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Abstract 

Purpose:  Glioma is the most prevalent malignant form of brain tumors, with a dismal prognosis. Currently, cancer 
immunotherapy has emerged as a revolutionary treatment for patients with advanced highly aggressive therapy-
resistant tumors. However, there is no effective biomarker to reflect the response to immunotherapy in glioma patient 
so far. So we aim to assess the clinical predictive value of FCER1G in patients with glioma.

Methods:  The expression level and correlation between clinical prognosis and FER1G levels were analyzed with the 
data from CGGA, TCGA, and GEO database. Univariate and multivariate cox regression model was built to predict the 
prognosis of glioma patients with multiple factors. Then the correlation between FCER1G with immune cell infiltra-
tion and activation was analyzed. At last, we predict the immunotherapeutic response in both high and low FCER1G 
expression subgroups.

Results:  FCER1G was significantly higher in glioma with greater malignancy and predicted poor prognosis. In 
multivariate analysis, the hazard ratio of FCER1G expression (Low versus High) was 0.66 and 95 % CI is 0.54 to 0.79 
(P < 0.001), whereas age (HR = 1.26, 95 % CI  1.04–1.52), grade (HR = 2.75, 95 % CI 2.06–3.68), tumor recurrence 
(HR = 2.17, 95 % CI  1.81–2.62), IDH mutant (HR = 2.46, 95 % CI 1.97–3.01) and chemotherapeutic status (HR = 1.4, 95 % 
CI  1.20–1.80) are also included. Furthermore, we illustrated that gene FCER1G stratified glioma cases into high and 
low FCER1G expression subgroups that demonstrated with distinct clinical outcomes and T cell activation. At last, we 
demonstrated that high FCER1G levels presented great immunotherapeutic response in glioma patients.

Conclusions:  This study demonstrated FCER1G as a novel predictor for clinical diagnosis, prognosis, and response to 
immunotherapy in glioma patient. Assess expression of FCER1G is a promising method to discover patients that may 
benefit from immunotherapy.
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Introduction
Glioma is served as the most prevalent malignant 
tumor in central nervous system, which accounts for 
more than 70 % of intracranial tumors with high degree 
of malignancy [1, 2]. Arising from glia cells, gliomas 
can be subdivided into a broad category of tumors, 
such as astrocytoma, oligodendroglioma, and glioblas-
toma (GBM). Regardless of tumor aggressiveness and 
malignancy, the average median time of overall sur-
vival is only 12–18 months [3, 4]. Although a variety 

Open Access

Cancer Cell International

*Correspondence:  theanke@163.com; Meiqing_Lou2020@163.com
†Houshi Xu and Qingwei Zhu contributed equally to this work
1 Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao 
Tong University School of Medicine, Shanghai 200080, China
2 Department of Neurosurgery, Second Affiliated Hospital, School 
of Medicine, Zhejiang University, Zhejiang 310029, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-6427-5503
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-021-01804-3&domain=pdf


Page 2 of 16Xu et al. Cancer Cell Int          (2021) 21:103 

of therapies are currently available, including surgery, 
radiotherapy, chemotherapy and immunotherapy, 
they still remain a low survival. Therapeutic response 
rely on intra-tumoral heterogeneity and intricacy pro-
grammed by genetic and epigenetic effectors. Besides, 
there are many physiological barriers, like blood-brain 
barrier (BBB), as a challenge to effective treatments. 
Driven by the infiltrative nature of gliomas, surgical 
resection seems to be an ineffective long-term pro-
cedure and recurrence often occur with fatal conse-
quences. Moreover, aggressive therapies compromised 
the patient’s life quality and drives harmful side effects. 
Therefore, great understanding of the biological behav-
ior and mechanism underlying tumor progression is 
essential to improve clinical diagnosis and therapeutic 
prognosis, even for the development of novel effective 
therapies.

Currently, cancer immunotherapy based on immune 
checkpoint blockades (ICBs), notably anti-CTLA4 (cyto-
toxic T-lymphocyte associated protein 4), anti-PDCD1/
PD-1 (programmed cell death 1), anti-CD274/PD-L1, has 
emerged as a revolutionary treatment for patients with 
advanced highly aggressive therapy-resistant tumors. 
Unfortunately, the clinical reality is that only a small 
number of patients benefit from immunotherapy. Moreo-
ver, there is no effective biomarker to reflect the response 
to immunotherapy in glioma patient so far.

With the development of high-throughput microar-
ray technology, gene expression profiles have been used 
to identify genes associated with progression and clini-
cal prognosis of glioma [5–7]. A gene signature identi-
fied from four different published microarrays has been 
validated in GBM and LGG cohorts [8–10]. However, 
the predictive significance of the gene signature in gli-
oma patients is unclear and is not currently applied in 
clinical practice. FCER1G is a key molecule involved in 
allergic reactions [11], located on chromosome 1q23.3 
and encodes the γ subunit of fragment crystallizable 
(Fc) region (Fc R) of immunoglobulin. Fc R is a signal-
transducing subunit that plays an critical role in chronic 
inflammatory programs. The binding between the Fc of 
immunoglobulins and the Fc R of immune cells activates 
cellular effector functions and may trigger destructive 
inflammation, immune cell activation, phagocytosis, oxi-
dative burst, and cytokine release [12–14]. It has been 
illustrated that FCER1G participated in various dis-
eases, such as squamous carcinogenesis, diabetic kid-
ney disease, multiple myeloma, and clear cell renal cell 
carcinoma [12, 15–17]. However, the role of FCER1G 
in tumor progression and underlying molecular mecha-
nisms are poorly understood. This study aimed to dem-
onstrated FCER1G as a promising predictive target for 
glioma prognosis and response to immunotherapy.

