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Abstract In recent years, colorectal cancer (CRC) incidence
has been increasing to become a major cause of morbidity
and mortality worldwide from cancers, with high rates in
westernized societies and increasing rates in developing
countries. Epigenetic modifications including changes in
DNA methylation, histone modifications, and non-coding
RNAs play a critical role in carcinogenesis. Epidemiological
data suggest that, in comparison to other cancers, these alter-
ations are particularly common within the gastrointestinal
tract. To explain these observations, environmental factors
and especially diet were suggested to both prevent and induce
CRC. Epigenetic alterations are, in contrast to genetic mod-
ifications, potentially reversible, making the use of dietary
agents a promising approach in CRC for the development of
chemopreventive strategies targeting epigenetic mechanisms.
This review focuses on CRC-related epigenetic alterations as a
rationale for various levels of prevention strategies and their
potential modulation by natural dietary compounds.
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Introduction

Colon and rectal cancers (colorectal cancer, CRC) represent
globally, in terms of frequency, the third leading cause of
cancer-related mortality (ie, after lung and breast cancer).

Nevertheless, CRC incidence and mortality rates vary over
10-fold worldwide. Lowest incidence rates are observed in
Africa and Asia and highest ones are found in Australia/
New Zealand, North America, and Western Europe with a
mortality rate of approximately 30%. Although incidence
rates in developed countries are stabilizing, they are severely
increasing in both developing countries and several areas
historically at low risk [1]. Since the 1970s, CRC incidence
in USA has continuously increased in the African-American
population to become more frequent in this population than
in Caucasians or other ethnic groups [2]. Similarly, data from
migration population studies revealed that some ethnic groups
are showing increased CRC incidence rate while they are
migrating from low-risk to high-risk areas, to finally reach
rates comparable to the host country [3–5]. Despite genetic
variation, these epidemiological data strongly suggest a role of
environmental and lifestyle factors deeply contributing to the
etiology of CRC.

Although it is well accepted that genetic factors and
inflammatory bowel disease place certain individuals at
increased risk [6], various modifiable lifestyle factors have
been identified related to CRC pathogenesis. Significant
lifestyle risk factors are represented by sedentarity and
changes in dietary habits, from a moderate to a Western-
like enriched diet associated with high consumption of
unsaturated fats and red meat, high intake of alcohol, and
smoking.

Epigenetic mechanisms are fundamental to tightly regu-
lated cellular processes. Epigenetic aberrations governing
tumor suppressor gene (TSG) inactivation, oncogene acti-
vation, and chromosomal instability play a fundamental role
in tumorigenesis including CRC. Epigenetic events are in-
volved in all critical pathways and steps of carcinogenesis
including tumor initiation, and some events are usually
detectable before neoplastic transformation [7, 8, 9•, 10].
Nonetheless, it is well accepted that environmental and
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dietary factors greatly influence epigenetic events. More-
over, the reversibility of epigenetic alterations stimulates
the development of novel therapeutic approaches with an
open field for development in cancer chemoprevention.
Taking together, these observations suggest that improved
early detection and dietary intervention are preventive
approaches of choice to decrease CRC incidence.

In this review, we focus on epigenetic alterations associated
with CRC, which offer promising novel biomarkers for early
detection, with an emphasis on how these alterations can
potentially bemodulated by dietary compounds for preventive
interventions.

Colorectal Carcinogenesis and Cancer Prevention

The vast majority of CRCs are a multistep-associated
adenoma-carcinoma progression associated with successive
clinico-histopathological stages. This transformation initially

starts with a premalignant lesion, called aberrant crypt foci
(ACF), rising from normal colonic mucosa, progressing to a
premalignant lesion (ie, adenoma), and finally evolving to
invasive adenocarcinoma and metastasis (Fig. 1). The tumor-
node-metastasis (TNM) system stages CRCs depending on
the extent of invasion of the intestinal wall (T), the degree of
lymphatic node involvement (N), and whether there is pres-
ence of metastasis (M). Based on this system, CRC is ranked
from 0 (in situ tumor confined to mucosa) to stage IV (pres-
ence of metastasis). Thus, an increasing ranking correlates to a
more advanced cancer and likely a worse outcome [11].

Althoughmost CRCs occur sporadically, the importance of
inheritance associated with a family history of the disease is
evaluated to approximately 25% [12]. Some well-defined
syndromes associated with CRC pathobiology have been
identified: hereditary non-polyposis CRC (HNPCC), familial
adenomatous polyposis (FAP), and MUTYH-associated poly-
posis (MAP), which are caused by germline mutations in
DNA mismatch repair (MMR) genes, adenomatous polyposis

Fig. 1 Colorectal cancer (CRC) progression as a model for epigenetic
alteration cascade and prevention strategies. CRC development is
initially starting by a premalignant lesion, called aberrant crypt foci
(ACF), rising from normal colonic mucosa, progressing to a premalig-
nant lesion (adenoma) and then to invasive adenocarcinoma, and
finally evolving to metastatic adenocarcinoma. Epigenetic alterations
are largely contributing to CRC initiation and adenoma-carcinoma
progression. These alterations are characterized by global genomic
DNA hypomethylation leading to genomic instability and oncogene
activation concomitantly to an increase of CpG island promoter
hypermethylation-mediated silencing of tumor suppressor genes.

These changes are accompanied by an increase of aberrant histone
modification profiles and miRNA signatures reinforcing oncogenic
activation and tumor suppressor loss associated with CRC progression.
Consequently, epigenetic alterations represent promising targets for
CRC prevention. Early epigenetic aberrations represent interesting
targets for primary prevention, especially through chemoprevention
by dietary epigenetic modulators, as well as for secondary prevention
as early biomarkers of CRC initiation. Modifications occurring at later
stages may be targeted by chemotherapeutic interventions as well as
chemopreventive agents to limit or block disease progression (secondary
and tertiary prevention activities)
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coli (APC) TSG, and MUTYH gene, respectively; plus a
number of relatively rare polyposis syndromes [13].

