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Background: Thyroid cancer (THCA) is a common endocrine malignancy. This study aimed to explore 
the expression of pyroptosis-related genes in THCA and establish a prognosis prediction model.
Methods: Differentially expressed pyroptosis-related genes (DEPRGs) were identified in The Cancer 
Genome Atlas (TCGA) and the Molecular Signatures Database (MSigDB). Subsequently, these genes were 
subjected to Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses. A least absolute shrinkage and selection operator (LASSO) regression model was employed to 
establish a DEPRG signature, and its reliability was validated through survival analysis and receiver operating 
characteristic (ROC) curves. Patients in TCGA-THCA cohort were stratified into two risk groups. The 
biological functions of the genes between the two risk groups were assessed through gene set enrichment 
analysis (GSEA) and gene set variation analysis (GSVA). Finally, expression of DEPRGs was validated using 
datasets from the Gene Expression Omnibus (GEO) and the Human Protein Atlas (HPA) databases.
Results: Six DEPRGs were identified in TCGA dataset. Through LASSO Cox regression analysis, we 
determined IL6, TP63, NOD1, and BAX to be significant. Kaplan-Meier survival analysis demonstrated 
that patients with THCA expressing high levels of NOD1 and classified as low-risk individuals exhibited 
prolonged survival. The multifactorial ROC curves yielded area under the curve (AUC) scores exceeding 0.7 
for risk score, age, and T-stage, affirming their significance as independent prognostic factors as determined 
by multivariate analysis. Additionally, we observed elevated expression levels of BAX and NOD1 in THCA 
using data derived from the HPA database and the GEO dataset.
Conclusions: We established a novel DEPRG signature for predicting the prognosis of THCA, 
potentially offering a promising therapeutic marker for THCA treatment.
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Introduction

Thyroid cancer (THCA), the most common malignancy 
within the endocrine system (1), has witnessed a steady 
increase in its incidence in most parts of the world 
over the past few decades (2). As per the World Health 
Organization’s Thyroid Tumor Classification Scheme 
(5th edition), malignancies arising from follicular cell-
derived thyroid tumors can be categorized as follows: (I) 
follicular thyroid carcinoma; (II) infiltrative peritumoral 
follicular variant papillary carcinoma; (III) papillary thyroid 
carcinoma (PTC); (IV) eosinophilic cell carcinoma of 
the thyroid; (V) follicular carcinoma of follicular origin; 
and (VI) mesenchymal follicular cell-derived thyroid 
carcinoma. Notably, PTC stands out as the most prevalent 
malignancy derived from follicular cells, affecting both 
adult and pediatric populations (3). The substantial 
representation of PTC in our study stems from its status as 
the most common THCA type. Additionally, our dataset 
encompasses other THCA subtypes, such as follicular 
THCA, medullary THCA, and anaplastic THCA, allowing 
for a comprehensive analysis of this diverse group of 
malignancies. Many cancers are linked to lifestyle factors, 
including smoking and alcohol consumption (4). 

While there have been notable advances in surgical 
resection, radioiodine therapy, drug therapy, targeted 
therapy, and immunotherapy (5,6), the optimal scope of 
surgery for differentiated thyroid cancer (DTC) remains 
a subject of debate. Radioactive iodine residual ablation 
serves as the standard adjuvant therapy for selected 
patients with DTC but necessitates a complete or near-
complete thyroidectomy to prevent radionuclide absorption 
by residual thyroid tissue. Failure to achieve this can 
compromise its efficacy in eradicating micrometastatic 
disease. Recent study has demonstrated an increased 
risk of secondary malignancies following iodine therapy. 
Chemotherapy has been shown to exhibit limited efficacy 
due to the typically small size of these tumors (7). Progress 
has been made in the development of inhibitor-based 
therapies for THCA. However, two significant barriers 
hinder their clinical application in THCA syndromes: the 
challenge of managing adverse effects and the emergence 
of resistance (8). Therefore, there remains a pressing need 
to further refine treatment approaches to enhance disease 
response.

Pyroptosis is  a form of programmed cell  death 
accompanied by an inflammatory response (9,10). It has 
been associated with diseases such as arteriosclerosis and 

diabetic nephropathy. Study has indicated that pyroptosis 
plays pivotal roles in tumor proliferation, invasion, and 
metastasis. Pyroptosis induces cellular swelling, plasma 
membrane rupture, chromatin fragmentation, and the 
release of pro-inflammatory intracellular contents. 
Morphologically, pyroptosis differs from other cell death 
mechanisms, although they share some common features. 
In general, during pyroptosis, early-stage events involve 
DNA damage and chromatin condensation, followed by 
plasma membrane blistering and caspase activation, all 
without compromising cell membrane integrity (11). The 
relationship between pyroptosis and cancer is intricate, with 
a dual role in cancer progression and treatment. The impact 
of cell death varies across different cancer types. Studies 
have suggested that pyroptosis prevents colorectal tumor 
progression and inhibits tumor growth in hepatocellular 
carcinoma (12,13). Recent studies have uncovered novel 
pyroptosis-related characteristics in specific cancers. For 
example, pyroptosis-associated features have been used 
to predict prognosis and response to immunotherapy in 
patients with gastric cancer (14). Pyroptosis-related genes 
also predict the prognosis of ovarian cancer and play crucial 
roles in tumor immunity (15). Prognostic features of lung 
adenocarcinoma have been established based on regulators 
of cell death (16). Nonetheless, the prognostic value of 
apoptosis-related genes in THCA has not been extensively 
reported.

In this study, we identified differential expression 
patterns within both The Cancer Genome Atlas (TCGA) 
and the Molecular Signatures Database (MSigDB). 
Subsequently, we conducted Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses of pyroptosis-related genes. 
Furthermore, to establish a predictive model based on these 
differentially expressed pyroptosis-related genes (DEPRGs), 
we employed a cable regression model. The reliability 
of this model was assessed through survival analysis and 
receiver operating characteristic (ROC) curve analysis. 
Patients were stratified into two risk groups based on their 
risk scores. To further elucidate the biological functions of 
the genes between the risk groups, we employed gene set 
enrichment analysis (GSEA) and gene set variation analysis 
(GSVA). Finally, we conducted experimental validation of 
the expression patterns of the DEPRGs.

In summary, our comprehensive analysis of the datasets 
from TCGA and the MSigDB databases led to the 
development of a predictive nomogram model. This model 
has the potential to forecast the prognosis of THCA and 
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may offer valuable insights into potential therapeutic targets 
for THCA treatment. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-23-810/rc).