Materials and methods
Tumor samples collection
Human glioma tissues were considered exempt by the 
Human Investigation Ethical Committee of Shanghai 
General Hospital affiliated to Shanghai Jiao Tong Univer-
sity. Human tumor samples were consecutively recruited 
between January 2019 and January 2020 from the Depart-
ment of Neurosurgery in Shanghai General Hospital. A 
total of 20 patients with glioma underwent the surgery 
for the first time and had not previously received radio-
therapy or chemotherapy.

Data source and expression analysis
Pan-cancer dataset in The Cancer Genome Altas (TCGA) 
which consists of 33 kinds of cancer and adjacent tissue 
samples or GTEx expression matrixs were analyzed with 
UCSCXenaShiny [18] (https​://hiplo​t.com.cn/advan​ce/
ucsc-xena-shiny​). In this study, we analyzed both GBM 
and LGG. All the glioma datasets and were obtained 
from Gliovis [19] (http://gliov​is.bioin​fo.cnio.es/), includ-
ing six datasets containing 2336 samples : 642 grade II 
patients, 780 grade III patients and 914 grade IV patients. 
(Additional  file 1: Table S1)

Immunohistochemical analysis 
Patient tumor samples were fixed in 4 % paraformalde-
hyde for 24 hours and then embedded in paraffin. Paraf-
fin blocks were cut into 5 µm sections. Rehydrated tissue 
sections were blocked with 5 % BSA overnight at 4 ℃ 
and then were stained with FCER1G (Abcam, ab151986, 
USA). After washing with PBS, the sections were incu-
bated with biotinylated anti-rabbit IgG (Vector Laborato-
ries, CA, USA). The ABC method (Vector Laboratories) 
was used. The sections were observed using an AX-80 
microscope (Olympus, Tokyo, Japan). Images were 
dealt with Image J software and relative expression was 
calculated.

Real‐time PCR
Total RNA was extracted from human tumor tissues 
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) 
and reverse transcripted using FastQuant RT kit (Tian-
gen, Shanghai, China). Real-time PCR was carried out 
using SuperReal SYBR Green kit (Tiangen, Shanghai, 
China) and Lightcycler 96 (Roche, Penzberg, Germany). 
The primer sequences were listed as follow: FCER1G for-
ward: GCC​TGC​ATG​CCA​TTA​ACA​CC; reverse: AAC​
AGG​GAG​GAG​GAA​CCA​CT; PDCD1 forward: CAG​
TTC​CAA​ACC​CTG​GTG​GT; reverse: GGC​TCC​TAT​
TGT​CCC​TCG​TG.

https://hiplot.com.cn/advance/ucsc-xena-shiny
https://hiplot.com.cn/advance/ucsc-xena-shiny
http://gliovis.bioinfo.cnio.es/
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Immune cells and bioinformatic analysis 
The single sample gene set enrichment analysis 
(ssGSEA) was used to define a enrichment score to 
represent the degree of absolute enrichment of a gene 
set in each sample within a given dataset with R pack-
age “GSVA” [20]. Normalized enrichment scores could 
be calculated for each immune category. 28 types of 
immune cells’ gene set signatures were obtained from a 
previous study [21]. (Additional  file 1)

Based on the median expression values of FCER1G, 
CGGA dataset was divided into a high FCER1G expres-
sion group (top 50 %) and a low FCER1G expression 
group (bottom 50 %). R package “limma” was used 
for differential expressed gene (DEGs) analysis. The 
biological significance of the DEGs was defined as 
|logFC|≥1.5 and adj.pvalue < 0.05. Gene Ontology (GO) 
including biological process (BP), molecular function 
(MF) and cellular component (CC) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) analyses were 
utilized for gene set annotation using the R package 
“clusterProfiler” [22]. Gene Set Enrichment Analysis 
(GSEA) was further used to investigate the functional 
enrichment with R package “Pi“ [23]. To explore the 
correlation between the expression levels of FCER1G 
and immune status, a total of 25  immunity- related 
gene sets covering both innate and adaptive responses 
were from a previous study [24] (Additional   file 1). 
Gene Set Variation Analysis from R package GSVA [20] 
was performed to obtain the immune profile of the gli-
oma samples.