Mechanisms underlying the adenoma-carcinoma sequence
have been identified for their contribution to CRC pathogen-
esis in relation to alterations of TSG and oncogene functions.
Among these mechanisms, genomic instability represented by
two “genotypic” subtypes pathways associated with somatic
mutations are frequently identified: chromosomal instability
(CIN) and microsatellite instability (MSI) [9•, 13]. Although
CIN is observed in approximately 85% of CRC cases, the
initiating mechanism is still poorly understood. The most
common cytogenic abnormalities observed in CIN are muta-
tions of APC gene, which occur in the majority of sporadic
CRCs and also very early in adenoma development, and
chromosome aberrations such as loss of heterozygosity of 5,
17p, and 18q. The latter contains the deleted in colorectal
cancer (DCC) TSG. MSI is characterized by the inactivation
of genes implicated in mismatch repair (MMR) system lead-
ing to subsequent mutations in the microsatellite repeat
sequences of genes linked to tumor progression [13]. In addi-
tion to somatic mutations, epigenetic alterations are also par-
ticularly common in CRC. Epigenetics is defined as the
heritable changes in gene expression patterns that occur with-
out a change in the primary DNA sequence. This field encom-
passes DNA methylation, histone modifications and
chromatin remodeling, and non-coding RNA-mediated inter-
ference [9•, 10, 13].

After years of research it appears that the best way to
avoid the burden of cancer might be prevention. Under
the general concept of prevention, several levels of
approaches are encompassed [14]. Avoiding exposure
to potential carcinogens or life risk factors is associated
with the primary level of prevention. However, preemp-
tive behavior prevention is not limited to this aspect.
Indeed, chemoprevention, ie, the use of natural agents
in healthy individuals without signs of premalignancy,
falls also in this category. Secondary prevention corre-
sponds to early detection of tumor-related abnormal
changes aiming to prevent cancer development. Screen-
ing tests are included in this category, which require
robust clinical biomarkers for early diagnosis. Finally,
tertiary prevention consists to control cancer develop-
ment to a more advanced-stage or reoccurrence after
treatment and reduce adverse health effects.

Given the fact that epimutations are potentially revers-
ible, the major field of applications regarding epigenetics
might be cancer prevention. Accordingly, epimutations rep-
resent secondary prevention biomarkers by their precocity in
carcinogenesis processes (ie, before neoplastic transforma-
tion). Primary to tertiary prevention may be achieved
through chemoprevention, with dietary agents controlling
epigenetic (re)programming, to either prevent or reverse
premalignant stem cell phenotypes (Fig. 1).

Epimutations in CRC: Biomarkers and Targets
for Prevention

DNA Methylation in CRC

In humans, DNA methylation occurs at the 5′ position of the
pyrimidine ring of the cytosine residues within CpG dinucleo-
tides through addition of a methyl moiety to form 5-
methylcytosines. This process is catalyzed by three DNA
methyltransferases (DNMT1, DNMT3A, and DNMT3B)
using the cofactor S-adenosyl-methionine (SAM). Although
CpG dinucleotides represent approximately 1% of the human
genome, they are unequally distributed across the genome and
are clustered in small DNA stretches. These CpG-rich regions,
called CpG islands (CGIs), are usually present near promoters
and exogenic regions. CGIs are usually unmethylated in
normal differentiated cells, whereas CpGs located in intergenic
regions are methylated [8, 15].

In cancer, promoter CGI of numerous TSGs are found to
be densely methylated, which results in transcriptional si-
lencing. Interestingly, these epimutations may be cancer
type-specific and tumor stage-specific. Thus, methylation
patterns can be considered as biomarkers for diagnosis,
prognosis, as well as prediction and monitoring of therapy
response [8, 10, 15, 16]. Therefore, the identification of these
cancer-associated methylation signatures is really critical for
cancer prevention purposes.

Recent studies show that CRC is strongly associated with
aberrant DNA methylation profiles, which has been linked
to the origin and progression of the disease. The list of
epimutations is growing quickly with the use of developing
technologies allowing genome studies. To date, a long list of
TSGs involved in numerous signalization pathways and
cellular processes were found frequently methylated in
CRC (Table 1). Noteworthy, a widespread contribution of
DNA methylation participates in the disruption of β-
catenin–dependent Wnt signaling pathway, which plays an
important role in colorectal tumor development [9•, 13].
Moreover, methylation can affect coding and non-coding
genes (eg, microRNA, miRNA) participating in loss of
tumor suppressor functions. Remarkably, most of these
methylated genes are investigated as potential biomarkers
for preventive or therapeutic purposes. However, the
methylation prevalence varies substantively depending on
the considered genes as well as between studies regarding a
same gene. The discrepancy between studies, like the case
of CDKN2A (p16), for which methylation ranged from 10%
to 58% depending on reports [17–19], could be explained by
the phenotype of patients constituting these cohorts as well
as how clinical parameters were included in these analyses.
Indeed, certain genes are found frequently methylated in
specific CRC subgroups, such as AXIN2 found preferen-
tially associated with MSI tumors [20].
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Table 1 Epimutations associated with colorectal cancer based on experimental data from patientsa

Epigenetic event Name Locus Function/targets Noteb Comments

Hypermethylation ADAMTS5 21q22.1-q22 Protease NA Increase of methylation level in CRC

ADHFE1 8q12.3 Alcohol dehydrogenase NA Increase of methylation level in CRC

ALX4 11p11.2 Homeobox gene 85/64 Adenoma vs CRC

APBA1 9q13-q21 Intracellular signaling 16–28

APBA2 15q11-q12 Intracellular signaling 22/26 Stage I+III vs IV

APC 5q22.2 Wnt signaling 21

APC2 19p13.3 Wnt signaling 100

AXIN2 17q24.1 Wnt signaling 29 Associated with MSI tumors

B4GALNT1 12q13.3 Lipid metabolism 100

B4GALNT2 17q21.3 Lipid metabolism 50 Correlated with EBV-associated gastric
carcinomas

BARX1 9q12 Homeobox gene 56

BMP3 4q21.21 Bone and cartilage formation 72/60 Adenoma vs CRC

BNIP3 10q26.3 Apoptosis 66

BOLL 2q33.1 Development NA Increase of methylation level in CRC

CACNA1G 17q22 Calcium metabolism 39

CASR 3q21.1 Calcium metabolism 9/69/90 Adenoma vs CRC vs lymph node
metastatic tissues

CCNA1 13q13.3 Cell cycle 100

CD109 6q13 Complement system 33

CDH1 16q22.1 Cell adhesion 51

CDH13 16q23.3 Cell adhesion 32–66 Poor prognosis

CDH2 18q12.1 Cell adhesion 45

CDH4 20q13.3 Cell adhesion 78

CDKN2A (p14) 9p21.3 Cell cycle 34

CDKN2A (p16) 9p21.3 Cell cycle 10–58

CDKN2B (p15) 9p21.3 Cell cycle 68

CDX1 5q33.1 Homeobox gene 100

CHFR 12q24.33 Cell cycle 26–63 Associated with disease recurrence

CNRIP1 2p14 G protein-coupled receptor 91/94 Adenoma vs CRC

CNTFR 9p13.3 Cytokine signaling 22

CPAMD8 19p13.12 Innate immunity 90

CXCL12 10q11.21 Cytokine signaling 62

DAPK1 9q21.33 Apoptosis 43

DCC 18q21.2 Putative TSG 81/83 Adenoma vs CRC (20% in normal)