Methods

Data acquisition and data pre-processing

TCGA (17) is a pivotal resource for cancer researchers, 
encompassing a comprehensive array of data types, 
including clinical datasets, genomic variations, mRNA 
and miRNA expressions, methylation profiles, and more, 
across a spectrum of human cancer types and subtypes. For 
our study, we acquired samples from the TCGA database, 
specifically focusing on mRNA expression data pertaining 
to THCA. These mRNA expression values were provided 
in the fragments per kilobase of the exon model per million 
mapped fragments format. Concurrently, we obtained 
corresponding clinical information and survival data for the 
same Homo sapiens samples. The data platform utilized 
in TCGA was Illumina. Furthermore, we accessed THCA 
samples and normal controls from the Gene Expression 
Omnibus (GEO) database. Subsequently, we performed 
data normalization by applying the R package Limma 
(version 3.56.2) (18), transforming the data to log2 scale. 
This normalized expression distribution was then employed 
for generating boxplot visualizations. This study complies 
with the Declaration of Helsinki (as revised 2013).

TCGA dataset included 512 patients with THCA and 
59 normal controls, while the GSE3467 dataset contained 
9 patients with THCA and 9 normal controls. The 
GSE3678 dataset comprised seven patients with THCA 
and nine normal controls. The Hugo Gene Nomenclature 
Committee (HGNC) (19) is responsible for providing 
unique, standardized symbols for the human genome, 
including protein-coding genes. Each human gene in the 
HGNC database is assigned a unique numeric ID and 
symbol. mRNA expression profiles were extracted from 
the HGNC mRNA gene annotation file. We identified 27 
pyroptosis-related genes from the MSigDB database and 
an additional 33 pyroptosis-related genes from literature 
reviews (20-23). After removing duplicate genes, we 
identified a total of 52 pyroptosis-related genes (available 
online: https://cdn.amegroups.cn/static/public/tcr-23-810-
1.xlsx) for further analysis.

Analysis of differential expression of pyroptosis-related 
genes

The expression matrix for THCA was obtained from the 
TCGA-THCA dataset, and differentially expressed genes 
(DEGs) between the tumor and normal groups were 
analyzed using the Limma package. DEGs were defined 
based on the criteria of a P value <0.05 and an absolute fold 
change (|log2FC|) >1. Visualization of DEGs was achieved 
using the GGPLOT2 package (version 3.4.3) (24) to create 
a volcano plot highlighting the differential expression of 
genes. Additionally, the pheatmap package (25) was employed 
to visualize differences in DEG expression between 
patients with THCA and normal controls. Subsequently, 
DEGs associated with coke death were identified for 
further analysis, as indicated in the Venn diagram  
(version 1.7.3) (26). 

GO and KEGG enrichment analyses of pyroptosis-related 
genes

GO enrichment analysis is a commonly employed 
method for conducting large-scale functional enrichment 
investigations encompassing biological processes (BPs), 
molecular functions (MFs), and cellular components 
(CCs) (27). KEGG (28) serves as a widely utilized database 
housing extensive information regarding genomes, 
biological pathways, diseases, and drugs, among other 
data. In our study, we performed GO annotation analysis 
on DEGs using the R package clusterProfiler (29), with 
significance determined at a P value <0.05. The Benjamini-
Hochberg method was employed for P value correction.

Prognostic model construction

We developed a least absolute shrinkage and selection 
operator (LASSO) prognostic risk assessment model using 
R (version 4.1-8) (30) for the differentially expressed cell 
death genes in TCGA-THCA. Using this model, each 
TCGA-THCA sample was assigned a prognostic risk score. 
The cutoff for risk stratification was set at the median 
prognostic risk score, dividing patients into high- and low-
risk groups based on this cutoff value. To visualize the 
association between risk scores and the prognostic genes 
of coke death, we generated heatmaps using the corrplot 
package (version 0.92) (31).

https://tcr.amegroups.com/article/view/10.21037/tcr-23-810/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-810/rc
https://cdn.amegroups.cn/static/public/tcr-23-810-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-810-1.xlsx
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Prognostic and differential expression analysis of 
pyroptosis-related genes

The R survival package (version 3.5-7) (32) and the survival 
package (33) were employed to perform survival analysis 
and visualize pyroptosis-related genes as part of the model 
construction process. A box plot was generated using the 
R package GGPLOT2 to illustrate the differential gene 
expression between high- and low-risk groups.

GSEA and GSVA of high- and low-risk groups

We employed the clusterProfiler package (version 4.8.2) to 
conduct GSEA against the KEGG database (34), focusing 
on the TCGA-THCA expression profiles. For this analysis, 
we selected the KEGG gene set collection, specifically “C2.
CP.KEGG.V7.4.symbols.gmt”, as our reference gene set 
to discern significant differences between high- and low-
risk populations. Significance was determined at a P value 
threshold of <0.05. To investigate disparities in BPs among 
distinct clustering groups, we computed pathway scores for 
each sample individually, based on their gene expression 
profiles, using the ssGSEA method implemented in the 
R-package GSVA (version 1.48.3) (35). Subsequently, we 
visualized the enrichment scores for each pathway in every 
sample using the PHEATMAP package (version 1.0.12). 
Pathway enrichment analysis was conducted with the R 
package Limma, and pathways with P values <0.05 were 
deemed significantly different. To illustrate the variations in 
pathways between high- and low-risk groups, we generated 
violin plots using the R package GGPLOT2.

Correlation analysis between prognosis gene and prognosis 
of pyroptosis

Based on the aforementioned models, each sample from 
the TCGA-THCA dataset underwent a prognostic risk 
assessment. The cutoff point was determined as the median 
value of the patients’ prognostic risk scores, subsequently 
categorizing patients into high- and low-risk groups 
based on this established cutoff value. Survival analysis 
and visualization of these high- and low-risk groups were 
conducted using the R survival package and survminer 
package (version 0.4.9). To assess the model’s predictive 
performance, time-dependent ROC analyses were carried 
out using the R package timeROC (version 0.4) (36).

Consistent clustering of pyroptosis-related genes

We employed the ConsensusClusterPlus package (version 
1.64.0) in R (37) to consistently cluster the gene expression 
profiles of TCGA-THCA based on 52 coke-related genes, 
yielding three distinct subtypes denoted as C1, C2, and 
C3. Following the concordance clustering, we conducted a 
survival analysis of the TCGA-THCA cohort stratified by 
these subtypes, namely C1, C2, and C3. The relationship 
between survival outcomes and high- and low-risk groups 
was then visually represented using the ggalluvial package 
in R (version 0.12.5).

Nomogram model construction and correlation analysis

Clinical features of patients in TCGA-THCA were 
extracted using R, resulting in the identification of five 
features: age, gender, T, M, and N stages. Subsequently, 
univariate and multivariate Cox proportional hazards 
regression analyses were performed to assess patient 
prognostic risk scores in TCGA. These analyses aimed 
to explore factors associated with patient outcomes, and 
the results were visualized using the R package forestplot 
(version 3.1.1) (38). A nomogram is a Cartesian coordinate 
system that represents the functional relationship between 
multiple independent variables through a cluster of disjoint 
lines. To construct a nomogram model based on factors 
significantly associated with TCGA-THCA prognosis, 
we utilized the nomogram function within the R-package 
RMS (39). The constructed nomogram was then visualized 
using ggplot. To assess the predictive performance of the 
momogram model, time-dependent ROC analysis was 
conducted using the R package timeROC. This analysis 
involved evaluating the predictive scores of the nomogram 
model and comparing them to the overall survival (OS) 
status and survival time of the patients based on multiple 
factors.