Quantify of relative abundance of TIICs and prediction of 
the immunotherapy response 
The CGGA dataset (n = 1013, Grade II = 291, Grade 
III = 334 and Grade IV = 388) was used as the discovery 
set and the TCGA-GBMLGG dataset(n = 620, Grade 
II = 226, Grade III = 244 and Grade IV = 150) was used 
as the validation set. Immune Cell Abundance Identi-
fier (ImmuCellAI) [25] (http://bioin​fo.life.hust.edu.
cn/ImmuC​ellAI​#!/analy​sis) is a novel algorithm that 
uses gene set signatures to estimate the abundance of 
24  immune cells from transcriptomic data. In contrast 
to other known algorithms designed to estimate immune 
cell composition from transcriptomic data, it focuses on 
subsets of T cells that are associated with tumor progres-
sion and initiation. The gene set signatures of the T-cell 
subsets used in this study are listed in the Supplementary 
Material ,which included 18 subtypes of T cells and 6 
other types of immune cells. Moreover, ImmuCellAI can 
be used to predict the reponse of Immune checkpoint 
blockade (ICB) therapy with the ICB response prediction 
being checked.

To predict their putative response to anti-PDL1 drug, 
glioma samples were scored with the GSVA method 
using the T-cell inflammatory (TIS) signature. This signa-
ture was derived from a previous study [24] and listed in 
Additional  file 1.

Tumor immune dysfunction and exclusion (TIDE) 
(http://tide.dfci.harva​rd.edu/login​/) is a computational 
method developed to predict the immune checkpoint 
blockade response based on pretreatment tumor gene 
profiles that integrate the expression signatures of T-cell 
dysfunction and T-cell exclusion to model the mecha-
nisms of tumor immune evasion [26]. Furthermore, the 
Subclass Mapping (SubMap) method was applied to eval-
uate the expression similarity between the two subgroups 
and the patients with different immunotherapy responses 
[27]. P-values were used to evaluate the similarity, and 
the lower the P-values were, the higher the similarity. In 
this study, we utilized TIDE, TIS, SubMap and ImmuCel-
lAI to predict the potential immunotherapy responses of 
patients with gliomas.

Statistical analysis
  All statistical analysis were carried out by R software 
3.6.1. Kolmogorov-Smirnov tests were used to evalu-
ate the distribution normality of each dataset to deter-
mine whether a non-parametric rank-based analysis or 
a parametric analysis should be utilized. Spearman cor-
relation analysis were used for correlation analysis. The 
Fisher exact test and Wilcoxon rank-sum tests were used 
to test hypotheses in categorical and continuous vari-
ables, respectively. In the survival analysis, associations 
between characteristics and overall survival were evalu-
ated by Cox proportional hazard models. Kaplan-Meier 
survival curves were drawn and compared among sub-
groups using log-rank tests with R packages “survival” 
and “survminer”. Meta-analysis was performed with R 
package “meta”. ROC curves, sensitivity as well as speci-
ficity were generated using R package “pROC”. For all sta-
tistical analyses, P value < 0.05 was considered significant.

Results
Pan‑cancer analysis of FCER1G expression
Pan-cancer analysis showed a significant expression dif-
ference of FCER1G levels between a variety of tumors 
and adjacent tissues (or GTEx) (Fig.  1a and Additional 
file  2:    Fig.  1a). Expression of FCER1G was higher in 
BRCA, ESCA, GBM, HNSC, KIRC, KIRP, LAML, LGG, 
LIHC, OV, PAAD, SKCM, STAD, TGCT, THCA, UCEC, 
and UCS (p < 0.05) than normal tissues, while FCER1G 
was lower in tumor of ACC, DLBC, LUAD, LUSC, PRAD, 
and THYM (p < 0.05).

Patients in 33 types of tumor cohorts were then divided 
into high and low expressed group according to the 

http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/analysis
http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/analysis
http://tide.dfci.harvard.edu/login/
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median value of FCER1G gene expression. Subsequent 
survival analysis obtained significant differences across 

several cancer types. Specifically speaking, patients 
with high expression level of FCER1G showed a shorter 

Fig. 1    Pan-cancer analysis of FCER1G expression. a UCSCxena shiny was used to visualize FCER1G mRNA expression in The Cancer Genome Atlas 
(TCGA) pan-cancer datasets. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001, ns no significance (Wilcoxon test). b Dot plot of correlation between 
FCER1G with OS, PFI, DFI, DSS. (Red represents HR > 1 and P value < 0.05; Blue represents HR < 1 and P value < 0.05; Gray represents P value > 0.05)
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overall survival (OS), progression-free interval (PFI) 
and disease-specific survival (DSS) than low expression 
patients both in LGG and GBM cohort (Fig. 1b).

