that the context-conditional uncertainty remained
highly similar across levels. In particular, for the zero-order source, only
two symbols were likely to occur most of the time; the remaining two
symbols had very low probability (0.05). This was introduced to ensure
that there was no difference in the number of symbols presented across
levels. Of the two dominant symbols, one was more probable (probabil-
ity 0.72) than the other (probability 0.18). This structure is preserved in
Markov chain of order 1, in which, conditional on the previous symbols,
only two symbols were allowed to follow, one with higher probability
(0.80) than the other (0.20). This ensures that the structure of the gener-
ated sequences across levels differed predominantly in memory order
(i.e., context length) rather than context-conditional probability.

Procedure
Observers were initially familiarized with the task through a brief practice
session (8 min) with random sequences (i.e., all four symbols were pre-
sented with equal probability 25% in a random order). After this, observ-
ers participated in multiple behavioral training and fMRI scanning
sessions that were conducted on different days (see Fig. 1c). Participants
were trained with structured sequences and tested with both structured
and random sequences to ensure that training was specific to the trained
sequences.

In the first scanning session, participants were presented with zero-
and first-order sequences and random sequences. Observers were then
trained with zero-order sequences and subsequently with first-order se-
quences. For each level, observers completed a minimum of three and a
maximum of five training sessions (840 –1400 trials). Training at each
level ended when participants reached plateau performance (i.e., per-
formance did not change significantly for two sessions). A posttrain-
ing scanning session followed training per level (i.e., on the following day
after completion of training), during which observers were presented
with structured sequences determined by the statistics of the trained level
and random sequences. The mean time interval (�SE) between the pre-
training session and the final test session was 23.5 � 0.5 d.

Psychophysical training
Each training session comprised five blocks of structured sequences (56
trials per block) and lasted 1 h. To ensure that sequences in each block
were representative of the Markov model order per level, we generated
10,000 Markov sequences per level comprising 672 stimuli per sequence.
We then estimated the Kullback–Leibler (KL) divergence between each
example sequence and the generating source. In particular, for Level 0
sequences, this was defined as follows:

KL � �
target

Q�target�log�Q�target�

P�target��,

and for Level 1 sequences, this was defined as follows:

KL

� �
context

Q�context� �
target

Q�target � context� log�Q�target � context�

P�target � context��,

where P( ) refers to probabilities or conditional probabilities derived
from the presented sequences and Q( ) refers to those specified by the
source. We selected 50 sequences with the lowest KL divergence (i.e.,
these sequences matched closely the Markov model per level). The se-
quences presented to the participants during the experiments were se-
lected randomly from this sequence set.

For each trial, a sequence of 8 –14 stimuli appeared in the center of the
screen one at a time in a continuous stream, each for 300 ms followed by
a central white fixation dot (interstimulus interval, ISI) for 500 ms (see
Fig. 1a). This variable trial length ensured that observers maintained
attention during the whole trial. Each block comprised equal number of
trials with the same number of stimuli. The end of each trial was indi-
cated by a red dot cue that was presented for 500 ms. After this, all 4
symbols were shown in a 2 � 2 grid. The positions of test stimuli were
randomized from trial to trial. Observers were asked to indicate which
symbol they expected to appear after the preceding sequence by pressing
a key corresponding to the location of the predicted symbol. Observers
learned a stimulus-key mapping during the familiarization phase: keys 8,
9, 5, and 6 in the number pad corresponded to the four positions of the
test stimuli: upper left, upper right, lower left, and lower right, respec-
tively. After the observer’s response, a white circle appeared on the se-
lected stimulus for 300 ms to indicate the observer’s choice, followed by
a fixation dot for 150 ms (intertrial interval) before the start of the next
trial. If no response was made within 2 s, a null response was recorded
and the next trial started. Participants were given feedback (i.e., score in
the form of PI, see “Data analysis” section) at the end of each block, rather
than per-trial error feedback, which motivated them to continue with
training.

Scanning sessions
The pretraining scanning session (Pre) included six runs (i.e., three runs
per level), the order of which was randomized across participants. Scan-
ning sessions after training per level (denoted as Post0, Post1) included
nine runs of structured sequences determined by the same statistics as the
corresponding trained level and random sequences. Each run comprised
five blocks of structured and five blocks of random sequences presented
in a random counterbalanced order (two trials per block; a total of 10
structured and 10 random trials per run), with an additional two 16 s
fixation blocks, one at the beginning and one at the end of each run. Each
trial comprised a sequence of 10 stimuli that were presented for 250 ms
each, separated by a blank interval during which a white fixation dot was
presented for 250 ms. After the sequence, a fixation screen (central red
dot) appeared for 4 s before the test display (comprising 4 test stimuli)
appeared for 1.5 s. Observers were asked to indicate which symbol they
expected to appear after the preceding sequence by pressing a key corre-
sponding to the location of the predicted symbol. A white fixation was
then presented for 5.5 s before the start of the next trial. In contrast to the
training sessions, no feedback was given during scanning.

fMRI data acquisition
The experiments were conducted at the Birmingham University Imaging
Centre using a 3 T Philips Achieva MRI scanner. T2*-weighted func-
tional and T1-weighted anatomical (1 � 1 � 1 mm resolution, slices �
175) data were collected with a 32-channel SENSE head coil. Echoplanar
imaging data (gradient echo pulse sequences) were acquired from 32
slices (whole-brain coverage; TR � 2000 ms; TE � 35 ms; 2.5 � 2.5 � 4
mm resolution).

