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Introduction
More than three amino acid sequences or protein sequence  
alignment at a time is called multiple sequence alignment (MSA). 
MSA is the most important tool to solve biological problems. 
We can solve lots of problem in biology by using MSA. MSA 
helps to predict the secondary and tertiary structures of RNA 
and proteins.1,2 We can reconstruct phylogenetic trees using 
MSA, which can predict the function of an unknown amino 
acid by aligning its sequences with some other known functions. 
We can also find similarity of the sequences using MSA, which 
can help to define similarity in functions and structures.3,4 In 
order for an MSA to be valid, entire sequences in the multiple 
alignments must have a common origin. The goal of MSA is to 
maximize the matching of protein or amino acid as far as pos-
sible.5 Therefore, MSA is an important problem in bioinformat-
ics to study the genetic and phylogenetic relationship. There are 
several methods to solve an MSA problem in the past.

The MSA problem can be solved and an optimal align-
ment can be achieved by using dynamic programming (DP). DP 
uses a scoring function that contains a large domain. In 1970, 
Needleman and Wunsch6 proposed the use of DP algorithm to 
solve the problem of two sequence alignments. But the problem 
behind the use of DP is that when the number and length of 
sequence are increased, its complexity also increases in an expo-
nential manner. Then, the MSA problem becomes NP-hard. 
Since complexity is the main constraint for the computer to solve 
any problem, we have to maximize the matching of protein or 

amino acid sequence in limited time or less complexity. This is 
the major reason why researchers switch to other methods.

The MSA problem can be also solved using progres-
sive method. The progressive approach takes less complexity 
in terms of time and space for solving an MSA problem.7,8 
According to progressive alignment method, initially align 
more similar sequences and then incrementally align more 
divergent sequences or group of sequences in the initial align-
ment. The standard representative of progressive methods is 
CLUSTALW.9 In the first step, according to this approach, we 
have to assign the weight of each pair of sequences in a partial 
alignment. We assign small weight for most similar sequences 
and big weight for most divergent sequences. After that, we 
take substitution matrix that defines the score between two 
residues of protein sequence based on similarity. Two types 
of gap have been introduced in the third step. The first one is 
residue-specific gap and the second one is locally residue gap 
penalties. In the fourth step, gap that has been introduced in 
early position receives locally reduced gap penalties to encour-
age the opening gap at these positions. These four steps are 
integrated into CLUSTALW, which is freely available. Pro-
gressive alignment method performs better for MSA package 
in terms of accuracy and time. Even this method has some 
limitation. The problem behind this method is dependency on 
initial alignment and choice of scoring scheme. In other words, 
we bound that to align more similar sequences in the initial 
stage. If we have not aligned more similar sequences in the 
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initial stage, then the solution may be trapped in local optima. 
An iterative method is another option for solving MSA.

An iterative method does not depend on initial alignment 
because it starts with initial alignment and improves the solutions 
per iteration until no more improvement is possible. The main 
objective of the iterative approach for MSA is to globally improve 
the quality of a sequence alignment. There are some iterative and 
stochastic approaches for MSA (for example, simulated anneal-
ing10,11). Hidden Markov Models Training (HMMT)12 is based 
on a simulated annealing process. The problem behind the solution 
recommended by these methods may be trapped in local optima.

Evolutionary algorithms13,14 are population-based algo-
rithms. According to these algorithms, we generate random 
initial population in the first step. In the next step, we apply 
some operators to modify the initial population for next gene-
ration. We repeatedly use these operators until we reach the 
global optimum. When using Evolutionary Algorithms (EAs) 
for an MSA, an initial generation is generated by random man-
ner, and then, the steps of an EA are applied to improve the 
similarities among the sequences. There are some evolutionary 
computations for MSA.15–19 There are some other genetic algo-
rithm (GA)-based methods for MSA, such as SAGA,19 GA-
ACO,20 MSA-EC,21 MSA-GA,22 RBT-GA,23 GAPAM,24 
VDGA,25 and MOMSA.26 We define methodology of some 
algorithm to solve an MSA problem based on GA. In SAGA, 
the initial generation is generated randomly. According to 
SAGA, 22 different operators are used to gradually improve 
the fitness of MSA. But the problem behind SAGA is time 
complexity due to repeated use of fitness function. RBT-GA is 
also a GA-based method, combined with the rubber band tech-
nique (RBT), to find optimal protein sequence alignments.27 
RBT28 is an iterative algorithm for sequence alignment using a 
DP table. The authors26 solved 56 problems from reference sets 
1, 2, 3, 4, and 5 of the benchmark Bali base 2.0 dataset and Bali 
base 3.0 dataset. The drawbacks of these evolutionary methods 
are also local optima due to poor diversity of the solutions.