The expression level of FCER1G increased with the 
progression of glioma 
In the subsequent study, we focused on exploring the 
clinical value of FCER1G in gliomas. To explore the 
expression levels of FCER1G mRNA in different stages 
of gliomas, we used six datasets to analyze FCER1G 
expression levels. We observed that the expression level 
of FCER1G increased in glioma with high malignancy. 
In CGGA dataset, a significant increase of FCER1G 
expression was noted in WHO grade III (n = 334), and 
grade IV (n = 388) than grade II (n = 291) (IV versus III: 
P < 0.001; IV versus II: P < 0.001; III versus III: P = 0.037, 
Fig.  2a). In the TCGA-GBMLGG dataset, a remarkable 
upward trend in FCER1G expression with tumor pro-
gression was further confirmed in grade II (n = 226), III 
(n = 244) and IV (n = 150 glioma patients (IV versus III: 
P < 0.001; IV versus II: P < 0.001; III versus III: P = 0.0012, 
Fig. 2b). Furthermore, the same trend was also found in 
the Rembrandt dataset with 98 grade II, 85 grade III, and 
130 grade IV patients (IV versus III: P < 0.001; IV ver-
sus II: P < 0.001; III versus III: P = 0.31, Fig.  2c). Moreo-
ver, according to analysis of GEO dataset, we also found 
that the GSE16011 cohort with grade II (n = 24), grade 
III (n = 85), and grade IV (n = 159) glioma patients (IV 
versus III: P < 0.001; IV versus II: P < 0.001; III versus III: 
P = 0.48, Fig.  2d), GSE43289 dataset with 3 grade II, 6 
grade III, and 28 grade IV patients (IV versus III: P = 0.3; 
IV versus II: P = 0.0071; III versus III: P = 0.38, Fig.  2e), 
and the GSE4412 dataset (26 grade III and 59 grade IV 
patients, P < 0.0001, Fig. 2f ) all exerted higher expression 
of FCER1G in high grade glioma.

To further validate these results, IHC for FCER1G and 
qRT-PCR was performed to assess FCER1G expression 
in patient-derived glioma tissue samples. As expected, in 
comparison with low grade glioma (LGG) tissues, a sig-
nificant increase of FCER1G was revealed in high grade 
glioma (HGG) tissues (Figure. 2g, h). according to the 
above data, the expression of FCER1G increased with the 
development of glioma, suggesting that FCER1G may be 
involved in the malignant progression of glioma.

Increased FCER1G expression predicts poor prognosis in 
gliomas 
After we illustrated the correlation between FCER1G 
expression level and tumor progression of glioma, we 
next investigated the prognostic value of FCER1G.

According to the median value of FCER1G expres-
sion, patients were divide into high and low expres-
sion group. The Kaplan–Meier curve and log-rank test 

analysis revealed that patients with higher expression 
of FCER1G from CGGA (HR:0.69, 95 % CI 0.49–0.98), 
TCGA dataset (HR:0.31, 95 % CI 0.23–0.41), Rembrandt 
(HR:0.49, 95 % CI 0.39–0.61), and GSE16011 (HR:0.49, 
95 % CI 0.38–0.64), showed significantly poorer overall 
survival (OS) than those with low expression (Fig. 3a, c, e 
and f ), while patients from GSE43289 and GSE4412 data-
set showed similar trend with no statistic significance 
(Fig. 3e, f ). The sample sizes of the six cohorts were very 
different, three over 500 samples and two less than 200 
samples. To improve the stability of the results, a fixed 
effects model was employed to pool the HRs of the six 
cohorts, and the result also validated that patients with 
high level of FCER1G expression exerted shorter OS 
times than patients with low expression level (RR = 1.30, 
95 % CI  1.24–1.38,     Fig. 3g).

To better understand the role of expression of FCER1G 
in patients with glioma, we analyzed the CGGA dataset 
with clinical data of 1013 glioma patients. We divided 
the patients into high expression group (n = 506) and 
low expression group (n = 507) based on FCER1G levels. 
Through univariate analysis of clinical characteristics, 
we found that FCER1G was more likely to be associated 
with older age (P = 0.002), high malignancy (P < 0.001), 
GBM type (P < 0.001), post-operative relapse (P < 0.001), 
poorer survival (P < 0.001), IDH wild type (P < 0.001), and 
different therapeutic options (Radiotherapy, P = 0.047; 
chemotherapy, P = 0.009), however, there is no significant 
differences in gender (Table 1).

By using the Cox regression model, we computed mul-
tivariate hazard ratios for different variables of 1013 gli-
oma patients. In multivariate analysis, the hazard ratio 
of FCER1G expression (Low versus High) was 0.66 and 
95 % CI is 0.54 to 0.79 (P < 0.001), whereas age (HR = 1.26, 
95 % CI  1.04–1.52), grade (HR = 2.75, 95 % CI 2.06–3.68), 
tumor recurrence (HR = 2.17, 95 % CI  1.81–2.62), and 
chemotherapeutic status (HR = 1.4, 95 % CI  1.20–1.80) 
are also included (Table  2). The expression level of 
FCER1G was significantly related to the OS in glioma 
patients. FCER1G expression value was a stable factor 
affecting the survival level of glioma patients.

FCER1G is associated with immune infiltration and immune 
activation in gliomas
Patients diagnosed with the same histological can-
cer types may have different immune infiltration lev-
els, which could lead to diverse clinical outcomes. The 
immune profile of gliomas relating to the prognosis and 
immunotherapy has been widely reported in several can-
cers, including gliomas. FCER1G is served as an impor-
tant regulatory player, involving in initiating the transfer 
from T-cells to the effector T-helper 2 type and mediat-
ing the allergic inflammatory signaling of mast cells and 
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Fig. 2    The expression level of FCER1G increased with the progression of glioma. The X-axis represents the WHO grade while the Y-axis represents 
FCER1G expression value(log2). Based on Wilcoxon test. a CGGA, b TCGA, c Rembrandt, d GSE16011, e GSE43289, and f GSE4412. g Representations 
and h quantification of immunohistochemistry detection of FCER1G in low grade glioma LGG and HGG
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interleukin 4 production from basophils [28, 29]. There-
fore, the correlation of FCER1G and immune infiltration 
levels was evaluated to reveal the possible mechanism 
by which FCER1G affects the prognosis of gliomas. The 
relative quantity of the 28 immune cells from the CGGA 
dataset was systematically estimated using the ssGSEA 
algorithm (Fig. 4a). The correlations of FCER1G expres-
sion with infiltrating levels of immune cells was evaluated 

by spearman method, which revealed close relationship 
between FCER1G with T cells, macrophages, and B cells 
(Fig.  4b). These results suggested that FCER1G expres-
sion was involved in immune infiltration remodeling of 
gliomas.