Behavioral data analysis
Performance index (PI). We assessed participant responses in a probabi-
listic manner. For each context, we computed the absolute Euclidean
distance between the distribution of participant responses and the distri-
bution of presented targets estimated across 56 trials per block as follows:

AbDist(context) � �
target

� Presp(target � context)

� Ppres(target � context) �

where the sum is over targets from the symbol set A–D. We estimate
AbDist per context for each block. We quantified the minimum overlap
between these two distributions by computing a Performance Index (PI)
per context as follows:

PI(context) � �
target

min (Presp(target �context), Ppres(target �context)).
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Note that PI(context) � 1 � AbDist(context)/2. The overall PI is then
computed as the average of the performance indices across contexts,
PI(context), weighted by the corresponding stationary context probabil-
ities as follows:

PI � �
context

PI(context) � P(context).

To compare across different levels, we defined a normalized PI measure
that quantifies participant performance relative to random guessing. We
computed a random guess baseline, PIrand, which reflects participant
responses to targets with equal probability of 25% for each target per trial
for Level 0, (PIrand � 0.53) and equal probability for each target for a
given context for Level 1 (PIrand � 0.45). To correct for differences in
random guess baselines across levels, we subtracted the random guess
baseline from the PI (PInormalized � PI � PIrand).

Strategy choice and strategy index. To quantify each observer’s strategy,
we compared individual participant response distributions (response-
based model) to two baseline models: (1) probability matching, in which
probability distributions are derived from the Markov models that gen-
erated the presented sequences (model matching), and (2) a probability
maximization model, in which only the single most likely outcome is
allowed for each context (model maximization). We used KL divergence
to compare the response distribution to each of these two models. KL is
defined as follows:

KL � �
target

M�target�log�M�target�

R�target��,

for the Level 0 model and

KL

� �
context

M�context� �
target

M�target � context�log�M�target � context�

R�target � context��,

for the Level 1 model, where R( ) and M( ) denote the probability distri-
bution or conditional probability distribution derived from the human
responses and the models (i.e., probability matching or maximization),
respectively, across all the conditions.

We quantified the difference between the KL divergence from model
matching to the response-based model and the KL divergence from
model maximization to the response-based model. We refer to this quan-
tity as strategy choice indicated by 	KL (model maximization, model
matching). Negative strategy choice values indicate a strategy closer to
matching, whereas positive values indicate a strategy closer to maximi-
zation. We computed strategy choice per training block, resulting in a
strategy curve across training for each individual participant. We then
derived an individual strategy index by calculating the integral of each
participant’s strategy curve and subtracting it from the integral of the
exact matching curve, as defined by model matching across training. We
defined the integral curve difference between individual strategy and
exact matching as the individual strategy index. We used this index to
investigate the relationship of individual strategy and fMRI signals.

fMRI data analysis
Data preprocessing. MRI data were processed using Brain Voyager QX
(Brain Innovation). T1-weighted anatomical data were used for coregis-
tration, 3D cortex reconstruction, inflation, and flattening. Preprocess-
ing of the functional data involved slice scan time correction, head
motion correction, temporal high-pass filtering (three cycles), and re-
moval of linear trends. Spatial smoothing (Gaussian filter; 5 mm FWHM
kernel) was performed for group random-effect analysis. The functional
images were aligned to anatomical data and the complete data were trans-
formed into Talairach space. For each observer, the functional imaging data
between sessions were coaligned by registering all volumes of each observer
to the first functional volume acquired during the first session.

Whole-brain general linear model (GLM). BOLD responses for each
trial comprising structured or random sequences were modeled sepa-
rately for each session using a GLM. To search for brain regions that

showed learning-dependent changes across sessions, we constructed a
multiple regression design matrix that included the two stimulus condi-
tions (structured vs random sequences) for each of the scanning sessions
(Pre, Post0, Post1) as regressors. Each regressor was time locked to trial
onset and included a range of volumes (see Figs. 3 and 4: five volumes and
Fig. 5b: three volumes). To remove residual motion artifacts, the six
zero-centered head movement parameters were also included as regres-
sors. Serial correlations were corrected using a second-order autoregres-
sive model AR(2). The resulting parameter estimates (� value) were used
in a voxelwise mixed-design ANOVA with sequence (structured vs ran-
dom) and scanning session (Pre, Post0, Post1). Statistical maps were
cluster threshold corrected ( p 
 0.005) using Monte Carlo simulations
(5000 iterations; Forman et al., 1995; Goebel et al., 2006) for multiple-
comparison correction that confirmed a familywise error threshold of
p � 0.05. Note that our results also hold for a more conservative thresh-
old ( p 
 0.001), as recommended by recent studies (Woo et al., 2014;
Eklund et al., 2016), but small-volume correction is required for small
structures (i.e., putamen) at this threshold.

Covariance analysis. To examine the relationship between brain acti-
vation and observers’ performance, we conducted a voxelwise covariance
analysis. In particular, we used individual strategy index as covariate in a
GLM model of fMRI responses. That is, for each voxel, we correlated
fMRI signal difference between structured and random sequences before
versus after training with the strategy index. We calculated a Pearson
correlation coefficient ( R) for each voxel across the whole brain and
identified voxel clusters showing significant correlations ( p 
 0.05, clus-
ter threshold corrected). Positive correlations indicate increased acti-
vations after training that relate to maximization, whereas negative
correlations indicate increased activations after training that relate to
matching because a negative strategy index indicates matching.