Furthermore, calibration curves were employed to 
evaluate the accuracy and resolution of the nomograms. 
These curves were used to assess the prediction effect of 
the model on actual outcomes by plotting the fitting of the 
actual probability against the predicted probability under 
various conditions. The calibration curves primarily served 
to evaluate the model established using the Cox regression 
method in comparison to real-world observations. The 
construction of nomograms and calibration curves was 

http://C2.CP
http://C2.CP
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executed using the R package RMS. Additionally, decision 
curve analysis was employed as a straightforward method 
to evaluate clinical predictive models, diagnostic tests, 
and molecular markers. The R package GGDCA (version 
1.1) (40) was employed to assess the nomogram model’s 
performance concerning 1-, 3-, and 5-year patient survival.

Differential expression of pyroptosis-related genes in 
THCA and immunohistochemistry (IHC) analysis

The GEO datasets GSE3467 and GSE3678 comprise 
expression matrices pertaining to THCA. These matrices 
were subjected to normalization using the Limma package. 
A box plot was generated using the R package GGPLOT2 
to illustrate the differential expression of prognosis-
related genes in both normal control and tumor tissues. 
Immunohistochemical staining of cell death-related prognostic 
genes and mRNA expression of death-related genes across 
various carcinomas, were sourced from the Human Protein 
Atlas (HPA) (https://www.proteinatlas.org/) (41).

Statistical analysis

All dataset processing and statistical analyses were performed 
using R software (version 3.65). The ROC curve of gene 
expression and its impact on patient survival time, as well as 
survival status, was plotted utilizing the R timeROC package. 
Additionally, the area under the curve (AUC) was calculated 
to evaluate the diagnostic efficacy of gene expression in 
relation to patient survival. Correlation analysis between the 
risk score and prognostic genes was performed with Plzeň’s 
correlation coefficient, implemented via the corrplot function 
within the CORRPLOT package in R.

Results

The study design is illustrated in Figure 1.

Data acquisition and data pre-processing

Gene expression matrices and clinical datasets for THCA 
were initially acquired from TCGA, while the gene 
expression datasets for GSE3467 and GSE3678 were 
sourced from GEO. The protein gene annotation file was 
retrieved from HGNC. Subsequently, 52 genes associated 
with THCA were extracted from both the MSigDB and 
relevant literature for subsequent analysis.

Analysis of differential expression of pyroptosis-related 
genes

After preprocessing the TCGA dataset, we conducted 
a differential expression analysis between disease and 
normal groups. We utilized the Limma package to analyze 
the pyroptosis-related gene expression matrix within the 
TCGA dataset. We applied the criteria of |log2FC| >1 and 
a P value <0.05 as thresholds for screening. The results are 
depicted in Figure 2A,2B. A total of 759 genes exhibited 
upregulation, while 1,108 genes showed downregulation. 
Among these, six genes were identified as differentially 
expressed and are related to cell pyroptosis (Figure 2C). 
These genes include IL6, TP63, GSDMA, GSDMB, NOD1, 
BAX, and NLRP6. Details of the alterations in these six 
genes can be found in Table 1.

Identification of prognostic genes

To comprehensively investigate the attributes of 52 pyroptosis-
related genes within THCA, encompassing BPs, MFs, 
CCs, biological pathways, and gene expression patterns, we 
conducted enrichment analyses focusing on co-occurring 
genes associated with pyroptosis. Our findings from the 
GO functional enrichment analysis are visually depicted in a 
bubble plot (Figure 3A). The interconnectedness between cell 
pyroptosis-related genes and the outcomes of GO enrichment 
analysis is elucidated through a ring network plot (Figure 
3B). Furthermore, the results of our KEGG enrichment 
analysis are presented with item annotation plots (Figure 
3C). Additionally, the interrelation between cell pyroptosis-
related genes and the findings of KEGG enrichment analysis 
is delineated via a network plot (Figure 3D). We have also 
established correlations between the expression profiles of 
cell pyroptosis-related genes and the results of both GO and 
KEGG enrichment analyses, visually depicted as a circular 
plot (Figure 3E) and a chord plot (Figure 3F), respectively. 
Within the realm of BPs, we observed enrichments in 
pathways such as midbody abscission, positive regulation of 
interleukin-1 production, positive regulation of cysteine-
type endopeptidase activity, viral budding via the host 
Endosomal Sorting Complexes Required for Transport 
(ESCRT) complex, and mitotic cytokinetic processes. In CC, 
our analyses highlighted enrichments in the inflammasome 
complex and late endosome membrane. Moreover, MFs 
exhibited enrichments in cysteine-type endopeptidase activity 
involved in apoptotic processes, cysteine-type endopeptidase 

https://www.proteinatlas.org/
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activity involved in apoptotic signaling pathways, cysteine-
type endopeptidase activity, cysteine-type peptidase activity, 
and phosphatidylinositol-4,5-bisphosphate binding, 
among others. Additionally, we identified that apoptosis-
related genes demonstrated enrichments in pathways such 
as necroptosis, legionellosis, lipid and atherosclerosis, 
Salmonella infection, pathogenic Escherichia coli infection, 
and influenza A, among others. Detailed results of the GO 
and KEGG enrichment analyses can be found in https://cdn.
amegroups.cn/static/public/tcr-23-810-2.xlsx and https://cdn.
amegroups.cn/static/public/tcr-23-810-3.xlsx, respectively.