Next, we try to further elucidate the relationship 
between FCER1G expression and immune infiltration 
and to explore the molecular mechanisms of FCER1G 

Fig. 3    Increased FCER1G expression predicts poor prognosis in gliomas. Kaplan-Meier plots of FCER1G in a variety glioma datasets, 95 % CI 
(confidence interval) were also showed. Patients were divided into high and low expressed group by the medium expression level. a CGGA, b TCGA, 
c Rembrandt, d GSE4412, e GSE43289, and f GSE16011. g Forest plot of the RRs for patients with high FCER1G expression compared to patients with 
low FCER1G levels
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Table 1  Clinical characteristics of 1013 glioma patients in the CGGA dataset according to FCER1G expression levels

FCER1G expression High Low P value

n 506 507

FCER1G_mRNA (median [IQR]) 6.74 [6.22, 7.42] 4.69 [3.81, 5.22] < 0.001

Age (median [IQR]) 44.00 [36.00, 54.00] 41.00 [34.00, 49.00] 0.002

Gender (%) 0.371

 Female 199 (39.3) 214 (42.2)

 Male 307 (60.7) 293 (57.8)

Grade (%) < 0.001

 II 101 (20.0) 187 (36.9)

 III 140 (27.7) 193 (38.1)

 IV 261 (51.6) 126 (24.9)

4 ( 0.8) 1 ( 0.2)

Histology (%)

 Anaplastic Astrocytoma 118 (23.3) 95 (18.7)

 Anaplastic Oligoastrocytoma 2 ( 0.4) 19 ( 3.7)

 Anaplastic Oligodendroglioma 19 ( 3.8) 75 (14.8)

 Astrocytoma 81 (16.0) 92 (18.1)

 GBM 261 (51.6) 126 (24.9)

 Oligoastrocytoma 2 ( 0.4) 7 ( 1.4)

 Oligodendroglioma 19 ( 3.8) 92 (18.1)

4 ( 0.8) 1 ( 0.2)

Recurrence (%) 0.001

 Primary 296 (58.5) 350 (69.0)

 Recurrent 186 (36.8) 147 (29.0)

 Secondary 20 ( 4.0) 10 ( 2.0)

4 ( 0.8) 0 ( 0.0)

Subtype (%) < 0.001

 Classical 110 (21.7) 52 (10.3)

 Mesenchymal 95 (18.8) 19 ( 3.7)

 Proneural 82 (16.2) 74 (14.6)

219 (43.3) 362 (71.4)

survival (median [IQR]) 17.50 [8.80, 40.60] 37.00 [15.35, 75.85] < 0.001

status (%)

 Alive 125 (25.3) 260 (53.1) < 0.001

 Dead 369 (74.7) 230 (46.9)

IDH status (%) < 0.001

 Mutant 213 (42.1) 316 (62.3)

 Wildtype 287 (56.7) 145 (28.6)

6 ( 1.2) 46 ( 9.1)

1p19q (%) < 0.001

 Codel 39 ( 7.7) 172 (33.9)

 Non-codel 461 (91.1) 263 (51.9)

6 ( 1.2) 72 (14.2)

Radio status (%) 68 (14.9) 94 (20.0) 0.047

 No

 Yes 388 (85.1) 376 (80.0)

Chemo status (%) 117 (26.1) 156 (34.2) 0.009

 No

 Yes 332 (73.9) 300 (65.8)
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with STRING database. The result showed that FCER1G 
had a closely interactions with FCGR3A, ITGB2, LYN, 
SYK, in which FCER1G acts as a core gene (Fig.  4c). 
Moreover, we analyzed the differential expression val-
ues between high and low FCER1G group. A total of 372 
genes were up-regulated and 22 genes were down-regu-
lated (adj.pvalue < 0.05, FC > 1.5 or <-1.5, Fig. 4d).

Then we analyzed the enriched GO terms and KEGG 
pathways with the DEGs. Among the biological process 
terms of GO, most of DEGs were enriched in neutro-
phil activation, leukocyte migration, collagen-containing 
extracellular matrix, and cell adhesion molecule binding 
(Fig. 4e). According to the KEGG analysis results, staphy-
lococcus aureus infection, phagosome, and cell adhesion 
molecules (CAMs) were remarkably enriched (Addi-
tional file 3:  Fig. S2).