Results
Behavioral results
Previous studies have compared learning of different spatiotem-
poral contingencies in separate experiments across different par-
ticipant groups (Fiser and Aslin, 2002, 2005). Here, to investigate
whether individuals extract changes in structure, we presented
the same participants with sequences that changed in complexity
unbeknownst to them (Fig. 1a). We parameterized sequence
complexity based on the memory order of the Markov models
used to generate the sequences (see Materials and Methods); that
is, the degree to which the presentation of a symbol depended on
the history of previously presented symbols (Fig. 1b). We first
presented participants with simple zero-order sequences (Level
0), followed by more complex first-order sequences (Level 1; Fig.
1c) because previous work has shown that temporal dependen-
cies are more difficult to learn as their length increases (van den
Bos and Poletiek, 2008) and training with simple dependencies
may facilitate learning of more complex contingencies (Antoniou
et al., 2016). Zero-order sequences (Level 0) were context-less;
that is, the presentation of each symbol depended only on the
probability of occurrence of each symbol. For first-order sequences
(Level 1), the presentation of a particular symbol was condition-
ally dependent on the previously presented symbol (i.e., context
length of one).

Because the sequences we used were probabilistic, we developed a
probabilistic measure to assess participants’ performance in the pre-
diction task. Specifically, we computed a Performance Index (PI)
that indicates how closely the distribution of participant responses
matched the probability distribution of the presented symbols. This
is preferable to a simple measure of accuracy because the probabilis-
tic nature of the sequences means that the “correct” upcoming sym-
bol is not uniquely specified; therefore, designating a particular
choice as correct or incorrect is often arbitrary.

Comparing normalized performance (i.e., after subtracting
performance based on random guessing) before and after
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training per level (Fig. 2) showed that
observers improved substantially and
learned the probabilistic structures (i.e.,
mean improvement �20% for both lev-
els). A repeated-measures ANOVA with
session (Pre, Post) and level (Level 0, Level
1) showed a significant effect of session
(F(1,20) � 82.0, p 
 0.001), but no signifi-
cant effect of level (F(1,20) 
 1, p � 0.358)
and no significant interaction (F(1,20) 
 1
p � 0.664), indicating that observers im-
proved similarly at both levels through
training. Interestingly, performance dur-
ing the pretraining test session was higher
than random guessing (F(1,20) � 42.8, p 

0.001), suggesting that fast learning of
structured sequences is consistent with
the learning time course reported in pre-
vious perceptual learning studies (Karni
and Sagi, 1993). However, improvement
continued during training across blocks;
that is, mean performance for the last two
training blocks was significantly higher
than the mean performance for the first
two training blocks (F(1,20) � 12.8,
p � 0.002).

We then tested whether this learning-
dependent improvement was specific to
the trained structured sequences. First, we
compared performance accuracy (i.e.,
proportion of correctly predicted trials
based on the predefined sequences) for
structured and random sequences. A
repeated-measures ANOVA showed a sig-
nificant interaction of Session (Pre, Post)
and sequence type (structured vs random)
for Level 0 (F(1,20) � 24.1, p 
 0.001) and
Level 1 (F(1,20) � 54.5, p 
 0.001), sug-
gesting that learning improvement was
specific to structured sequences. Second, we conducted a no-
training control experiment, during which participants (n �
11) were tested in two separate behavioral sessions but did not
participate in any training sessions. The two test sessions were
spaced apart by a period (27.9 � 1.9 days on average), compara-
ble to the main experiment (23.5 days on average). Our results
showed that there were no significant differences in performance
between the two test sessions. In particular, a repeated-measures
ANOVA with session (Session 1, Session 2) and Level (Level 0,
Level 1) did not show any significant effect of session (F(1,10) 
 1,
p � 0.736) or level (F(1,10) � 1.84, p � 0.205) and no significant
interaction (F(1,10) � 1.16, p � 0.308). These results suggest that
the improvement that we observed in the main experiment was
specific to training, rather than simply being due to repeating the
test session twice (before and after training). Comparing PI between
experiments (main vs no-training control experiment) showed a sig-
nificant interaction between experiment and session (Level 0:
F(1,30) � 15.1, p � 0.001, Level 1: F(1,30) � 7.95, p � 0.008), consis-
tent with training-induced behavioral improvement.

fMRI analysis: learning-dependent activation changes
To investigate the brain mechanisms that mediate our ability to
adapt to changes in temporal statistics, we performed fMRI on par-
ticipants before and after training on each level with structured and

random sequences. To assess learning-dependent changes in fMRI
signals, we conducted a whole-brain voxelwise GLM analysis
(RFX group analysis). In particular, we tested for brain regions
that showed a significant interaction (p 
 0.005, cluster thresh-
old corrected) between sequence (structured vs random) and
scanning session (Pre, Post0, Post1). This analysis revealed a net-
work of dorsal frontal, cingulate, posterior parietal, occipital, and
temporal regions, as well as subcortical (basal ganglia) and cerebellar
regions (Fig. 3a, Table 1).

We next investigated whether functional signals in these
regions change from learning frequency (Level 0) to learning
context-based statistics (Level 1) over time. In particular, we
compared fMRI responses for structured and random sequences
before and after training for each level (Level 0 vs Level 1) sepa-
rately. For each participant and brain region identified by the
GLM analysis, we calculated normalized fMRI responses [i.e.,
percentage signal change (PSC) index]; that is, we subtracted
mean fMRI responses to random sequences from mean fMRI
responses to structured sequences and divided by the average
fMRI responses to random sequences. Note that this PSC analysis
is complementary to the GLM analysis used to define regions of
interest (ROI); it was conducted separately for each level, whereas
the GLM tested for differences across sessions (i.e., Pre, Post0,
Post1) rather than levels.

a

b A B C D

0.18 0.72 0.05 0.05

Level-1: First-order model

Level-0: Zero-order model

Target
A B C D

C
on

te
xt

A 0.8 0.2
B 0.8 0.2
C 0.2 0.8
D 0.8 0.2

Level-1A B

CD

c

TrainingPre-
fMRI

Level-0
Level-1

Post0-
fMRI

Post1-
fMRI

Training

Session
(days)