Identification of prognosis-related genes

Utilizing LASSO regression techniques to individually 

screen the six pyroptosis-related genes and ascertain the 
optimal lambda values, we identified four pyroptosis-
related genes (Figure 4A,4B): IL6, TP63, NOD1, and 
BAX. Subsequently, logistic regression was employed to 
formulate the prediction model and compute the regression 
coefficients for each gene. The formula for calculating the 
risk score was as follows:

( )
( ) ( )

Risk score 0.0662 IL6exp 0.0024 TP63exp

0.0893 NOD1exp 0.0189 Baxexp

( )= × + − ×

+ − × + − ×
 

[1]

Utilizing the prognostic risk formula for TCGA-THCA 
samples, we derived individual risk scores for each sample. 
Subsequently, we computed the relationship between these 
risk scores and the genes associated with cell death, which 

RNA expression data from TCGA THCA cohort 
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high-risk and low-risk group

Validation of 4-gene expression in 

GEO cohort (GSEGSE3467, N=18 

and GSE3678, N=14)

Validation of 2-gene expression in 

HPA

52-proptosis related genes

Compare the expression of Normal (N=59) and 

Tumor (N=512) samples of  TCGA THCA  

(1,867 DGEs) 

7 proptosis related genes

LASSO regression model to identify a 4-gene

signature

Survival analysis

Differential gene expression analysis

and GSEA pathway analysis 

ROC and independent prognostic analysis

Mobility of clusters, risk and  

survival status 

Consensus clustering

GO and KEGG analysis

Figure 1 Study design. TCGA, The Cancer Genome Atlas; THCA, thyroid cancer; GSVA, gene set variation analysis; GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; DGEs, differentially expressed genes; LASSO, least absolute shrinkage and selection 
operator; GEO, Gene Expression Omnibus; HPA, Human Protein Atlas; GSEA, gene set enrichment analysis; ROC, receiver operating 
characteristic.
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Table 1 DEPRGs between normal tissues and tumor tissues in TCGA-THCA dataset

Gene Normal_Mean Tumor_Mean logFC P value FDR

IL6 4.56772034 1.67823398 −1.4445304 0.00121779 0.00179814

TP63 0.13951356 0.74516309 2.41715086 7.64E−07 1.56E−06

GSDMA 0.14567797 0.79275547 2.44409324 2.72E−17 1.77E−16

GSDMB 1.47109322 3.14486738 1.09611051 5.84E−10 1.62E−09

NOD1 1.79304915 9.64505547 2.4273745 5.23E−19 4.33E−18

BAX 12.7574576 26.0353348 1.02913011 9.15E−27 4.38E−25

DEPRGs, differentially expressed pyroptosis-related genes; TCGA, The Cancer Genome Atlas; THCA, thyroid cancer; logFC, Log fold 
change; FDR, false discovery rate.

were integral to the model’s construction (Figure 4C). Our 
findings revealed a positive correlation between risk scores 
and IL6, and conversely, a negative correlation with TP63, 
NOD1, and BAX. Heatmap of the differential expression 
of DEPRGs in normal and tumor tissues in the TCGA-
THCA dataset (Figure 4D).

Differential expression analysis and prognostic analysis of 
cell death-related genes in high- and low-risk groups

The model was used to assess the prognostic risk for each 
sample within the TCGA-THCA dataset. The cutoff point 
was determined as the median value of patients’ prognostic 
risk scores, thereby segregating patients into high-risk and 

low-risk groups based on this threshold. Subsequently, we 
employed the R package Limma to compute the differential 
expression of genes between these high-risk and low-
risk groups. The alterations in DEPRGs within these 
high- and low-risk groups are summarized in Table 2. To 
provide an overview of the four pyroptosis-related genes 
that contributed to the model’s construction, we utilized 
a heatmap (Figure 5A). Following this, we utilized box 
plots to illustrate the differential expression of each gene 
within the high-risk and low-risk groups (Figure 5B-5E). 
Notably, our findings indicated higher expression levels 
of Bax and NOD1 and lower expression levels of IL6 and 
TP63. Specifically, Bax, TP63, and NOD1 were significantly 
overexpressed within the low-risk population (P<0.05), 
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Figure 3 Functional enrichment analysis (GO) and pathway enrichment analysis (KEGG) of pyroptosis-related genes. (A,B) Results of GO 
functional enrichment analysis of pyroptosis-related genes: bubble plot (A) and ring network plot (B). (C,D) Results of KEGG pathway 
enrichment analysis of pyroptosis-related genes are presented in column plots (C) and network plots (D). (E) GO functional enrichment 
combined with logFC analysis of the pyroptosis-related genes is shown in a circle diagram. (F) KEGG pathway enrichment of pyroptosis-related 
genes combined with logFC analysis results are shown in a chord diagram. The vertical coordinates in the bubble plot (A) are GO terms. Color 
of the bubble indicates activation or inhibition of GO terms. Red indicates activation, and blue indicates inhibition. In the ring network diagram 
(B), the gradient-colored dots represent specific genes. Red represents upregulation, and blue represents downregulation. Yellow circles represent 
specific pathways. Red dots represent upregulated genes (logFC >0), and blue dots represent downregulated genes (logFC <0) in the loop graph (E). 
In the screening criteria for GO and KEGG enrichment analysis, a P value <0.05 and the FDR value (q.value) <0.05 were considered significantly 
enriched. ESCRT, Endosomal Sorting Complexes Required for Transport; CC, cellular component; BP, biological processes; MF, molecular 
functions; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FC, fold change; FDR, false discovery rate. 
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Figure 4 DEPRG prognostic model construction. (A) Variable trajectories of LASSO regression prognostic model for DEPRGs; (B) 
LASSO regression model construction based on DEPRGs; (C) heatmap of the association of risk scores with key prognostic genes. Blue 
indicates a negative association, and red indicates a positive association. The darker the color, the stronger the association. *, P<0.05. (D) 
Heatmap of differential expression of DEPRGs in normal and tumor tissues in the TCGA-THCA dataset, N, normal, normal tissue; T, 
tumor, tumor tissue; DEPRGs, differentially expressed pyroptosis-related genes; LASSO, least absolute shrinkage and selection operator; 
TCGA, The Cancer Genome Atlas; THCA, thyroid cancer.

Table 2 Variations in DEPRGs between the high- and low-risk groups

Gene Low_Mean High_Mean logFC P value FDR

IL6 0.9834373 2.351649 1.257768 0.1269568 0.2530677

TP63 0.8444252 0.6268688 −0.429806 2.5659E−14 5.0318E−13

GSDMA 3.644904 2.620673 −0.4759432 4.7766E−10 5.3678E−09

GSDMB 1.063674 0.4848044 −1.133582 3.2441E−22 1.8535E−20

NOD1 14.92125 4.262019 −1.80776 3.768E−69 2.1184E−64

BAX 28.05693 23.97105 −0.2270641 2.7861E−06 1.782E−05

DEPRGs, differentially expressed pyroptosis-related genes; logFC, Log fold change; FDR, false discovery rate.
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while IL6 exhibited a trend toward overexpression within 
the high-risk population (P=0.086).