Gene set enrichment analysis (GSEA) was also used 
to explore the mechanisms of FCER1G in gliomas. The 
CGGA data were analyzed with “MsigdbC2KEGG” 
(KEGG gene set, listed in Additional file 1). The enrich-
ment results (nominal p value < 0.05 and FDR < 0.25) are 
shown in Additional file 1: Sheet 3. Results showed that 
various immune activation and tumor progression asso-
ciated genes were enriched, especially in cytokine sign-
aling in immune, DNA replication and PD-1 signaling 
(Fig.  4f ), reflecting relatively enhanced tumor progres-
sion and activated inflammation.

Identification of the correlation between FCER1G and 
immune phenotype of gliomas 
To further explore the existence of malignant glio-
mas with a hot immune phenotype, manually curated 
gene sets related to both adaptive and innate immune 
responses were used to quantify the immune pheno-
type (Fig. 5a). The heatmap showed that, with increasing 
FCER1G expression, the immune phenotype tended to 
be “hot”. This was consistent with the conclusions drawn 
above that FCER1G played a key role in the glioma acti-
vated immune response. The Spearman’s test revealed 
a high correlation between the expression of FCER1G 
with PDL1 signaling (r = 0.45, P < 0.05), CTLA4 signal-
ing (r = 0.38, P < 0.05), and T cell mediated immunity 
(r = 0.42, P < 0.05), which further confirmed the findings 
in GSEA results (Fig. 5b, d).

Subgroups divided by FCER1G expression predict 
potential immunotherapy responses of gliomas 
The above findings suggested that FCER1G was closely 
associated with T cells, which play an important role in 
immunosurveillance evasion in malignant gliomas [30]. 
Strong correlations were found between PD1 (PDCD1) 
and PDL1 (CD274)/PDL2 (PDCD1LG2), between 
CTLA4 and CD80/CD86, and between CXCR4 and 
CXCL12 in gliomas Additional file 4: Fig. 3a-c). The rela-
tive abundances of 24 types of immune cells in the TME 
of gliomas were quantified with ImmuCellAI. Nota-
bly, the proportions of TIICs showed marked variations 
between the FCER1G high and low subgroups (Fig. 6a). 

Table 2  Univariate and multivariate analysis for overall survival of glioma patients

Variable Univariate analysis Multivariate analysis

Age HR 95 % CI pvalue HR 95 % CI pvalue

 (≥ 40 vs. < 40) 1.6 (1.4-2.0) < 0.001 1.26 (1.04 − 1.52) 0.017

Gender

 Female vs. male 0.98 (0.83–1.2) 0.79

Grade

 II vs. III vs. IV 3.6 (2.2–6.2) < 0.001 2.75 (2.06 − 3.68) < 0.001

Recurrence

 Primary vs. Recurrent vs. Secondary 2.5 (1.8–3.2) < 0.001 2.17 (1.81 − 2.62) < 0.001

IDH status

 Wildtype vs. Mutant 3.1 (2.6–3.6) < 0.001 2.46 (1.97–3.01) < 0.001

Radio status

 Yes vs. no 1 (0.83–1.3) 0.73

Chemo status

 Yes vs. no 1.5 (1.3–1.9) < 0.001 1.4 (1.2–1.8) < 0.001

FCER1G

 Low vs. High 0.43 (0.36–0.51) < 0.001 0.66 (0.54 − 0.79) < 0.001
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Moreover, FCER1G showed significant correlations with 
PD1 (r = 0.42, P < 0.01), PDL1 (r = 0.62, P < 0.01),and 
CTLA4 (r = 0.34, P < 0.01) (Fig. 6b, c), same conclusions 
were also drawn in analysis of TCGA GBMLGG data-
set (Additional file 4: Fig. 3d, e). To verify transcriptome 
results from public datasets, 20 patients from Shanghai 
general hospital were included in our study and quan-
titative real-time PCR were utilized to investigated the 
correlation between expression levels of FCER1G and 
PD1, and the results showed that FCER1G was posi-
tively correlated with PD1 (r = 0.62, p < 0.01) (Additional 
file  5: Fig.  4a). Patients with high FCER1G expression 
showed high levels of the therapeutic targets PD1, PDL1 
and CTLA4, which indicated a hypothetic treatment as 
immune checkpoint.

To further validate this hypothesis, we utilized T cell 
inflammatory signature (TIS) scores in high and low 
FCER1G subgroups. Patients with high FCER1G expres-
sion get higher scores in the TIS signature (P < 0.001), 
reporting to be correlated with response to anti PDL1 
checkpoint inhibitor pembrolizumab, which support-
ing the hypothesis (Fig. 6d). Furthermore, the possibility 
of immunotherapy response was predicted in patients 
with gliomas by ImmuCellAI and TIDE algorithm. The 
ImmuCellAI predicted that patients with high FCER1G 
levels were more likely to respond to immunotherapy 
(81.6 %, 413/506, CGGA) than low FCER1G subgroup 
(52.5 %, 266/507, CGGA. Figure  6e). Similar findings 
were obtained in the validation set, with high predic-
tive efficacy of FCER1G for immunotherapy response in 
glioma patients (AUC: CGGA 72.11 % (69.83–74.92 %), 
TCGA 71.73 % (68.96–73.44 %). Additional   file 5: 
Fig.  4c, d), as well as high sensitivity and specificity 
(CGGA(sensitivity = 61.38 %, specificity = 78.98 %), 
TCGA(sensitivity = 60.36 %, specificity = 79.11 %)). 
Meanwhile, TIDE also suggested that high levels of 
FCER1G tended to more likely respond to immuno-
therapy (69.0 %, 349/506, CGGA) than low FCER1G 
subgroup (41.8 %, 212/507, CGGA. Figure  6e). We also 
utilized the submap algorithm [27] to compare the simi-
larity of the expression profiles between the two sub-
groups of glioma patients and 47 previous melanoma 
patients with detailed immunotherapeutic information, 