Level-0 Level-0 Level-1 Level-1

Sequence (8-14 items)

Cue Test

time
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display. b, Sequence design. Markov models comprised two levels of complexity. For the zero-order model (Level 0), different
states (A–D) are assigned to four symbols with different frequencies. For the first-order model (Level 1), a diagram indicates states
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Comparing normalized fMRI responses before and after
training for Level 0 (Fig. 3b) showed that bilateral dorsal frontal
regions (medial: SFG: superior frontal gyrus; MeFG: medial fron-
tal gyrus, lateral: MFG: middle frontal gyrus, PrG: precentral
gyrus, and IFG: inferior frontal gyrus) and right posterior parietal
regions (IPL: inferior parietal lobule, AnG; angular gyrus, and
SMG: supramarginal gyrus) were involved in learning frequency-
based statistics. These regions showed increased fMRI responses
to structured sequences during the pretraining scanning session
in contrast to decreased responses after training (i.e., posttraining
scanning session). In particular, a repeated-measures ANOVA
with session (Pre, Post) and ROI showed a significant main effect
of session in the frontal (F(1,20) � 7.59, p � 0.012) and posterior
parietal (F(1,20) � 6.58, p � 0.018) regions.

In contrast, learning context-based statistics (Level 1) engaged
dorsal medial frontal (SFG and MeFG), limbic (CG: cingulate
gyrus, ACC: anterior cingulate cortex), and subcortical (Pu: Pu-
tamen) areas (Fig. 3b). Similar to the fMRI activation patterns for
Level 0, dorsal frontal regions showed enhanced responses to
structured compared with random sequences for the pretraining
scan that decreased after training. This was supported by a
repeated-measures ANOVA that showed a significant session ef-

fect (frontal: F(1,20) � 6.36, p � 0.020; limbic: F(1,20) � 5.36, p �
0.031). In contrast, we observed the opposite pattern of results
in putamen (paired t test, t(20) � �3.31, p � 0.003); that is,
enhanced activations for structured sequences after training. Ac-
tivation patterns differed significantly between putamen and
frontal limbic regions (i.e., significant interactions of region and
session: frontal vs putamen, F(1,20) � 16.22, p 
 0.001; limbic vs
putamen, F(1,20) � 16.34, p 
 0.001). In a complementary anal-
ysis to the GLM analysis, comparing activations across levels
showed significant differences in prefrontal regions (interaction
of session and level, F(1,20) � 4.83, p � 0.040), right posterior
parietal regions (main effect of level, F(1,20) � 7.41, p � 0.013)
and putamen (main effect of level, F(1,20) � 4.56, p � 0.045).
Consistent with the GLM analysis, these results support differen-
tial involvement of frontoparietal and striatal regions in learning
frequency compared with context-based statistics.

Interestingly, the GLM analysis showed activation changes
across sessions in the visual cortex (IOG: inferior occipital gyrus,
MOG: middle occipital gyrus, LiG: lingual gyrus). Comparing
fMRI responses in these regions across sessions did not show any
significant differences for either of the two levels (Level 0: F(1,20) 
 1,
p � 0.429; Level 1: F(1,20) 
 1, p � 0.531), suggesting that fMRI
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responses for structured sequences did not change significantly
with training in the visual cortex. For learning frequency statistics
(Level 0) visual cortex showed stronger activations for random
than structured sequences (i.e., negative PSC index values) both
before (main effect of sequence, F(1,20) � 6.04, p � 0.023) and
after (F(1,20) � 32.7, p 
 0.001) training, suggesting decreased
activation due to repetition (i.e., repetition suppression) of sym-
bols that appeared more frequently in structured than random
sequences (Summerfield and Egner, 2009). This effect was not
observed for first-order sequences (Level 1; before training, F(1,20) 

1, p � 0.981; after training, F(1,20) � 1.87, p � 0.187), consistent
with higher repetition of single symbols in zero-order than first-
order sequences.

Next, we asked whether the differences we observed in the
activation patterns between levels were due to differences in se-
quence predictability. To measure sequence predictability, we

computed the entropy rate of the probability distribution of all
possible sequences. For Level 0, the entropy rate is defined as the
entropy of the stationary distribution of symbols in the sequence.
For Level 1, the entropy rate is a weighted sum of the entropies of
all context-conditional distributions where the weights are given
by the stationary distribution of contexts. We calculated the en-
tropy rate for each sequence; we then conducted the whole brain
voxelwise GLM analysis using entropy rate as regressor. This
analysis showed significant interactions ( p 
 0.001, cluster
threshold corrected) between sequence (structured vs random)
and scanning session (Pre, Post0, Post1) in similar regions as the
main analysis (Fig. 4a), making it unlikely that our results were
confounded by differences in sequence predictability between
levels.