Subsequently, we employed the R survival package in 
conjunction with the survminer package to analyze and 
visualize the survival outcomes associated with various 

cell death-related prognostic genes. Our results revealed 
that patients with high NOD1 expression exhibited 
significantly improved survival times (P<0.05). Conversely, 
the expression levels of IL6, TP63, and BAX genes were not 
found to be associated with survival (Figure 5F-5I).
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Figure 5 Differential expression analysis of key death-related prognostic genes in high-risk and low-risk groups and their prognostic 
relevance. (A) In the TCGA-THCA dataset, DEPRGs were differentially expressed in the high- and low-risk groups. (B-E) Differential 
expression of BAX (B), IL6 (C), NOD1 (D), and TP63 (E) in the high- and low-risk groups. (F-I) KM curves were used to compare patient 
survival for each of the key prognostic genes: BAX (F), IL6 (G), NOD1 (H), and TP63 (I) in the high- and low-risk groups. P≥0.05 indicates 
no statistical significance; P<0.05 indicates statistical significance; P<0.01 indicates high statistical significance; and P<0.001 indicates high 
statistical significance. TCGA, The Cancer Genome Atlas; THCA, thyroid cancer; DEPRGs, differentially expressed pyroptosis-related 
genes; KM curve, Kaplan-Meier curve. 
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GSEA of cell death-related genes in high- and low-risk 
groups

The TCGA-THCA expression profile was subjected to 
GSEA, distinguishing between high- and low-risk groups, 
utilizing the GSEA function in the clusterProfiler package. 
The reference gene set employed for this analysis was “C2.
cp.kegg.v7.4.SYMBOLS.GMT”. This analysis identified 17 
differentially enriched pathways between the high- and low-
risk groups (Table 3). For specific details regarding the genes 
enriched within each pathway, please see at https://cdn.
amegroups.cn/static/public/tcr-23-810-4.xlsx. To elucidate 
the pathways associated with the low-risk group, we selected 
the top three enrichments (Figure 6D-6F). These pathways 
encompassed KEGG allograft rejection, KEGG asthma, 
and KEGG cell adhesion molecules (CAMs). Conversely, 
in the high-risk group, the top three enrichments  
(Figure 6A-6C) were KEGG Alzheimer’s disease, KEGG 
Huntington’s disease, and KEGG CAMs’s disease, and 
KEGG oxidative phosphorylation.

GSVA of cell death-related genes in high- and low-risk 
groups

To investigate disparities in pathways between high- and 
low-risk groups, we performed a GSVA of the TCGA-
THCA expression profile. Our analysis revealed 151 
significantly distinct pathways in these high- and low-risk 
groups (adjusted P value <0.05) (available online: https://
cdn.amegroups.cn/static/public/tcr-23-810-5.xlsx and 
Figure 7A). Among these pathways, we selected the top 
four pathways that are enriched in the low- and high-risk 
groups, respectively (Figure 7B and Table 4). In the low-
risk group, the following pathways exhibited enrichment: 
KEGG allograft rejection, KEGG CAMs, KEGG viral 
myocarditis, and KEGG asthma. Conversely, the high-
risk group displayed enrichment in the following pathways: 
KEGG limonene and pinene degradation, KEGG 
propanoate and butanoate metabolism, KEGG valine, 
leucine, and isoleucine degradation, and KEGG butanoate 
metabolism.

Table 3 GSEA of high- and low-risk groups in TCGA-THCA dataset

ID Set size Enrichment score P value Adj. P value Q value

KEGG_OXIDATIVE_PHOSPHORYLATION 114 0.69343937 1.0702E-09 1.905E-07 1.4307E-07

KEGG_PARKINSONS_DISEASE 110 0.67640441 3.5824E-09 3.1883E-07 2.3946E-07

KEGG_CELL_ADHESION_MOLECULES_CAMS 105 −0.537413 1.0161E-06 6.0289E-05 4.528E-05

KEGG_HUNTINGTONS_DISEASE 157 0.55842937 4.6457E-06 0.00020673 0.00015526

KEGG_ALLOGRAFT_REJECTION 24 −0.7431423 3.7345E-05 0.00132948 0.00099849

KEGG_ASTHMA 16 −0.8040169 7.6238E-05 0.00226173 0.00169864

KEGG_ALZHEIMERS_DISEASE 135 0.55157927 9.4835E-05 0.00241151 0.00181113

KEGG_TYPE_I_DIABETES_MELLITUS 27 −0.6995838 0.00013701 0.00304849 0.00228952

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_
DEGRADATION

41 0.67863518 0.00039287 0.00777019 0.00583568

KEGG_GLYCINE_SERINE_AND_THREONINE_
METABOLISM

22 0.79981019 0.00057476 0.01023077 0.00768366

KEGG_BUTANOATE_METABOLISM 26 0.75330099 0.00064699 0.01046952 0.00786298

KEGG_ARGININE_ANDPROLINE_METABOLIM 44 0.65383932 0.00139696 0.02072161 0.01556265

KEGG_LEISHMANIA_INFECTION 59 −0.5054466 0.00169835 0.02325434 0.01746482

KEGG_CARDIAC_MUSCLE_CONTRACTION 48 0.62449405 0.00187037 0.02378047 0.01785996

KEGG_VIRAL_MYOCARDITIS 55 −0.5105996 0.00214481 0.0254518 0.01911519

KEGG_PROPANOATE_METABOLISM 29 0.69840805 0.00360547 0.0401108 0.03012461

KEGG_GRAFT_VERSUS_HOST_DISEASE 24 −0.6233416 0.00407042 0.04261973 0.0320089

GSEA, gene set enrichment analysis; TCGA, The Cancer Genome Atlas; THCA, thyroid cancer. 

http://C2.cp
http://C2.cp
https://cdn.amegroups.cn/static/public/tcr-23-810-4.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-810-4.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-810-5.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-810-5.xlsx
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Concordant cluster analysis and survival based on cell coke 
death-related genes

We employed the ConsensusClusterPlus package in R to 
consistently cluster the gene expression profiles of TCGA-
THCA based on a set of 52 cell pyroptosis-related genes. 
The optimal clustering outcome was achieved at K=3, as 
illustrated in Figure 8A,8B. This yielded three distinct 
subtypes denoted as C1, C2, and C3, with the corresponding 
patient subgroups detailed in https://cdn.amegroups.cn/
static/public/tcr-23-810-6.xlsx (see below). Following the 
concordant clustering, we conducted a survival analysis 
within the TCGA-THCA cohort, stratified by subtypes C1, 
C2, and C3. Notably, no significant difference was observed 
in OS among these three subtypes (P=0.206) (Figure 8C). 
Subsequently, a Sankey chart was generated to visualize the 
classification of patients into high- and low-risk groups, 
along with their respective survival status. Notably, a 
majority of patients within the C1 subtype were classified 

as high-risk, while some fell into the low-risk category. 
For the C2 subtype, a portion of patients were identified 
as high-risk, while another subset was categorized as low-
risk. The C3 subtype, although less common, exhibited 
a balanced distribution, with approximately half of its 
patients falling into the high-risk group and the other half 
into the low-risk group. Among the high-risk individuals, 
the majority were found to be alive, while only a few were 
deceased. Conversely, very few of the low-risk individuals 
were deceased. Importantly, patients with THCA displayed 
superior OS (Figure 8D).