DFNA5 7p15.3 Unknown 65

DKK1 10q21.1 Wnt signaling 13–35 Associated with MSI tumors

DKK2 4q25 Wnt signaling 65

DKK3 11p15.3 Wnt signaling 35

DKK4 8p11.2-p11.1 Wnt signaling 20

DLC1-i4 8p22 Putative TSG 100

DLEC1 3p22.2 Putative TSG 38 Poor prognosis

EFEMP1 2p16.1 Cell migration 39 Poor prognosis

EGFR 7p11.2 Cytokine signaling 58 Poor prognosis

EN1 2q13-q21 Homeobox gene 33

EphA1 7q32-q34 Intercellular signaling 49 Poor prognosis

EphA5 4q13.1 Intercellular signaling 53

EphA7 6q16.1 Intercellular signaling 49 More frequent in moderately
differentiated adenocarcinomas

EPHB2 1p36.12 Intercellular signaling 53

ESR1 6q25.1 Hormonal signaling 31

EVL 14q32.32 Cell migration 60

EYA2 20q13.1 Development 44/51 Adenoma vs CRC

EYA4 6q23 Development 70

Curr Colorectal Cancer Rep (2012) 8:66–81 69



Table 1 (continued)

Epigenetic event Name Locus Function/targets Noteb Comments

FAM127A Xq26 Unknown 58

FBN1 15q21.1 ECM component 69/79 Adenoma vs CRC

FBN2 5q23.3 ECM component 90

FLNC 7q32.1 Cell migration 30

FOXL2 3q23 Transcription factor 50

GAS7 17p13.1 Development NA Increase of methylation level in CRC

GATA4 8p23.1 Transcription factor 70 Independent of clinicopathologic features

GATA5 20q13.33 Transcription factor 79 Independent of clinicopathologic features

GPNMB 7p15 Development 100

GPR101 Xq25-q27.1 G protein-coupled receptor 40

GRID1 10q22 Glutamate receptor 60

GRIN2A 16p13.2 Glutamate receptor 82

GSPT2 Xp11.22 GTPase 21

GUCY1A2 11q21-q22 Intercellular signaling 50

HACE1 6q16.3 Stress response 28

HIC1 17p13.3 Transcriptional repressor 35/42 Adenoma vs CRC

HLTF 3q24 Transcription factor 18–34

HOXB13 17q21.32 Homeobox gene 40

HRK 12q24.23 Apoptosis 36

HUS1 7p12.3 Cell cycle 22

ID4 6p22.3 Transcription factor 46

IGF2 11p15.5 Development 22

IGFBP3 7p12.3 Hormonal signaling 25

IGFBP7 4q12 Hormonal signaling 18/23 Adenoma vs CRC

IKZF1 7p12.2 Transcriptional activator 30–82 % increase with Duke’s stages

INA 10q24.33 Development 35/65 Adenoma vs CRC

INHBB 2q14.2 Inhibin 30

IRF8 16q24.1 Transcription factor 43

ITGA4 2q31.3 Cell adhesion 75/92 Adenoma vs CRC

KCNK12 2p16.3 Potential potassium channel 41

KLF4 9q31.2 Transcription factor 25

LAMA1 18p11.31 Cell migration 100

LRRC3B 3p24.1 Putative TSG 77

MAL 2q11.1 Proteolipids 84/91 Adenoma vs CRC

MGMT 10q26.3 DNA repair 20–60

miR-1-1 20q13.33 Translational repression 50

miR-9-1 1q22 Translational repression 50 Associated with the presence of lymph
node metastasis

miR-34a 1p36.22 Translational repression 74

miR-34b/c 11q23.1 Translational repression 99

miR-124-1 8p23.1 Translational repression 75

miR-129-2 11p11.2 Translational repression 83

miR-137 1p21.3 Translational repression 100

miR-148 NA Translational repression 65

miR-342 14q32.2 Translational repression 67/86 Adenoma vs CRC

miR-345 14q32.2 Translational repression 87

miR-373 19q13.42 Translational repression 88

MLH1 3p22.2 DNA repair 18–22 Poor prognosis

MMP2 16q12.2 Protease 95

MYOD1 11p15.1 Transcription factor 69

NDRG2 14q11.2 Putative TSG 27

NDRG4 16q21 Putative TSG 70–86

NEURL 10q25.1 Putative TSG 31
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Table 1 (continued)

Epigenetic event Name Locus Function/targets Noteb Comments

NEUROG1 5q31.1 Putative TSG 36

NPY 7p15.1 Putative TSG NA Increase of methylation level in CRC

NRCAM 7q31.1 Cell adhesion 50

NTNG1 1p13.3 Development 70

NTRK2 9q21.33 Differentiation 100

OSMR 5p13.1 Cytokine signaling 55/89/90 Mucosa adjacent to CRC vs colorectal
polyps vs carcinoma