Comparing normalized fMRI responses before and after
training (Fig. 4b) for Level 0, we observed increased fMRI re-
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Figure 3. fMRI results. a, GLM maps for the two-way interaction between scanning session (Pre, Post0, Post1) and sequence (structured vs random), at p 
 0.005 (cluster threshold corrected).
Only the first five volumes were included in the analysis that correspond to the presentation of sequence, the participants’ prediction, and the test display presentation to avoid confounding the
results by the participants’ response. Similar results were observed at a more conservative threshold ( p 
 0.001), but small volume correction was necessary for small structures (i.e., putamen) at
this threshold. b, PSC index (percentage signal change for structured sequences compared with random sequences) before and after training for Level 0 and Level 1. Data are shown for ROIs that
showed a significant interaction between session (pretraining vs posttraining) and sequence (structured vs random). Error bars indicate SEM. Note that different number of runs were scanned before
and after training (i.e., pretraining scan comprised three runs per level, whereas posttraining scans comprised nine runs per level). To compare equal amounts of data before and after training, we
selected three of the nine runs from each posttraining scan; that is, we divided each session into two time periods and selected randomly one run per time period to match the order in which data
were collected during the pretraining scan. Whole-brain voxelwise GLM analysis showed significant interactions for sequence (structured vs random) and scanning session (Pre, Post0, Post1) in the
frontal, parietal, and subcortical regions, which is consistent with our main result.
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sponses to structured sequences before than after training (F(1,20) �
5.18, p � 0.034) in bilateral frontal regions (SFG; PrG, and IFG).
In contrast, learning context-based statistics (Level 1) engaged
dorsal frontal (SFG), limbic (ACC) and subcortical (putamen)
areas. Dorsal frontal and limbic regions showed enhanced re-

sponses to structured compared with random sequences for the
pretraining scan that decreased after training (F(1,20) � 5.76, p �
0.026). In contrast, putamen showed enhanced activations for
structured sequences after training (paired t test, t(20) � �2.78,
p � 0.012). Activation patterns differed significantly between
putamen and frontal limbic regions (i.e., significant interactions
of region and session: F(1,20) � 13.9, p 
 0.001), in support of
differential involvement of frontal and striatal regions in learning
temporal statistics.

Our results so far suggest that dorsal corticostriatal mecha-
nisms mediate learning of behaviorally relevant statistics. In par-
ticular, frontoparietal and cingulate regions showed higher fMRI
responses for structured than random sequences during the pre-
training scan. This is consistent with the role of dorsal prefrontal
cortex in decision making (Heekeren et al., 2008; Rushworth and
Behrens, 2008) and predictive coding (Monchi et al., 2001; Bar,
2009); that is, processes that are involved in both learning of
frequency and context-based statistics. Further, our results show
that cingulate cortex is involved in learning more complex
context-based statistics that may relate to its involvement in
learning under increased uncertainty (Kahnt et al., 2011; Nastase
et al., 2014). Higher fMRI responses for structured sequences in
these regions at the beginning of training may reflect processing
of novel structures (i.e., temporal regularities in the form of
single- or paired-item repetition). Significantly higher perfor-
mance for structured sequences than random guessing during the
first scanning session suggests that participants extract these sta-
tistics early in the training. Interestingly, fMRI responses for
structured sequences decreased as these sequences became famil-
iar with training. This decreased signals can be understood in the
context of repetition suppression previously observed for pre-
dictable events (Raichle et al., 1994; den Ouden et al., 2009; Sum-
merfield and Egner, 2009; Alink et al., 2010; Kok et al., 2012). In
contrast, dorsal striatal regions (i.e., putamen), which have been
implicated in learning probabilistic associations (Rauch et al., 1997;
Poldrack and Packard, 2003), showed higher fMRI responses for
structured compared with random sequences after training with
first-order sequences, suggesting that representations of context–
target contingencies were acquired through training.

Control analyses
We conducted a number of additional analyses and experiments
to help rule out alternative explanations of our results.

First, we investigated whether the differences that we observed
in fMRI responses between structured and random sequences
were due to the participants attending more to the structured
sequences either as the novel stimulus before training or the fa-
miliar stimulus after training. Comparing response times to
structured and random sequences in the pretraining and post-
training session (3-way mixed-design ANOVA: session � se-
quence � level) showed decreased response times after training
(main effect of session: F(1,20) � 8.63, p � 0.008), but no signifi-
cant differences between structured and random sequences
(main effect of sequence, F(1,20) � 0.152, p � 0.700), suggesting
that participants engaged with the task when both structured and
random sequences were presented. Importantly, there was no
significant interaction among session, sequence, and level (F(1,20) �
1.72, p � 0.205), suggesting that differences in activation patterns
across levels could not be simply due to differences in attention or
task difficulty. Further, analysis of eye movement data collected
during scanning did not show any significant differences between
structured and random sequences for Level 0 or Level 1. There
were no significant interactions observed (p � 0.10), suggesting

Table 1. Brain regions showing significant interaction between scanning session
(Pre, Post0, Post1) and sequence (structured vs random), p < 0.005, cluster
corrected

ROI Hemisphere
Volume
(mm 3)

Peak
X

Peak
Y

Peak
Z F p

Frontal
SFG R 1633 36 16 46 15.49539 0.00001
MeFG R 922 6 32 37 9.33239 0.00047
MFG L 251 �45 0 37 13.73743 0.00003
MFG R 4352 45 14 40 17.07472 0.00000
IFG L 273 �45 2 31 11.74197 0.00010
IFG R 510 48 14 19 10.29143 0.00025
PrG L 1462 �45 �4 40 17.85552 0.00000
PrG R 272 43 15 40 12.12258 0.00008
Insula L 182 �39 �4 �2 13.93199 0.00003
Insula R 81 44 14 17 7.47606 0.00174

Parietal
PCu L 1381 �21 �64 40 9.97693 0.00031
SPL L 506 �24 �58 40 11.28717 0.00013
IPL R 859 39 �50 34 11.30387 0.00013
AnG R 365 39 �58 34 10.92339 0.00016
SMG R 148 39 �49 34 11.47595 0.00012