Correlation analysis between prognosis and pyroptosis-
related gene

The model was employed to assess the prognostic risk of 
individual samples within the TCGA-THCA dataset. The 
cutoff point was defined as the median value of patients’ 
prognostic risk scores. Subsequently, patients were 
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categorized into distinct risk groups using the R survival 
package and survminer package for survival analysis based 
on high and low-risk designations, and the results are 
illustrated in Figure 9A. Notably, the survival analysis 
yielded a log-rank P value of less than 0.05, indicating a 
more favorable prognosis in the low-risk group. To further 
evaluate the prognostic capabilities of the model within 
the TCGA-THCA dataset, time-dependent ROC analysis 
was conducted at 1-, 3-, and 5-year intervals based on the 
prognostic risk scores. All datasets exhibited AUC values 
exceeding 0.5, indicative of strong predictive performance. 
Specifically, both the 3- and 5-year datasets displayed 
AUC values exceeding 0.7, underscoring the model’s 
heightened effectiveness in predicting survival at these time 
points (Figure 9B). Moreover, the AUC values associated 
with patients’ age, T stage, and risk scores all exceeded 
0.7, affirming their robust predictive utility. Baseline 
tables detailing demographic characteristics such as age, 
sex, T, M, and N stages, and risk scores are provided in  
Table 5. Furthermore, the clustering of risk factors within 
the LASSO regression prognostic model was visualized 
using a risk factor graph (Figure 9C). This graphical 
representation revealed a higher incidence of mortality 
within the population with elevated risk scores. AUC values 
for risk scores and clinical characteristics (Figure 9D). 
Subsequent validation of other clinical factors for survival 
outcomes underscored the superior predictive power of risk 
scores, age, and T stage for patients with THCA.

Validation of the prognostic independence of the model and 
the prognostic value of other risk factors

We investigated the potential associations between clinical 
characteristics, risk scores, and the prognosis of patients 
in TCGA-THCA. Initially, we performed univariate Cox 
regression analysis, which revealed significant relationships 
between age (HR =1.155, 95% CI: 1.080–1.235, P<0.001), 
risk score (HR =3.678, 95% CI: 1.975–6.851, P<0.001), 
and T stage (HR =2.443, 95% CI: 1.100–5.427, P=0.028) 
with OS (P<0.05) (Figure 10A and Table 6). Subsequently, 
we performed a multivariate Cox regression analysis, 
incorporating these factors as covariates. This analysis 
indicated that age (HR =1.147, 95% CI: 1.058–1.244, 
P<0.001) emerged as an independent prognostic factor 
for OS in patients with THCA; while the risk score (HR 
=2.592, 95% CI: 0.972–6.914, P=0.057) exhibited a trend 
towards becoming an independent prognostic factor 
for patient OS (Figure 10B and Table 7). Furthermore, 
when stratifying patients with THCA exhibiting an 
early T stage, we observed a notable trend indicating a 
potential association between the risk score and patient 
OS (P=0.202) (Figure 10C). In contrast, among patients 
exhibiting a late T stage, the risk scores demonstrated 
a significant association with patient OS (P=0.014)  
(Figure 10D). These findings suggested that the risk 
score may hold prognostic value, particularly in patients 
exhibiting an advanced T stage.

Table 4 Top four pathways in GSVA enriched in high- and low-risk groups, respectively

ID logFC AveExpr t P value Adj. P value B

KEGG_LIMONENE_AND_PINENE_DEGRADATION 0.4027005 −0.0932206 12.5908106 7.56E−32 7.03E−30 61.5271241

KEGG_PROPANOATE_METABOLISM 0.36412521 −0.0844205 11.6198361 7.42E−28 1.97E−26 52.4684866

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_
DEGRADATION

0.36151221 −0.0729168 11.0650592 1.17E−25 2.43E−24 47.4810468

KEGG_BUTANOATE_METABOLISM 0.3309971 −0.0689158 12.0576439 1.24E−29 5.68E−28 56.5034141

KEGG_ALLOGRAFT_REJECTION −0.2685861 −0.0034524 −5.8158199 1.07E−08 2.79E−08 9.24563085

KEGG_CELL_ADHESION_MOLECULES_CAMS −0.2595397 0.0120555 −8.8214921 1.79E−17 1.59E−16 28.9557849

KEGG_VIRAL_MYOCARDITIS −0.2548962 0.01769772 −7.9998049 8.42E−15 4.75E−14 22.9282579

KEGG_ASTHMA −0.2484736 0.01030598 −6.156239 1.51E−09 4.38E−09 11.1378064

GSVA, gene set variation analysis; logFC, Log fold change; AveExpr, average expression.
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Nomogram model construction and correlation analysis

In the analysis of clinical features within the TCGA-THCA 
dataset, we utilized R to eliminate features characterized as 
null or devoid of meaningful information. As a result of this 
data pre-processing, we narrowed down our dataset to five 
key features: age, gender, T, M, and N stages. Following 
this refinement, we employed both univariate and 
multivariate Cox proportional hazards regression analyses 

to investigate prognostic risk scores and clinical factors. 
Notably, age emerged as a significant predictor of prognosis. 
Subsequently, we proceeded to construct a nomogram 
model designed to predict OS rates at 1, 3, and 5 years. This 
comprehensive model incorporated six essential variables: 
age, gender, T, M, and N stages, and prognostic risk 
scores, as illustrated in Figure 11A. To assess the predictive 
performance of this nomogram model, we employed the 

Figure 8 Concordance cluster analysis and survival. (A) Consistency cluster CDF. (B) Consistency cluster graph at K=3. (C) Survival 
differences among the three subtypes were obtained by concordance clustering. (D) Concordance clustering was used to obtain the Sankey 
map of the three types, high-risk group, low-risk group, and survival status. P<0.05 was considered to indicated statistical significance. CDF, 
cumulative distribution function.
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R package timeROC for time-dependent ROC analysis, 
focusing on OS status and survival time within the TCGA-
THCA dataset. Remarkably, the 1-year AUC value for the 
nomogram exceeded 0.9, and the 3-year and 5-year AUC 
values outperformed those of the prognostic risk score. 
Furthermore, we conducted calibration analyses at 1, 2, 
and 3 years for variables identified through both univariate 
and multivariate Cox regression. Calibration curves were 
generated (Figure 11B-11D). In these plots, the vertical 
axis denotes the actual dataset’s survival probability, while 
the horizontal axis represents the model-predicted survival 
probability at different time points. Various colored lines 
and data points correspond to predictions made by the 

model at different time intervals. The closer these colored 
lines align with the gray ideal conditions line, the more 
accurate the model’s predictive performance is at that 
specific time point. Collectively, the nomogram model 
reaffirms the reliability, prospective utility, and clinical 
applicability of our risk assessment model.