PAPSS2 10q23.2 Development 100

PDLIM4 5q31.1 Development 85/70 Adenoma vs CRC

PPM1E 17q23.2 Phosphatase 55

PRKD1 14q12 Kinase 20

PROM1 4p15.32 Putative TSG 62

PTGIS 20q13.1-q13.3 Prostaglandin signaling 30/44 Adenoma vs CRC

PTGS2 1p25.2-3 Inflammation 72

PTPRD 9p23 Phosphatase 50

RAB32 6q24.3 Ras signaling 56 MSI tumors

RARβ 3p24.2 Hormonal signaling 33–85

RASSF1A 3p21.2 Ras signaling 41/57 Stage I/III vs IV

RASSF2 20p13 Ras signaling 42

RASSF5 1q32.1 Ras signaling NA Increase of methylation level in CRC

RECK 9p13.3 Putative TSG 44

RUNX3 1p36.11 Transcription factor 27–63 Poor prognosis

SCTR 2q14.1 G protein-coupled receptor 81

SFRP1 8p11.21 Wnt signaling 95–100

SFRP4 7p14.1 Wnt signaling 100

SH3TC1 4p16.1 Putative TSG 40

SLC5A8 12q23.1 Solute carrier 80

SLC6A15 12q21.31 Solute carrier NA Increase of methylation level in CRC

SLIT2 4p15.2 Cell migration 72

SMO 7q32.1 G protein-coupled receptor 21

SNCA 4q21.3-q22 Dopamine signaling 53/66 Adenoma vs CRC

SOCS1 16p13.13 Cytokine signaling 22

SOX17 8q11.23 Transcription factor 86/89–100 Adenoma vs CRC

SPARC 5q33.1 ECM component 100

SPG20 13q13.3 Putative TSG 78/89 Adenoma vs CRC

SST 3q28 Hormonal signaling 90

ST3GAL6 3q12.2 Putative TSG 44 Correlated with EBV-associated gastric
carcinomas

STARD8 Xq13.1 Putative TSG 55

SYNE1 6q25.2 Putative TSG 95

SYT6 1p13.2 Calcium metabolism 64

TAC1 7q21.3 Hormonal signaling 95

TCERG1L 10q26.3 Putative TSG 100

TFPI2 7q22 ECM component NA Increase of methylation level in CRC

TIMP3 22q12–13 ECM component 23

TMEFF2 2q32.3-q33 Cell proliferation 77

TP73 1p36.33 Cell cycle control (G1-S) 63

TUBG2 17q21 Cell migration 71

TUSC3 8p22 Putative TSG 66 Associated with ulcerative colitis

TWIST1 7p21.1 Transcription factor NA Increase of methylation level in CRC

UNC5C 4q22.3 Development 64/76 Adenoma vs CRC

VIM 10p13 Cell migration 91/77 Adenoma vs CRC

WIF-1 12q13.13 WIF-1 100 Very limited number of samples
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Table 1 (continued)

Epigenetic event Name Locus Function/targets Noteb Comments

WNT5a 3p14.3 Wnt signaling 20 Associated with MSI and BRAF V600E
mutation

WRN 8p12 DNA repair 29

WT1 11p13 Transcription factor 58

ZNF569 19q13.12 Transcription factor 40

Hypomethylation C7orf50 7p22.3 Unknown NA

CARD14 17q25.3 NF-κB signaling NA

CCDC116 22q11.21 Transcriptional regulator NA

CDH3 16q22.1 Cell adhesion 77

CSRP1 1q32.1 Development NA

EPHX4 1p22.1 Cell detoxification NA

GPR109A 12q24.31 G protein-coupled receptor NA

GPSM1 9q34.3 G protein signaling NA

GRAP 17p11.2 Intracellular signaling NA

H19 11p15.5 Putative TSG 18

HIST1H2BO 6p22.1 Histone NA

IGF2 11p15.5 Development 35 Poor prognosis

L1CAM Xq28 Cell adhesion NA

LAMB1 7q22 ECM component NA

LILRA4 19q13.4 Cytokine signaling NA

LINE1 NA Retrotransposon NA Associated with MSI and CIMP tumors

MAEL 1q24.1 piRNA system NA

MIRLET7BHG 22q13.31 Long non-coding RNA NA

NRXN1 2p16.3 Cell adhesion NA

NUP50 22q13.3 Macromolecule trafficking NA

S100A4 1q21.3 Cell cycle NA

S1PR4 19p13.3 G protein-coupled receptor NA

SFT2D3 2q14.3 Transport and trafficking NA

SLC39A4 8q24.3 Solute carrier NA

SLC6A18 5p15.33 Solute carrier NA

SLC6A6 3p25.1 Solute carrier NA

TIAM1 21q22.1 Cell migration NA Associated with metastasis

miRNA let-7 family NA DLD-1, c-Myc, K-RAS − Poor prognosis

miR-1-1 20q13.33 TAGLN2 −

miR-9-1 1q22 −

miR-10b 2q31.1 −

miR-15b 3q25.33 +

miR-16 NA Wip1 −

miR-17 13q31.3 E2F1 + Poor prognosis, MSS tumors

miR-18a 13q31.3 K-RAS + Without lymph node metastasis

miR-18b Xq26.2 + Without lymph node metastasis

miR-19a 13q31.3 PTEN + Without lymph node metastasis

miR-19b NA +

miR-20a 13q31.3 BNIP2 + MSI

miR-21 17q23.1 Cdc25A, MSH2, PTEN,
RECK, TIMP3

+ Poor prognosis, decrease of chemotherapy
response, MSI tumors

mir-24 NA DHFR −

miR-25 7q22.1 +

miR-26b 2q35 EphA2 −

miR-29a 7q32.3 +

miR-29b NA +

miR-30a 6q13 Beclin 1 −

miR-30c NA −
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Table 1 (continued)

Epigenetic event Name Locus Function/targets Noteb Comments

miR-31 9p21.3 FIH-1 + Poor prognosis

miR-32 9q31.3 +

miR-33a 22q13.2 +

miR-34a 1p36.22 Bcl2, CDK4/6, E2F3, MET,
SIRT1

−

miR-34b/c 11q23.1 Tp53 −

miR-92a NA + MSS tumors

miR-93 7q22.1 +

miR-95 4 SNX1 +

miR-96 7q32.2 +

miR-99a 21q21.1 −

miR-101 NA COX-2 − MSI tumors

miR-106a Xq26.2 E2F1 +

miR-106b 7q22.1 CDKN1A (p21) + Without lymph node metastasis

miR-124-1 8p23.1 −

miR-125a 19q13.41 −

miR-125b NA + Poor prognosis

miR-126 9q34.3 p85β − Associated with metastasis

miR-127 14q32.2 −

miR-129-2 11p11.2 −

miR-103b NA +

miR-133a NA −

miR-133b 6p12.2 c-Met +

miR-135a NA APC +

miR-135b 1q32.1 APC + Without lymph node metastasis

miR-137 1p21.3 Cdc42, LSD-1 −

miR-139 11q13.4 β–Catenin −

miR-140 16q22.1 HDAC4 −

miR-141 12p13.31 TGF-β1 +

miR-142 17q22 − MSS tumors

miR-143 5q32 DNMT3A, Erk5, K-RAS − Decrease of chemotherapy response,
associated with metastasis