Occipital
MOG L 2574 �27 �82 �5 19.95821 0.00000
MOG R 1263 35 �80 1 12.63784 0.00006
IOG L 929 �36 �73 �8 21.95450 0.00000
IOG R 497 37 �79 1 13.67147 0.00003
LiG L 1346 �35 �70 �6 17.45473 0.00000
LiG R 759 30 �76 1 11.94279 0.00009
Cuneus L 293 �24 �82 10 9.99664 0.00030
Cuneus R 154 24 �79 16 8.28265 0.00098
FG L 1901 �36 �73 �9 21.95450 0.00000
FG R 650 36 �63 �5 12.01979 0.00008

Temporal
MTG L 662 �41 �58 �4 17.05987 0.00000
ITG L 516 �44 �58 �5 15.70175 0.00001
SGL L 81 �42 �51 �3 8.82149 0.00067
PHG L 149 �39 �50 1 9.78701 0.00035
PHG R 98 33 �55 �5 11.96719 0.00008

Limbic
CG R 188 24 11 43 9.27872 0.00049
ACC R 160 15 32 22 8.12427 0.00109

Subcortical
Claustrum L 132 �37 �4 �2 11.50993 0.00011
Putamen L 93 �24 �16 4 8.27780 0.00098
Thalamus L 266 �12 �19 7 8.50720 0.00084

Cerebellum
Culmen L 61 �1 �61 �22 7.37876 0.00187
Culmen R 611 19 �58 �19 11.72096 0.00010
Nodule L 505 0 �53 �26 16.10464 0.00001
Nodule R 582 0 �52 �26 16.60786 0.00001
Pyramis L 197 0 �67 �26 12.81382 0.00005
Pyramis R 252 6 �70 �26 14.53668 0.00002
Declive L 586 �36 �61 �11 15.01214 0.00001
Declive R 1752 18 �58 �17 12.49729 0.00006
Uvula L 266 0 �68 �27 12.27454 0.00007
Uvula R 372 6 �70 �29 14.59243 0.00002
Cerebellar tonsil L 195 �6 �52 �32 9.38866 0.00045
Cerebellar tonsil R 113 3 �59 �31 8.41985 0.00089

PCu, Precuneus; SPL, Superior Parietal Lobule; FG, Fusiform Gyrus; MTG, MIiddle Temporal Gyrus; ITG, Inferior
Temportal Gyrus; SGL, Sub Gyral.
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that it is unlikely that our findings were confounded significantly
by eye movements.

Second, we tested whether the learning-dependent fMRI
changes that we observed could be confounded by differences in
the number of training sessions across participants. Training du-
ration varied from three to five sessions per level across partici-
pants, with most participants completing four training sessions
(Level 0, n � 12; Level 1, n � 17) before reaching plateau perfor-
mance. An ANCOVA analysis on the behavioral data using the
number of training sessions as covariate did not show any signif-
icant interactions between session and number of training ses-
sions (Level 0: F(1,19) � 0.479, p � 0.497; Level 1: F(1,19) � 0.089,
p � 0.768). Similar analysis on the fMRI data did not show any
significant interaction between session and number of training
sessions (Level 0: frontal, F(1,19) � 0.001, p � 0.874, parietal,
F(1,19) � 0.447, p � 0.512; Level 1: frontal, F(1,19) � 0.473,
p � 0.500, limbic, F(1,19) � 0.705, p � 0.412, subcortical regions,
F(1,19) � 3.53, p � 0.076). Together, these analyses suggest that it

is unlikely that our fMRI results were confounded by differences
in training duration across participants.

Third, we investigated whether the activation patterns that we
observed relate to learning-dependent changes in the representa-
tion of the trained sequences or simply the participants’ re-
sponses. In our design, the ISI jitter in each trial is too short to
isolate the fMRI signal per stimulus in the sequence. However,
the design of the paradigm allows us to analyze our fMRI data
related to sequence presentation separately from participant pre-
diction. First, we compared PSC for the first two volumes related
to the presented sequences and the fourth and fifth volume re-
lated to the participants’ prediction (i.e., the third volume was
not included in this analysis because the sequences lasted 2.5
volumes). This analysis (Fig. 5a) showed that activation patterns
for fMRI signals related to the sequence presentation and the
participants’ prediction were similar to those observed in our
main analysis (Figs. 3b, 4b). In particular, we observed a signifi-
cant effect of session (i.e., pre vs posttraining; Level 0: frontal:
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Figure 4. fMRI results controlled for differences in sequence entropy across levels. a, GLM maps ( p 
 0.001, cluster threshold corrected) for 2-way interaction between scanning session (Pre,
Post0, Post1) and sequence (structured vs random) including entropy rate as a regressor. b, PSC index before and after training for Level 0 and Level 1. Error bars indicate SEM. Data are shown for ROIs
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F(1,20) � 4.97, p � 0.037; Level 1: frontal limbic: F(1,20) � 5.95, p �
0.024, putamen: F(1,20) � 7.29, p � 0.014), but no significant
effect of processing stage (i.e., sequence vs prediction; Level 0:
frontal: F(1,20) � 0.004, p � 0.951: Level 1: frontal limbic: F(1,20) �
0.399, p � 0.535: putamen: F(1,20) � 3.29, p � 0.085). There was
no significant interaction of session and processing stage (Level 0:
frontal: F(1,20) � 0.003, p � 0.954; Level 1: frontal limbic: F(1,20) �
0.496, p � 0.490; putamen: F(1,20) � 1.68, p � 0.209). Second, a
whole-brain voxelwise GLM analysis using only the volumes that
corresponded to the sequence presentation showed significant
interactions (p 
 0.001, cluster threshold corrected) between
sequence (structured vs random) and scanning session (Pre,
Post0, Post1) in similar regions as the main analysis (Fig. 5b).
Together, these analyses of fMRI signals related to the sequence
presentation showed similar activation patterns as the main anal-

ysis (Fig. 3a), which included fMRI signals from both the se-
quence presentation and the participant prediction. Therefore,
the learning-dependent changes that we observed in the main
analysis relate to the sequence structure and could not be simply
driven by the participants’ prediction or response because fMRI
signals related to the sequence presentation were recorded before
the participants responded to the test stimulus.