Identification of DEGs 

The transcriptome expression microarray datasets GSE3467 
and GSE3678 were subjected to normalization using the 
Limma package to conduct differential expression analysis. 
The results indicated that in the GSE3467 dataset, the 
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Table 5 Patient baseline dataset

Covariates Risk Total, n (%) High, n (%) Low, n (%) Chi P value

Age, year ≤65 240 (86.02) 108 (81.82) 132 (89.8) 3.0475 0.0809

>65 39 (13.98) 24 (18.18) 15 (10.2)

Gender Female 203 (72.76) 97 (73.48) 106 (72.11) 0.0152 0.902

Male 76 (27.24) 35 (26.52) 41 (27.89)

Stage Stage I–II 181 (64.87) 90 (68.18) 91 (61.9) 0.9429 0.3315

Stage III–IV 98 (35.13) 42 (31.82) 56 (38.1)

T T1–2 166 (59.5) 84 (63.64) 82 (55.78) 1.4693 0.2255

T3–4 113 (40.5) 48 (36.36) 65 (44.22)

M M0 272 (97.49) 129 (97.73) 143 (97.28) 0 >0.99

M1 7 (2.51) 3 (2.27) 4 (2.72)

N N0 148 (53.05) 81 (61.36) 67 (45.58) 6.3385 0.0118

N1 131 (46.95) 51 (38.64) 80 (54.42)

Figure 10 Prognostic risk score is a prognostic factor for OS of THCA. (A,B) Forrest plots for univariate (A) and multivariate (B) Cox 
regression analyses of each clinical index and risk score with survival. (C,D) Association of different risks with survival were assessed in 
patients with early T1 + T2 (C) and late T3 + T4 (D), classified according to T stage. P<0.05 was considered statistically significant. OS, 
overall survival; THCA, thyroid cancer.
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expression of TP63 and IL6 was generally lower in tumor 
tissues, while NOD1 and BAX exhibited significantly higher 
expression levels in tumor tissues compared to normal 
tissues (Figure 12A,12B). In contrast, within the GSE3678 
dataset, only NOD1 displayed significant differential 
expression, characterized by elevated expression in tumor 
tissues. Subsequently, we acquired IHC staining images 
from the THCA tissue microarray and NOD1 mRNA 
expression data from the HPA database. Notably, BAX 
demonstrated a certain degree of expression in normal 
thyroid tissues (Figure 12C, left one and left two) but 
exhibited a moderate to high level of expression in tumor 
tissues, with staining localized to the cytoplasm and 
cytoplasmic membrane (Figure 12C, right one and right 
two). Furthermore, NOD1 exhibited high expression levels 
in THCA, as confirmed through pan-cancer expression 
comparison (Figure 12D).

Discussion

THCA is a prevalent endocrine malignancy that has 
exhibited a significant increase in incidence over recent 
decades. Despite notable advancements in surgical 

resection, radioactive iodine therapy, drug therapy, 
targeted therapy, immunotherapy, and the utilization of 
kinase inhibitors, these approaches have their respective 
limitations. Consequently, there remains a pressing need to 
further refine and optimize treatment modalities to enhance 
disease response.

Cancer manifests two fundamental characteristics: 
uncontrolled cell proliferation and the promotion of tumor-
related inflammation (42). These attributes enable cancer 
cells to acquire genomic alterations, leading to genomic 
instability (43). Study has highlighted the pivotal role of 
pyroptosis in the proliferation, invasion, and metastasis of 
tumors. Pyroptosis induces cellular swelling, rupture of 
the plasma membrane, chromatin fragmentation, and the 
release of pro-inflammatory intracellular contents. This 
underscores the potential utility of pyroptosis-related genes 
as diagnostic markers and therapeutic targets (44).

In this study, we identified six DEPRGs from TCGA 
database. Furthermore, through LASSO Cox regression 
analysis, we identified IL6, TP63, NOD1, and BAX as 
candidate genes associated with the prognosis of TCGA-
THCA patients. These four DEPRGs collectively 
constituted the prognostic risk score. Subsequently, we 

Table 6 Univariate independent prognostic analysis

Covariates HR HR.95L HR.95H P value

Age 1.14731201 1.05826231 1.24385499 8.57E−04

Gender 0.35021186 0.03000393 4.08774258 0.40265139

T 1.83479304 0.67777362 4.96694683 0.23228511

M 6.22110043 0.48517109 79.7699856 0.16022265

N 0.29251221 0.03782106 2.26232171 2.39E−01

Risk score 2.59237623 0.97199705 6.91402767 5.70E−02

HR, hazard ratio; L, low; H, high.

Table 7 Multivariate independent prognostic analysis

Covariates HR HR.95L HR.95H P value

Age 1.15535705 1.08043547 1.23547398 2.43E−05

Gender 0.86870011 0.18024002 4.18686075 0.86075226

T 2.4428418 1.09958839 5.42700896 0.02830237

M 2.56064434 0.31439668 20.8554984 0.37958347

N 2.08680787 0.52102125 8.35813717 0.29877029

Risk score 3.67844748 1.97499631 6.85113982 4.05E−05

HR, hazard ratio; L, low; H, high. 
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Figure 11 Nomogram model construction. (A). Nomograms established based on a combination of risk score, age, and TNM stage were 
used to predict the OS of patients with THCA. (B-D) Calibration charts for predicting 1-year (B), 3-year (C), and 5-year (D) survival. The 
horizontal and vertical axes represent the predicted survival probability and the actual survival probability, respectively. ***, represents highly 
significant differences with P<0.001. OS, overall survival; TNM, tumor-node-metastasis; THCA, thyroid cancer. 

conducted an enrichment analysis of pyroptosis-related 
genes using GO and KEGG. We categorized all TCGA-
THCA patients into two risk groups based on their 
prognostic risk scores and employed box plots to illustrate 
the differential expression of each gene within the high- and 
low-risk groups. Our findings revealed that BAX and NOD1 
exhibited higher expression levels, whereas IL6 and TP63 
showed lower expression levels. Specifically, BAX, TP63, 
and NOD1 were significantly overexpressed in the low-risk 
population, while IL6 tended to be overexpressed in the 

high-risk population. We performed survival analysis and 
visualization using the R survival package and survminer 
package. The results demonstrated that patients with high 
NOD1 expression exhibited prolonged survival. However, 
the expression levels of IL6, TP63, and BAX genes were 
not associated with survival outcomes. Further analysis 
involved the exploration of the biological functions of genes 
within the two risk groups through GSEA and GSVA. 
GSEA revealed 18 distinct enrichment pathways between 
the high-risk and low-risk groups, and the pathways of the 
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low- and high-risk groups were selected for display. GSVA 
revealed 151 different pathways between the high- and 
low-risk groups, with the top four pathways displayed for 
each group. We conducted a consensus clustering of gene 
expression across 52 pyroptosis-related genes, revealing that 
K=3 was the optimal cluster. Subsequent survival analysis 
demonstrated no significant differences in OS among 
the three clusters. To enhance prognostic modeling, we 
developed a nomogram that incorporated the prognostic 
risk score along with clinical factors, including age, gender, 
T, M, and N stages. We assessed the performance of the 
nomogram through time-dependent ROC analysis at 1-, 
3-, and 5-year intervals in the TCGA-THCA dataset, 
revealing its superiority over the prognostic risk score 
alone. Our consensus clustering-based survival analysis 
and multivariable Cox analysis were visually presented 
using nomograms. Finally, we validated the expression of 
DEPRGs using GEO and HPA datasets.