miR-145 5q32 FLI1, IRS1, STAT1, YES − MSI tumors

miR-146b 10q24.32 − MSS tumors

miR-155 21q21.3 MLH1, MSH2, MSH6 + With lymph node metastasis

miR-181b NA + Decrease of chemotherapy response

miR-182 7q32.2 +

miR-183 7q32.2 Klf4, Sox2, BMI1 +

miR-191 3p21.31 −

miR-192 11q13.1 DHFR, TS, TYMS − Decrease of chemotherapy response

miR-195 17p13.1 Bcl-2 −

mir-196a NA AKT − Increase metastasis potential

mir-196b 7p15.2 + Without lymph node metastasis

miR-200a 1p36.33 ZEB1, ZEB2, MLH1, MSH2 + Associated with metastasis

miR-200b 1p36.33 MLH1, MSH2 + Associated with metastasis

miR-200c 12p13.31 TGF-β2, ZEB1, ZEB2, BMI1,
PTPN12

+ Poor prognosis, associated with metastasis

miR-203 14q32.33 Klf4, Sox2, BMI1 +

miR-212 17p13.3 − MSS

miR-215 1q41 DHFR, TS, TYMS − Decrease of chemotherapy response

miR-217 2p16.1 − MSS

miR-223 Xq12 +

miR-224 Xq28 + Without lymph node metastasis

miR-301b 22q11.21 + Without lymph node metastasis
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Besides its diagnostic potential, methylated genes are asso-
ciated with a number of clinical features correlated with poor
prognosis (DLEC1, EFEMP1, EphA1, EGFR, MLH1,
CDH13) [19, 21–24], Epstein-Barr virus–associated gastric
carcinomas (B4GALNT2, ST3GAL6) [25]. In contrast, some
methylated genes (GATA4, GATA5) are found methylated
independently of clinicopathologic features [26].

Some genes are not, at least alone, good biomarkers for
CRC since they are frequently methylated in other cancer
types such CDKN2A (p16), found methylated across vari-
ous tumors [10, 16]. In contrast, APC2, B4GALNT1,
CCNA1, CDX1, GPNMB, LAMA1, NTRK2, PAPSS2,
TCERG1L, and SFRP4 genes are found methylated near
100% of patients tested [19, 27–29]. Therefore, these genes
could represent promising CRC biomarkers, similarly to the
methylation of detoxification enzyme GSTP1, which is
a hallmark of prostate cancer, even though data suggest
i t may also occur in other cancers [16, 30] .

Nevertheless, it confirms that epigenetic silencing is
far more common than mutations (see for review of
mutation frequencies [13]). Interestingly, numerous
genes are gradually methylated during colorectal carci-
nogenesis. By example, CASR is found methylated at
9%, 69%, and 90% in adenoma, carcinoma, and lymph
node metastatic tissues, respectively [31]. Intriguingly,
some CRC patients accumulate methylation abnormali-
ties in a large number of genes. This CRC subset is
defined with CpG island methylator (CIMP) phenotype
characterized by clinicopathological and genetic (chromo-
somal instability) features, which are the consequence of
hypermethylation-mediated TSG silencing involved in the
malignant transformation of colonic tissue [32]. In sporadic
MSI tumors, hypermethylation-mediated silencing of MMR
genes such as MLH1 is common [19, 23, 24].

Concomitant with DNA promoter CGI hypermethylation-
mediated silencing, global genomic hypomethylation is

Table 1 (continued)

Epigenetic event Name Locus Function/targets Noteb Comments

miR-320 8p21.3 − Poor prognosis

miR-328 16q22.1 −

miR-335 7q32.2 + Without lymph node metastasis

miR-342 14q32.2 DNMT1 −

miR-345 14q32.2 BAG3 −

miR-373 19q13.42 LATS2, CD44, RAB22A −

miR-374a Xq13.2 + Without lymph node metastasis

miR-378 5q32 − Without lymph node metastasis

miR-378* 5q32 − Without lymph node metastasis

miR-422a 15q22.31 −

miR-424 Xq26.3 + Without lymph node metastasis

miR-432* 14q32.2 + MSI tumors

miR-451 17q11.2 MIF − Poor prognosis

miR-455 9q32 − MSI tumors

miR-484 16p13.11 − MSI tumors

miR-486 8p11.21 −

miR-492 12q22 + MSI tumors

miR-497 17p13.1 −

miR-498 19q13.42 − Poor prognosis

miR-510 Xq27.3 + MSS tumors

miR-513 NA + MSS tumors

miR-542 Xq26.3 +

miR-552 1p34.3 +

miR-592 7q31.33 + MSS tumors

miR-675 11p15.5 Rb +

CIMP, CpG island methylator phenotype; ECM, extracellular matrix; MSI, microsatellite instability; MSS, microsatellite stable; TSG, tumor
suppressor gene.
a Only hypermethylated genes with methylation prevalence≥20% in CRC patients and≤10% in normal mucosa were reported. Gene symbols and
chromosome location are in accordance with www.genecards.org.
b For DNA hypermethylation/hypomethylation, number represent prevalence (%) in CRC; for miRNAs, - and + mean down-regulated and up-
regulated in CRC compared to normal mucosa, respectively; NA means “not applicable.”
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observed in CRC. This hypomethylation is usually associated
with oncogene activation and genetic instability. Accordingly,
an increasing list of genes were identified as hypomethylated
in CRC patients, such as CCDC116, SFT2D3, MAEL, and
H19/IGF2, which could also be used as biomarkers to
reinforce CRC detection [33••, 34]. Furthermore, a recent
study suggests that long interspersed nuclear element-1
(LINE-1) hypomethylation could be used as a predictive
biomarker of chemotherapy response to fluoropyrimidines in
CRC patients [35].

Finally, DNMT expression might also be used as a marker,
since overexpression of DNMT1 mRNAwas reported in 42%
of CRC [36].

All together, these events may represent powerful bio-
markers for secondary prevention and risk stratification in
CRC. Accordingly, these markers represent promising targets
for therapeutic/chemopreventive interventions.

miRNA in CRC

MiRNA pathway is an additional epigenetic mechanism
implicated in the regulation of tightly regulated biological
processes. MiRNAs are endogenous short non-coding
RNAs (~22 nucleotides) that post-transcriptionally regulate
mRNA expression levels in a sequence-specific manner.
MiRNAs bind sequences located essentially in 5′ and 3′
untranslated regions of target genes degrading mRNA or
blocking translation. Increasing amount of evidence reveals
that miRNA expression signature dysregulations are associ-
ated with carcinogenesis, suggesting miRNAs might act as a
novel class of oncogenes or TSGs [8, 10, 37].