Response strategies: matching versus maximization
Previous work (Shanks et al., 2002; Rieskamp and Otto, 2006;
Eckstein et al., 2013; Acerbi et al., 2014; Fulvio et al., 2014; Murray
et al., 2015) on probabilistic learning and decision making has
proposed that individuals use two possible response strategies
when making a choice: matching and maximization. Observers
have been shown to either match their choices stochastically ac-
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Figure 5. fMRI results for sequence presentation and participants’ prediction. a, PSC index for sequence presentation (volumes 1–2) and participant prediction (volumes 4 –5) before and after
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cording to the underlying input statistics
or to maximize their reward by selecting
the most probable positively rewarded
outcomes. In the context of our task, be-
cause the Markov models that generated
stimulus sequences were stochastic, par-
ticipants needed to learn the probabilities
of different outcomes to succeed in the
prediction task. It is possible that partici-
pants used probability maximization in
which they always select the most proba-
ble outcome in a particular context. Alter-
natively, participants might learn the
relative probabilities of each symbol [e.g.,
p(A) � 0.18, p(B) � 0.72, p(C) � 0.05,
p(D) � 0.05)] and respond so as to repro-
duce this distribution, a strategy referred
to as probability matching.

To quantify the participants’ strate-
gies, we computed a strategy index that
indicates participant’s preference (on a
continuous scale) for responding using
probability matching versus maximiza-
tion. Figure 6 illustrates individual strat-
egy at the beginning (first two blocks) and
end (last two blocks) of training. Compar-
ing individual strategy across levels
showed significantly higher values after training for Level 1 com-
pared with Level 0 (F(1,20) � 26.2, p 
 0.001). This shift in indi-
vidual strategy was evident mainly after training (F(1,20) � 35.8,
p 
 0.001); that is, participants shifted more toward maximiza-
tion when learning context-based rather than frequency statis-
tics. Note that this relationship was not confounded by
differences in performance because there were no significant cor-
relations (Level 0: r � 0.31, p � 0.17; Level 1: r � 0.22, p � 0.34)
of PI at the end of training (mean PI for the last two blocks of
training) and strategy index. Interestingly, despite greater maxi-
mization for more complex structures than frequency statistics,
we note that participants did not achieve optimal maximization
performance. Maximization is typically observed under super-
vised or reinforcement learning paradigms (Shanks et al., 2002),
so it is perhaps not surprising that our participants did not
achieve exact maximization because trial-by-trial feedback was
not provided.

fMRI covariance analysis with strategy
To investigate the relationship between brain activations and in-
dividual strategy, we conducted a voxelwise GLM covariance
analyses. In particular, we correlated learning-dependent changes in
fMRI signal (Posttraining PSC minus Pretraining PSC) for struc-
tured (compared with random) sequences with individual strat-
egy. We calculated a Pearson correlation coefficient (R) for each
voxel across the whole brain and identified voxel clusters showing
significant correlations ( p 
 0.05) for learning frequency
(Level 0) and context-based statistics (Level 1), respectively.
Positive correlations indicate increased activations after training that
relate to maximization, whereas negative correlations indicate in-
creased activations after training that relate to matching because
negative strategy values indicate strategy toward matching.

First, we observed negative correlations between learning-
dependent fMRI changes and strategy index in occipitotemporal
(including hippocampal regions), basal ganglia (ventral cau-
date), and thalamic regions (Fig. 7). These correlations indicate

that increased activations for structured sequences after training
in these regions relate to matching. Further, these correlations
were observed for both levels, suggesting that learning frequency
or context-based statistics by matching involves regions in visual
corticostriatal circuits that have been implicated previously in the
implicit learning of temporal sequences (Hindy et al., 2016;
Rosenthal et al., 2016) and novel categories (Ashby and Maddox,
2005; Seger, 2013). In particular, previous work has implicated
the striatum and the medial temporal lobe (i.e., hippocampus;
Rauch et al., 1997; Poldrack and Packard, 2003; Schendan et al.,
2003; Cools et al., 2004; Gheysen et al., 2011; Rose et al., 2011;
Schapiro et al., 2012; Hsieh et al., 2014) in learning probabilistic
associations. Further, medial temporal cortex has been impli-
cated in explicit rule-based categorization, whereas caudate in
categorization based on information integration (Nomura et al.,
2007).

In contrast, we observed positive correlations between
learning-dependent fMRI changes and strategy index, indicat-
ing that increased activations for structured sequences after train-
ing relate to maximizing (Fig. 8). In particular, for Level 0, we
observed positive correlations in dorsolateral prefrontal areas
(MFG/IFG), the dorsal caudate and the cingulate (including an-
terior cingulate) cortex. For Level 1, we observed positive corre-
lations in dorsolateral prefrontal (MFG/IFG) and posterior
parietal regions, as well as cingulate and temporal cortex. Inter-
estingly, we also observed positive correlations for sensory–mo-
tor cortex (precentral and postcentral gyrus) and basal ganglia
(putamen). Our results are consistent with the role of prefrontal
and cingulate cortex in decision making, monitoring perfor-
mance, correcting errors, and switching between associations
and strategies. Previous work on humans and animals empha-
sizes the role of the caudate in switching between strategies
(Monchi et al., 2001; Cools et al., 2004; Seger and Cincotta, 2006)
and learning after a rule reversal (Cools et al., 2002; Pasupathy
and Miller, 2005). This tonic and fast learning in the caudate is
thought to train slower learning mechanisms in the frontal cortex
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that may facilitate generalization and abstraction of learned asso-
ciations. Finally, the putamen, which is known to be involved in
skilled and habitual performance (Daw et al., 2005; Balleine and
O’Doherty, 2010), may facilitate learning by maximizing. That is,
once participants have extracted the most probable outcome for a
given context, they may then select it habitually as the predicted
outcome.