Multivariate analysis demonstrated that both risk score 
and age were independent prognostic factors. Examination 
of the HPA and GEO databases revealed high expression 
levels of both BAX and NOD1 in THCA.

Some BAX  activators have recently emerged as 
promising candidates for cancer therapy (14). Study 
has shown that co-targeting of BAX and BCL-XL is 
substantially effective in overcoming cancer resistance to 
apoptosis (45). Nevertheless, certain study has reported no 
significant association between BAX polymorphism and 
cancer susceptibility; however, BAX polymorphism has 
shown a significant association with poor prognosis (46). 
Our findings indicated a significant correlation between 
THCA and BAX expression levels.

The recognition of Microbe-Associated Molecular 
Pattern (MAMP) by NOD1 has been demonstrated to 
impact hepatocarcinogenesis and the development of 
liver damage (47). Furthermore, NOD1 has been found to 
upregulate the tumorigenicity of human cervical squamous 
cell carcinoma, thereby promoting cancer progression 
and metastasis (48). A study has revealed that NOD1/
CARD4 polymorphisms can alter the balance between 
proinflammatory and anti-inflammatory cytokines, thereby 
regulating the risk of infection, chronic inflammation, and 
cancer development (49). NOD1/CARD4 polymorphism 
has been associated with gastric cancer, colorectal 
cancer, mammary cancer, ovarian cancer, prostate cancer, 
testis cancer, lung cancer, larynx cancer, liver cancer, 
gallbladder cancer, bile cancer, pancreas cancer, small 
intestine cancer, kidney cancer, bladder cancer, skin 

cancer, non-thyroid endocrine cancer, lymphoma, and  
leukemia (49). While studies have not explored the 
relationship between THCA and NOD1, our research 
demonstrated an association between NOD1 expression and 
the development of THCA, potentially mediated through 
the enrichment pathway we investigated. Further research 
is warranted.

IL6 is produced and secreted by various cell types, 
including tumor cel ls ,  and is  associated with the 
proliferation and differentiation of malignant cells. Elevated 
levels of IL6 are commonly observed in both serum and 
tumor tissues across various cancer types, such as colorectal, 
breast, prostate, ovarian, pancreatic, lung, renal cell, 
cervical, and multiple myeloma cancers (17). In this study, 
we also observed significant disparities in IL6 expression 
between THCA tissues and normal thyroid tissues, thereby 
corroborating previous findings.

We identified 18 distinct enrichment pathways through 
GSEA and 151 significantly different enrichment pathways 
through GSVA. From this comprehensive pool of pathways, 
we focused on the top-ranked enrichment pathways for 
further investigation. The results revealed differences 
in gene expression between high- and low-risk groups, 
suggesting potential implications across multiple facets.

Functional enrichment analysis was conducted on all 
potential DEPRGs. GO enrichment analysis revealed that 
the genes associated with cell death were predominantly 
enriched in BPs such as host mitotic cell dynamics processes. 
In terms of MFs, these genes were associated with cysteine-
type peptidases and binding to phosphatidylinositol-
4,5-bisphosphate. These MFs are integral to apoptosis 
signaling pathways, indicating the involvement of the four 
candidate pyroptosis-related genes in the initiation and 
progression of THCA. Additionally, KEGG enrichment 
analysis demonstrated that the four candidate pyroptosis-
related genes were primarily associated with “cell adhesion 
molecule” and “oxidative phosphorylation”, which are 
implicated in cancer-related signaling pathways. These 
results are consistent with previous research (50) and 
corroborate the accuracy of our findings. In contrast to 
previous studies on THCA and pyroptosis-related genes, 
we also performed a GSVA, which revealed that these 
four crucial pyroptosis-related genes were also associated 
with “cell adhesion molecule” and cancer-related signaling 
pathways. It is plausible that the four-cell death-related 
genes may be involved in the development of THCA by 
regulating the expression of related genes. Additionally, 
through KEGG analysis and GSVA, we found that these 
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genes were linked to signaling pathways associated with 
“asthma”. This novel finding has the potential to contribute 
to future research endeavors.

We validated the expression of DEPRGs using GEO 
and HPA datasets. Subsequently, we performed survival 
predictions using the nomogram model and compared the 
outcomes to actual analyses. The results exhibited statistical 
significance, underscoring the reliability of our prediction 
model. Furthermore, the nomogram model reaffirmed the 
reliability, prospective value, and clinical applicability of our 
risk model. Our findings are in alignment with those of a 
prior study that established an association between NOD1 
and THCA (50). Additionally, we identified distinct variants 
of the scorch gene in other types of cancer (50). Notably, 
the previous study exclusively relied on TCGA dataset, 
while we leveraged a joint analysis of both the GEO and 
TCGA datasets, thereby enhancing external validation. 
Furthermore, our study introduced a well-defined 
technology roadmap to streamline the workflow, ensuring 
a more organized approach. Moreover, we expanded our 
study by incorporating additional results from IHC analyses, 
nomogram utilization, and model validation assessments. 
This comprehensive approach brought us closer to the 
clinical analysis results. Both studies culminated in clinical 
analyses, which corroborate our findings. Notably, our 
study featured a larger sample size and greater reliability 
compared to the previous study (50). Furthermore, while 
our study primarily focused on PTC, it also encompassed 
samples from other subtypes of THCA. This inclusivity 
permitted us to undertake a more comprehensive analysis. 
In contrast, the 2022 article (50) exclusively examined PTC, 
indicating certain limitations in their study. We anticipate 
the expansion of our sample size and further validation of 
our findings in future research endeavors.

At present, there is limited research on THCA at the 
cellular level in relation to cell death. Investigating its 
potential mechanisms holds substantial future significance. 
Examining the prognostic relevance of pyroptosis-related 
genes will establish a fundamental basis for forthcoming 
mechanistic investigations. Nonetheless, our study has a few 
limitations. For instance, additional basic experiments are 
required to explore the correlation between the model and 
the tumor microenvironment.

Conclusions

In summary, we conducted a comprehensive analysis of 
datasets sourced from TCGA and MSigDB datasets. Using 

these datasets, we developed a predictive nomogram model 
encompassing four genes: IL6, TP63, NOD1, and BAX, in 
conjunction with five clinical factors. This model may serve 
as a valuable tool for forecasting the prognosis of THCA 
and offering pertinent insights for optimizing therapeutic 
strategies for THCA.
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