An increasing number of reports indicate that miRNA
dysregulations are important in colorectal carcinogenesis.
Table 1 summarizes these alterations based on experimental
data from patients. MiRNome signatures revealed that
miRNA affected many tumor-suppressive and oncogenic
pathways implicated in CRC pathobiology, including β-
catenin/Wnt signaling (miR-135a, -135b, -139, -145) [38•,
39, 40], apoptosis (miR-34a, -133b, -195) [38•, 41], differen-
tiation (miR-141, -200c) [42–44], p53 signaling (miR-34b/c)
[45], proliferation (K-RAS signaling: let7 family, miR-18a, -
143, -200c) [38•, 41, 46], cell cycle control (miR-34a, -192, -
215, -675) [38•, 41, 47], and migration, invasion, and metas-
tasis (miR-126, -143, -196a, -200a, -200b, -200c, -373, -520c)
[38•, 41, 44]. MiRNA pathway may also modulate DNA
methylation (miR-143, -342) [48, 49].

In addition, miRNA alterations are correlated to a number
of clinicopathologic features and outcomes related to CRC
pathogenesis. MiR-21 is a representative example, since
high levels of expression are associated with lymph node
positivity, increased metastasis propensity and advanced
tumor stages associated with worse overall survival [50,
51]. Additional miRNAs, including miR-17, -31, -125b, -

126, -143, -196a, -200c, -320, -451, and -498, were identi-
fied as associated to an increase of metastasis potential, a
decrease of disease-free survival, and a poor prognosis [38•,
40–42, 44, 46, 52, 53].

Several studies have identified miRNA expression sig-
natures associated with MSS or MSI CRC phenotypes.
These include miR-17, -92, -142, -146b, -212, -217, -
510, -513, and -592 associated with MSS, whereas miR-
20a, -101, -145, -432*, -455, -484, -492, and -625 were
higher in MSI-H tumors [39, 52, 54]. Furthermore, four
miRNAs (miR-31, -224, -552, and -592) were identified
as able to discriminate between MMR-proficient and
MMR-defective adenocarcinomas [40].

All together, these data suggest that CRC-specific miRNA
expression signatures are common events, which are repre-
sentative of CRC-related genetic instability and may be a key
event for tumor onset and development. Accordingly,
miRNA expression signatures have great and valuable
potential for diagnostic and prognostic purposes.

For the past decades, 5-fluorouracil (5-FU) has been and
still is the most commonly used chemotherapeutic agent in
CRC treatments. However, a significant fraction of patients
are refractory or become resistant to 5-FU–based chemo-
therapies. A growing body of evidence is revealing the
importance of miRNA alterations in the modulation of tumor
response to 5-FU treatments. For instance, miR-92, -143, and
-215, by impairing 5-FU–induced apoptosis [55], could be
implicated in the resistance to 5-FU developed by CRC
patients presenting low level of expression of miR-92, -143,
and -215 [38•, 41]. In addition, miR-21, which plays a central
role in colon cancer pathogenesis by targeting many TSGs
with elevated expression in advanced tumor stages, was
described as an independent predictive marker associated with
poor survival and for which overexpression predicts a poor
response to therapy [50, 51]. Finally, a recent study suggests
that miRNA SNPs rs7372209 and rs1834306 in miR-26-a-1
and miR-100 genes, respectively, affect the clinical outcome
of 5-FU–treated CRC patients [56]. These data suggest that
miRNA signatures have a potential as marker to predict che-
motherapy response.

It has been suggested that, in addition to DNA
hypermethylation-mediated silencing of miRNAs (Table 1)
[45, 53, 57, 58••, 59–61], alterations of proteins involved in
miRNA processing is observed in CRC. Indeed, Papachristou
et al. [62] reported that the nuclear ribonuclease Drosha and the
cytoplasmic ribonucleases Dicer and Ago2 are possibly impli-
cated in colorectal carcinogenesis and that Dicer could influ-
ence tumor progression to advanced stages.

Taken together, these findings demonstrate that miR-
Nome alterations represent promising candidates to develop
specific and sensitive biomarkers in CRC pathology
with opportunities for primary to tertiary prevention
levels.
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Histones and Histone-Modifying Enzymes in CRC

An additional layer of epigenetic regulation of gene expression is
represented by histone tail post-translational covalent modifica-
tions. Core histone (H2A, H2B, H3, H4) N-termini are modified
by phosphorylation, acetylation, methylation, ubiquitylation,
sumoylation, citrullination, β-N-acetylglucosamination, deimi-
nation, and ADP-ribosylation. Altogether, these dynamic and
reversible modifications establish a “histone code” regulating
chromatin structure and activity. The better understood mod-
ifications are acetylation of lysine and methylation of argi-
nine and lysine residues. The acetylation/deacetylation
reactions are catalyzed by histone acetyl transferases (HATs)
and histone deacetylases (HDACs), respectively. Similarly,
methylation/demethylation processes are driven by histone
methyltransferase (HMTs) and histone demethylases (HDM).
While acetylation occurs as a single addition, methylation
exists at various levels on the same residue (ie, mono-, di-,
and tri-methylation) [63, 64].

There is now clear evidence that aberrant histone modifi-
cation profiles are closely connected to tumorigenesis. Indeed,
dysregulated activity or expression of histone-modifying
enzymes as well as their aberrant recruitment by cytogenetic
alterations (eg, leukemia-associated fusion proteins) partici-
pate in cancer development by inducing aberrant regulation of
oncogenes and/or TSGs, and affecting genome stability and/or
chromosome segregation [10, 64, 65]. Although our knowl-
edge about histone code and histone-modifying enzymes is
incomplete, some data suggest their implications in CRC. A
study from Weichert et al. [66] revealed that HDAC1,
HDAC2, and HDAC3 are overexpressed in 36.4%, 57.9%,
and 72.9% of CRC cases, respectively. Interestingly, the ex-
pression was significantly enhanced in strongly proliferating
and poorly differentiated tumors. Thus, high HDAC expres-
sion levels are associated with reduced patient survival, with
in addition, HDAC2 expression being a prognostic factor for
survival [66]. HDAC2 overexpression is accompanied by
H4K12 and H3K18 acetylation and correlates with
adenoma-carcinoma progression [67]. HDAC1 increase was
confirmed in another study reporting an upregulation of two
HATs: K(lysine) acetyltransferase 2B (KAT2B, CBP) and
p300. KAT2B overexpression was associated with long-term
survival, whereas p300 overexpression was correlated with a
poor prognosis [68]. Interestingly, the class III HDAC sirtuin
1 is overexpressed in 37% of CRC patients and is mainly
associated with MSI and CIMP-high phenotypes [69•]. Final-
ly, it was demonstrated that the expression of the cell-cycle
regulator p21 is lower in CRC associated with widespread
histone H3 hypo-acetylation in chromatin. These observations
were connected to the development and progression of CRC
but not with tumor biological behaviors [70].