Discussion
Here, we investigated the brain mechanisms that medicate our
ability to adapt to changes in the environment’s statistics and
make predictions. To test how individuals extract structure
changes, we manipulated the complexity of temporal sequences
during training from simple frequency to context-based statis-
tics. Our results provide evidence for dissociated corticostriatal
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mechanisms that mediate our ability to extract behaviorally rel-
evant statistics. We found that frontoparietal activity decreases
for frequency-based learning, whereas context-based learning is
associated with decreased frontocingulate activity and increased
striatal activity. Decreased fMRI signals in frontoparietal circuits
can be understood in the context of predictive coding as repeti-
tion suppression for predictable events (Raichle et al., 1994; den
Ouden et al., 2009; Summerfield and Egner, 2009; Alink et al.,
2010; Kok et al., 2012). In contrast, increased fMRI signals in
putamen, which are implicated in learning probabilistic associa-
tions (Rauch et al., 1997; Poldrack and Packard, 2003), suggest
representations of predictive structures acquired through training.

Importantly, our approach allows us to track participants’
predictions and their decision strategies during training. We
demonstrated that learning predictive structures relates to deci-
sion strategies; that is, learning complex structures relates to ex-
tracting the most probable target per context (i.e., maximizing)
than matching the exact sequence statistics. Importantly, these
decision strategies engage distinct corticostriatal circuits: perfor-
mance based on probability matching engages occipitotemporal
and basal ganglia (ventral caudate) regions, whereas performance
based on maximizing engages dorsolateral prefrontal, cingulate,
sensory–motor regions, and basal ganglia (dorsal caudate, puta-
men). Recent work has focused on the role of the hippocampus in
learning temporal sequences (Hsieh et al., 2014; Rosenthal et al.,
2016) and predictive associations (Hindy et al., 2016). Our find-
ings suggest an alternate route to learning via maximizing that is
implemented by interactions between executive and motor cor-
ticostriatal mechanisms rather than visual corticostriatal cir-
cuits (including hippocampal cortex) that support learning by
matching.

Previous studies have implicated these corticostriatal circuits
in reinforcement learning (for reviews, see Robbins, 2007; Bal-
leine and O’Doherty, 2010). We show here that learning predic-
tive statistics may proceed without explicit trial-by-trial feedback
and involve interactions between corticostriatal circuits similar
to those known to support reward-based learning (Alexander et
al., 1986; Lawrence et al., 1998). In particular, we show that dorsal
frontoparietal regions are involved in extracting novel regulari-
ties, monitoring and adjusting strategy throughout training. In
contrast, striatal regions represent context-based statistics learned
through bootstrap training (i.e., multiple sessions of exposure to
structured sequences) that may optimize the selection of the most
probable outcome in a given context. Previous work investigating
learning of sequential contingencies in the context of the serial
reaction time task suggests that striatal versus hippocampal cir-
cuits relate to distinct error-driven learning processes and oper-
ate at different learning rates (Bornstein and Daw, 2012). In
particular, fast learning was shown to engage striatal regions (i.e.,
putamen), whereas slow learning engages the hippocampus. Al-
though our paradigm does not dissociate learning time course
from structure complexity, it is possible that learning of temporal
structures proceeds from corticostriatal to hippocampal circuits.

Further, we considered whether the learning that we observed
occurred in an incidental manner or involved explicit knowledge
of the underlying sequence structure. Previous studies have sug-
gested that learning of regularities may occur implicitly in a range
of tasks: visuomotor sequence learning (Nissen and Bullemer,
1987; Seger, 1994; Schwarb and Schumacher, 2012), artificial
grammar learning (Reber, 1967), probabilistic category learning
(Knowlton et al., 1994), and contextual cue learning (Chun and
Jiang, 1998). This work has focused on implicit measures of se-
quence learning, such as familiarity judgments or reaction times.

In contrast, our paradigm allows us to test directly whether ex-
posure to temporal sequences facilitates the observers’ ability to
predict the identity of the next stimulus in a sequence explicitly.
Although, our experimental design makes it unlikely that the
participants memorized specific stimulus positions or the full
sequences, debriefing the participants suggests that most ex-
tracted some high-probability symbols or context–target com-
binations. Therefore, it is possible that prolonged exposure to
probabilistic structures (i.e., multiple sessions in contrast to sin-
gle exposure sessions typically used in statistical learning studies)
in combination with prediction judgments (Dale et al., 2012)
may evoke some explicit knowledge of temporal structures, in
contrast to implicit measures of anticipation typically used in
statistical learning studies.

Finally, previous work has implicated additional brain regions
related to learning modality-specific regularities (Nastase et al.,
2014); that is, visual cortex is implicated in learning visual statis-
tical regularities (Aizenstein et al., 2004; Turk-Browne et al.,
2010; Meyer and Olson, 2011), whereas inferior frontal and tem-
poral regions in learning temporal regularities related to music
and language (Bahlmann et al., 2009; Leaver et al., 2009; Karuza et
al., 2013; Koelsch et al., 2013). Our results provide evidence for
corticostriatal mechanisms that mediate learning of predictive
statistics. We speculate that these mechanisms may mediate
domain-general learning of complex structures that can be spe-
cialized to support higher cognitive functions such as learning
music or language.
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