and revealed that patients in FCER1G-high subgroup 
were more responsive to anti-PD1 treatment (Bonfer-
roni corrected P value = 0.008) (Additional file 5 Fig. 4b), 
which was consistent with the previous conclusions 
(Additional file 6: Fig. 5).

Taken together, FCER1G may be a good index for 
quantifying the tumor immune microenvironment and 
prediction for immunotherapy responses of gliomas.

Discussion
FCER1G, known as FcRγ, is a key molecule involved in 
tumor progression. Previous studies have shown that is 
an innate immunity gene and involved in the develop-
ment of eczema, clear cell renal cell carcinoma, men-
ingioma, and childhood leukemia [17, 31–33]. In our 
study, great malignancy and poor outcomes have been 
confirmed in patients in FCER1G-high group compared 
to the FCER1G-low group. to gain insight into intrinsic 
mechanism and signal pathways, DEGs between the two 
group were analyzed. As a result, up-regulated DEGs 
in the subgroup with poor outcomes are enriched in 
immune response and inflammatory response, which 
was also confirmed by both KEGG functional enrich-
ment analysis and GSEA analysis. Tumor progression is 
a complex process that requires interaction between can-
cer cells, the microenvironment, and the immune system, 
influencing both tumor initiation and progression [34]. 
Recent research suggests that immune system cells have 
an essential accessory role of preserving tissue integrity 
and function during homeostasis, infection, and nonin-
fectious perturbations by eliminating pathogens, exert-
ing some influence on the clinical outcomes of tumors 
[35, 36]. Many studies have also demonstrated that high 
immune infiltration is associated with improved clinical 
outcomes and better response to treatment in cancers 
[37–42]. We illustrated that various immune activation 
and tumor progression associated genes were enriched, 
especially in cytokine signaling in immune, DNA replica-
tion and PD-1 signaling by GSEA. The cytokine signaling 
and PD-1 signaling pathways have been identified as key 
signaling pathways in immunotherapy to glioma.

In this study, a cox regression model was built to pre-
dict the prognosis of glioma patients with multiple 

Fig. 4    FCER1G is associated with immune infiltration and immune activation in gliomas. a Heatmap showing FCER1G-associated relative 
abundance of 28 immune cells in gliomas, annotations show corresponding clinical features of each sample. b The correlation between the ssGSEA 
scores of 28 immune cells and the expression of FCER1G in gliomas. c STRING database shows the PPI network of FCER1G. d Volcano plot of the 
DEGs expression between FCER1G high and FCER1G low. Cut-off criteria for DEGs significance was adj. p value < 0.05 and the absolute value of the 
log2 fold change > 1.5. The Y-axis displays the -log10 P-value for each gene, while the X-axis displays the log2 fold change for that gene relative 
to FCER1G expression. e GO results for differential expression genes. The X-axis represents gene ratio and the Y-axis represents different enriched 
pathways (BP: biological progress; CC cellular component, MF molecular function). f Rank-based gene set enrichment analysis shows significantly 
activated immune related pathways in FCER1G high subgroup compared with FCER1G low (LFC, log fold change)

(See figure on next page.)
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factors, including FCER1G expression, age, grade, tumor 
recurrence, IDH status, and chemotherapeutic status. 
Furthermore, we illustrated gene FCER1G as a novel 
diagnostic and therapeutic target for the first time, which 
stratified glioma cases into high and low FCER1G expres-
sion subgroups that demonstrated with distinct clinical 

outcomes. Then, we explore the underlying molecular 
mechanisms of FCER1G in tumor progression and poten-
tial correlation between FCER1G expression and 
immune cell activation and response to immunotherapy 
in patients with glioma.

Fig. 5    Identification of the correlation between FCER1G and immune phenotype of gliomas. a Heatmap showing FCER1G-associated GSVA scores 
of 25 innate and adaptive immunity-related gene sets. b The correlation between the GSVA scores of 25 innate and adaptive immunity-related 
gene sets and the expression of FCER1G in gliomas. c The correlation between the PDL1 signaling and the expression of FCER1G. d The correlation 
between the CTLA4 signaling and the expression of FCER1G. e The correlation between the T cell mediated immunity and the expression of 
FCER1G