Dysregulation of enzymes involved in histone methyla-
tion is also observed in CRC. Indeed, the HMT suppressor

of variegation 3–9 homolog 1 (SUV39H1) is overexpressed
in 25% of CRC patients and its expression is significantly
associated with DNMT1 expression [36]. Furthermore, the
histone H3 lysine 4-specific HMT suppressor of variegation,
enhancer of zeste, and trithorax (SET)1 is over-expressed in
colon tumor cells, where its expression promotes cell pro-
liferation and survival [71]. Moreover, the multiple myelo-
ma SET domain (MMSET) HMT and putative oncoprotein
is overexpressed in CRC patients with a worse 5-year sur-
vival. Recently, MMSET expression was associated with a
good prognostic value in colon cancer and is more pro-
nounced in early stages of colon carcinogenesis (dysplasia)
than in adenocarcinomas [72]. Noteworthy, the histone H3
lysine 9-specific HDM, Jumonji domain containing 1A
(JMJD1A) was reported as a useful biomarker for hypoxic
tumor cells [73]. In humans, enhancer of zeste homolog 2
(EZH2) overexpression-mediated gene silencing has been
identified in numerous tumor types associated with
H3K27me3 widespread high levels in chromatin. Recent
evidence demonstrated that EZH2 overexpression is a com-
mon feature of CRC (observed in 87% of cases) [74]. Finally,
it was suggested that oncogenic RAS pathways could modu-
late histone modifications to influence the expression of target
genes involved in the regulation of cell proliferation [75].
Accordingly, overexpression of the HMT SET and MYND
domain-containing protein 3 (SMYD3) has been reported in
mutated K-RAS CRC patients [76].

Taken together these data suggest that histone modifica-
tion profiles and histone-modifying enzymes could be used
as marker as well as therapeutic/chemopreventive targets in
CRC and therefore play a role in CRC prevention.

Chemoprevention, Epigenetics, and CRC

Epigenetic mechanisms by their potential reversibility rep-
resent interesting targets in CRC for chemopreventive
approaches using dietary agents. Accumulating evidence
suggests that natural molecules/nutrients present in our diet
might modulate epigenetic events in humans. Table 2 sum-
marizes compounds identified in various in vitro and in vivo
tumor models that may exert their chemopreventive poten-
tial by targeting epigenetic mechanism(s). The current
knowledge about some naturally occurring compounds,
which may play a significant role in CRC chemoprevention
related to epigenetic modulation, is discussed below.

Curcumin is well recognized for its chemopreventive and
therapeutic properties in vitro and in vivo against many tumor
types. Curcumin decreases inflammation cell proliferation,
invasion, and angiogenesis, triggers apoptosis, and sensitizes
tumor cells to cancer therapies [77–79]. These protective
properties could be, at least partially, mediated by a modula-
tion of epigenetic events. While no study was performed in
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Table 2 Compounds present in diet acting as epigenetic modulators

Dietary agent Food source Potential epigenetic target

3,3′-diindolylmethane Broccoli, cauliflower (indole-3-carbinol metabolite) Histone modifications, miRNAs

6-methoxy-2E,9E-humuladien-8-one Ginger Histone modifications

Allicin Garlic Histone modifications

Allyl mercaptan Garlic Histone modifications

Anacardic acid Cashew nuts Histone modifications

Apigenin Parsley, celery DNA methylation

Biochanin A Soy Histone modifications

Butein Toxicodendron vernicifluum Histone modifications

Butyrate Gut flora–mediated fermentation of dietary fiber Histone modifications

Caffeic acid Coffea Histone modifications

Catechin Green tea Histone modifications

Chlorogenic acid Coffea Histone modifications

Cinnamic acid Cinnamon Histone modifications

Coumaric acid Cinnamon Histone modifications

Curcumin (diferuloylmethane) Turmeric Histone modifications, miRNAs

Daidzein Soy Histone modifications

Delphinidin Cranberries, Concord grapes, pomegranates Histone modifications

Diallyl disulfide Garlic Histone modifications

Dihydrocoumarin Sweet clover (Meliotus officinalis) Histone modifications

(-)-Epigallocatechin gallate Green tea DNA methylation, histone modifications, miRNAs

Equol Soy Histone modifications

Fisetin Strawberries DNA methylation

Flavone Mandarin Histone modifications

Folate Leafy vegetables, beans, peas, lentils, eggs, liver DNA methylation, histone modifications

Garcinol, isogarcinol Garcinia indica Histone modifications

Genistein Soybean DNA methylation, histone modifications, miRNAs

Hesperidin Citrus DNA methylation

Isoliquiritigenin Licorice Histone modifications

Isothiocyanates Broccoli Histone modifications, miRNAs

Kaempferol Apples, nuts, tea, onions Histone modifications

Luteolin Celery, parsley Histone modifications

Lycopene Tomatoes and various fruits DNA methylation

MCP30 Bitter melon Histone modifications

Myricetin Walnuts and various berries, fruits, and vegetables DNA methylation

Naringenin Citrus DNA methylation

Phloretin Apples DNA methylation

Piceatannol Grapes (resveratrol metabolite) Histone modifications

Polyphenon B Green and black tea Histone modifications

Pomiferin Maclura pomifera Histone modifications

Protocatechuric acid Olives DNA methylation

Quercetin Apples, tea, onion, nuts, berries DNA methylation, histone modifications

Resveratrol Grapes Histone modifications

Rosmarinic acid Rosemary DNA methylation

S-allylmercaptocysteine Garlic Histone modifications

Sanguinarine Opium poppy Histone modifications

Silibinin Milk thistle Histone modifications

Sinapinic acid Sinapis (mustard) DNA methylation

Sulforaphane Broccoli DNA methylation, histone modifications

Syringic acid Red grapes DNA methylation

Theophylline Green and black tea Histone modifications

Ursolic acid Basil Histone modifications

Selenium Nuts, cereals, meat, fish, eggs, kidney DNA methylation, histone modifications
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colon cells, curcumin is a well-known inhibitor of p300/
KAT2B HAT activity [80]. Furthermore, it was shown that
curcumin modulates the miRNA pathway. Specifically, cur-
cumin inhibits miR-21 expression via AP-1 leading to a
decreased proliferation and metastasis potential in CRC [81].

Butyrate is an essential short-chained fatty acid (SCFA) for
the colon epithelia formed from bacteria-fermented dietary
fibers. Butyrate triggers growth arrest, differentiation, and/or
apoptosis in many in vitro and in vivo precancerous and tumor
cell models including CRC cell lines [82–84]. These biolog-
ical effects leading to carcinogenesis suppression have been
proposed to account for the chemopreventive properties of
butyrate and to be mediated by HDAC inhibition–induced
histone hyperacetylation [83, 84]. Furthermore, butyrate was
identified as the most potent HDAC inhibitor among various
SCFAs tested in colon carcinoma cells. In the same study,
cinnamic acid, coumaric acid, and caffeic acid also showed
HDAC inhibitory activities [85].

(-)-Epigallocatechin gallate (EGCG), the major polyphe-
nol in green tea, has been extensively studied both in vitro
and in animal models of carcinogenesis and is well recog-
nized for its chemopreventive properties. EGCG seems to
have DNA-demethylating properties since it can induce the
reactivation of some methylation-silenced TSGs in various
tumor models including human colon cancer cells, limiting
their proliferation and invasiveness [86, 87].

Isothiocyanates such as sulforaphane (SFN) are sulfur
phytonutrients abundant in broccoli reported to present che-
mopreventive properties in CRC. SFN has been initially
found to inhibit in vitro HDAC activity in human colon
cancer cells and then in numerous other models [88, 89]. In
vivo, a study demonstrated that APCmin/+ mice with SFN-
enriched diet have reduced tumor development associated
with an increased histone acetylation and p21 expression
[90]. Remarkably, in humans, consumption of 68 g broccoli
resulted in a significant inhibition of blood HDAC activity
3 h following intake [91]. Furthermore, prolonged exposure
to SFN induces a decrease of various class I and selected
class II HDAC proteins and especially HDAC3 [92].

3,3′-diindolylmethane (DIM) is a digestive metabolite of
indole-3-carbinol, which is found in vegetables such as
broccoli or cauliflower. DIM strongly decreases the expres-
sion of the anti-apoptotic protein survivin and enhances the
effect of butyrate on both apoptosis in colon cancer cells and
prevention of FAP in APCmin/+ mice. These effects were
accompanied by a drastic decrease of HDAC1, HDAC2, and
HDAC3 expression [93], which could be explained by selec-
tive DIM-induced proteasomal degradation of class I HDACs
(HDAC1–3, and 8), leading to p21 and p27 overexpression.
These data may account for DIM’s capability to trigger G2-
cell cycle arrest and apoptosis [94].

Garlic-derived sulfur compounds such as diallyl disul-
phide (DADS) or allyl mercaptan (AM) are known for their

HDAC inhibitory potential. Thus, these compounds induce
total histone hyperacetylation in colon cancer cells as well
as CDKN1A promoter-associated histone hyperacetylation,
which is responsible for p21 overexpression and correlated
with a G2/M-cell cycle arrest [89, 95]. Remarkably, epide-
miological data suggest that garlic consumption decreases
risks of CRC. Thus, it is believed that the effect of these
sulfur compounds on HDAC account for their anticarcino-
genic and chemopreventive properties.

Quercetin has been shown to activate the class III HDAC
sirtuin 1 (SIRT1) and to be a potent antitumor agent by
decreasing proliferation, and triggering G2/M-cell cycle
arrest and apoptosis in cancer cells [96, 97]. In addition, a
study revealed that quercetin demethylates CDKN2A pro-
moter in colon cells [98]. Therefore, quercetin might present
protective properties against CRC.

Finally, folate and selenium are common nutrients reported
to influence epigenetic events. Epidemiological studies sup-
port the link between low folate concentrations and increased
CRC risk [99]. Folate is the main source of methyl group
necessary for the production of SAM, a universal cofactor in
methylation reactions. Thus, defects in folate metabolism or
intake lead to hypomethylation of genomic DNA or proto-
oncogene and alterations of histone methylation patterns as-
sociated with genomic instability in colon cells [83]. Selenium
has also been reported to alter epigenetic mechanisms, pro-
viding a rationale for its potential chemopreventive efficacy.
Indeed, it was shown that colon DNA from rats fed a
selenium-rich diet was hypomethylated, whereas low-
selenium diet increases DNA methylation of the TSG von
Hippel-Lindau [100]. These data were linked to selenium
propensity to inhibit DNMT1 activity and protein expression
in colon cells [101]. Furthermore, organoseleniummetabolites
of Se-methyl-L-selenocysteine and L-selenomethionine meth-
ylselenopyruvate induce HDAC inhibition–dependent histone
H3 acetylation in colon cancer cells associated with an induc-
tion of p21 expression, which could account for G2/M cell
cycle arrest and apoptosis [102]. Therefore, unbalanced and
improper consumption of these nutrients might have an inju-
rious impact on colorectal carcinogenesis.

Conclusions and Perspectives

Since epigenetic alterations are reversible, they were initially
considered as interesting targets for chemotherapy using
DNMT and HDAC inhibitors such as 5-aza-2′-deoxycytidine
(decitabine) and suberoylanilide hydroxamic acid (SAHA,
vorinostat), respectively. These compounds induce pleiotropic
biological effects including regulation of cell growth, differenti-
ation, autophagy, senescence, and apoptosis. Additionally, they
sensitize cells to classical chemotherapeutic agents and they
mostly act synergistically as antitumor agents against cancer
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cells [10, 63, 103, 104]. Nonetheless, the use of such pharma-
cological epigenetic modulators is associated with some dose-
limiting toxicities such as neutropenia and thrombocytopenia
observed with SAHA or nonspecific cytotoxic effects observed
with nucleoside analogues DNA demethylating agents inherent
to their incorporation into DNA. In the perspective to reduce
these drawbacks, natural compounds might represent a good
alternative to identify safer epigenetic modulators. Accordingly,
increasing evidence about the impact of environment on epige-
netics as well as early occurrence of epimutations in carcino-
genesis make us reconsider epigenetic events as promising
preventive targets. However, to reach these attractive perspec-
tives, we need to improve our current knowledge of CRC-
associated early epigenetic changes, for early detection and to
define promising epigenetic targets for chemoprevention. In
addition, a clear impact of such chemopreventive strategies is
needed, which requires a better rationale of studies to determine
detail mechanisms, and assess safety and efficient doses for
humans. Nevertheless, epigenetics and chemoprevention by
dietary modulators is well associated with targeted therapy and
personalized oncology and should ultimately aid to decrease
CRC incidence and mortality rate.
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