Fig. 6    Subgroups divided by FCER1G expression predict potential immunotherapy responses of gliomas. a The fraction of TILCs in FCER1G high 
and low subgroups. Within each group, the scattered dots represent TILCs expression values. The thick line represents the median value. The bottom 
and top of the boxes are the 25th and 75th percentiles, interquartile range. The whiskers encompass 1.5 times the interquartile range. The statistical 
difference of three gene clusters was compared through the Kruskal–Wallis test. b The correlation between the expression of FCER1G and PDCD1 
(b) and CTLA4 c in CGGA cohort. d T-cell inflammatory signature (TIS) scores across FCER1G subgroups. A plot presents a single glioma sample. 
Red line indicates the median value. e Rates of the different anti-PD1 and anti-CTLA4 responses of patients from the CGGA cohort predicted by the 
ImmunCellAI (Left, Chi-square test, P < 0.01) and Tumor Immune Dysfunction and Exclusion (TIDE) web program (Right, Chi-square test, P < 0.01) in 
the high or low FCER1G subgroups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001

(See figure on next page.)
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The treatment of gliomas is highly individualized and 
tests are available to guide the use of radiotherapy or 
chemotherapy. In instance, O [6]-methylguanine-DNA 
methyltransferase (MGMT) testing assesses drug resist-
ance in temozolomide-based chemotherapy [43, 44]. 
Besides, radio-sensitivity and XPO1 expression were 
combined to predict the effectiveness of radiotherapy 
[45]. However, there is a lack of a diagnostic biomarker 
guiding adjuvant immunotherapy, in which immune 
checkpoint is a possible factor.

Currently, the clinical benefit of ICB is only observed 
in a minority of patient with glioma, many of which tend 
to relapse after a short-term benefit. The type, density, 
functionality, and location of different immune cell in 
the tumor microenvironment are major factors predict-
ing the response to ICB. Indeed, tumor infiltrated with 
preexisting T cells are more likely to present response to 
ICBs. Thus, majority of tumors can be defined as “cold” 
immune desert tumors and “hot” inflamed immune infil-
trated tumors [46, 47]. In line with this concept, it is 
a novel strategies to explore biomarker to assess tumor 
immune microenvironment and predict tumor sensitivity 
to immunotherapy. Our research, with large sample size 
of 1013 patients, confirmed that the FCER1G is a novel 
independent prognostic predictor to find patients who 
respond to immunotherapy effectively.

The relative abundances of 24 types of immune cells 
in the TME of gliomas were quantified with ImmuCel-
lAI. Notably, patients with high FCER1G expression 
showed high levels of the therapeutic targets PDL1 
and CTLA4, which indicated a hypothetic treatment 
as immune checkpoint. PDL1 is a key negative regula-
tor for immune inhibitory axis signaling controlling T 
lymphocyte infiltration in solid tumors, which is widely 
expressed in glioma cell lines [48, 49] and human speci-
mens [50, 51]. PD-L1 is recently served as a oncogenic 
gene. Down-regulation of PDL1 significantly decreases 
tumor volume of U87 glioma in nude mice, while over-
expression of PDL1 promotes tumor progression [52]. 
Moreover, CTLA4 is one of the most fundamental 
immunosuppressive cytokines, which inhibits T-cell 
activation and terminates the T-cell response [53]. 
Positive correlation between FCER1G with PD-L1 and 
CTLA4 indicated its predictive value in response to 
immunotherapy. Furthermore, patients in FCER1G-
high subgroups get higher TIS scores, reporting to 
be correlated with response to anti PDL1 checkpoint 
inhibitor pembrolizumab. The possibility of immuno-
therapy response was predicted in patients with glio-
mas by ImmuCellAI, SubMap and TIDE algorithm, 
both of which suggested that high levels of FCER1G 
tended to more likely respond to immunotherapy.

Despite these findings, there is a limitation for this 
study exist. The data of samples were download from 
CGGA, TCGA, and GEO database and the particular 
information about the extent of surgical resection was 
not provided, which is a critical factor for overall sur-
vival. Thus, further analysis with more detailed clinical 
information should be presented in following studies. 
And we lack sufficient clinical data to validate the pre-
dictive value of FCER1G for glioma immunotherapy 
response, we will continue to investigate the potential 
predictive value of FCER1G in future studies.

In summary, this study demonstrated FCER1G as a novel 
predictor for clinical diagnosis, prognosis, and response to 
immunotherapy in glioma patients. Assess expression of 
FCER1G is a promising method to discover patients that 
may benefit from immunotherapy. These results are of 
great clinical significance and will contribute to personal-
ized therapy.
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interquartile range. The statistical difference of three gene clusters was 
compared through the Kruskal–Wallis test. b CNE plot of top five GO 
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sion of FCER1G and PD1 in tumor tissues from glioma patients (n = 20). 
b SubMap analysis revealed that FCER1G-high subgroup could be more 
sensitive to immunotherapy (Bonferroni-corrected P value < 0.05). ROC 
curves for FCER1G in predicting the immunotherapy response of glioma 
patients. c CGGA, d TCGA.
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levels of immune check points in gliomas. aQuantify of immune cells 
between patients with different grades of glioma. b Expression levels 
of PDCD1 (PD1), CD274 (PDL1), and CTLA4 between different grades of 
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CD274, and CTLA4 in CGGA datasets. Patients were divided into high and 
low expressed group by the medium expression level. d Expression levels 
of PDCD1, CD274, and CTLA4 in FCER1G-high and FCER1G-low subgroup.
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