Motivation and contributions. In the domain of biology, 
MSA is the most crucial to solve numerous standard problems 
such as structure prediction and phylogenetic property. Accord-
ing to the open literature, the MSA is still an open-challenging 
problem. Hence, we motivate to solve an MSA problem using the 
improved version of biogeography-based optimization (BBO). 
However, this paper achieves the following contributions.
a.	 We first proposed a method to improve migration opera-

tor in BBO and then used it in MSA for maintaining 
diversity of the solutions.

b.	 The results obtained in experimental analysis are better in 
terms of time factor. In addition, we provide a compari-
son table, which claims that our method is better than the 
existing competitive solutions in terms of matching score.

Biogeography-Based Optimization
BBO29 was designed by emigration and immigration of spe-
cies from one habitat to another. In the BBO algorithm,  

candidate solutions are called habitats (or islands). Each feature 
in a solution represented by a habitat is called a suitability index 
variable (SIV), while the goodness of a habitat is measured by the 
habitat suitability index (HSI). Habitats with a high HSI can sup-
port more species, whereas low HSI habitats support only a few 
species. Poor habitats can improve their HSI by accepting new 
features from more attractive habitats in the evolution process.

In BBO, there are two main operators: migration and 
mutation. The migration operator is a probabilistic operator 
that can randomly modify SIVs based on the immigration 
rate λi and emigration rate µi. Both λi and µi are functions of 
the number of species in the ith habitat (Hi). In the original 
BBO algorithm, for mathematical convenience, µi and λi are 
assumed to be linear with the same maximum values, which 
means that the immigration rate λi and emigration rate µi are 
linear functions of the number of species. The linear migration 
model for the ith habitat (Hi) can be calculated as
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E n n
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=
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where E is the maximum possible emigration rate, I is the 
maximum possible immigration rate, ni is the number of spe-
cies in the ith habitat, and n is the maximum number of spe-
cies. The complete process of BBO is given in Algorithm 1.

Algorithm 1. Main procedure of BBO

1 Begin

2 Initialize the population Pop with N habitats randomly

3 Evaluate the fitness (HSI) for each Habitat in Pop

4 while (criteria of termination not satisfied)

5 Map the HSI to the number of species count S for each habitat

6 Calculate the immigration rate and emigration rate according  
to migration model

7 Modify habitats with the migration operator (algorithm 2)

8 Mutate habitats with mutation operator (algorithm 3)

9 End While

10 End

In BBO, the migration operator is a probabilistic operator 
that is used to randomly adjust each habitat Hi by sharing fea-
tures among them. The probability that Hi is modified is pro-
portional to its immigration rate λi, while the probability that 
the source of the modification comes from Hj is proportional to 
the emigration rate µj. The migration equation is expressed as

	 Hi(SIV) = Hj(SIV)	 (2.2)

where Hi(SIV) denotes the feature (SIV) of the ith habitat Hi.
As Simon stated, the migration operator merely migrates 

SIVs from one solution to another and does not involve 
reproduction of “children”.29 The migration operator algo-
rithm process is shown in Algorithm 2.
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Algorithm 2. Migration operator

1 Begin

2 For i = 1 to N

3 If rand (0,1) , λi

4 Hi is selected

5 End If

6 For j = 1 to N

7 If rand (0,1) , µj

8 Hi(SIV) = Hj (SIV)

9 End If

10 End For

11 End For

12 End

Cataclysmic events can cause a species count to differ from 
its equilibrium value, thereby suddenly changing a habitat’s HSI. 
We model this sudden operation in BBO as mutation. The SIVs 
of the ith habitat Hi can be randomly modified by the muta-
tion operator according to the habitat’s priori probability Pi. The 
mutation probability mi of the ith habitat Hi is expressed as

	
m m P Pi i= −max max*( / )1 	 (2.3)

where mmax is a user-defined parameter and Pmax = max(Pi), 
i = 1, 2. N. In the BBO mutation operator, an SIV in each 
habitat is randomly replaced by a new feature, randomly and 
probabilistically generated in the entire solution space, which 
tends to increase population diversity. The process of mutation 
operator is given in Algorithm 3.

Algorithm 3. Mutation operator

1 Begin

2 For i = 1 to N

3 Use µ to compute the probability Pi

4 If rand (0, 1) , Pi

5 Hi is selected

6 Hi(SIV) = Random Value generated within the 
search space

7 End if

9 End for

10 End

Proposed Method
Habitat representation. In BBO, each solution is repre-

sented as habitat. 

	 X X X X i Ni i i
d

i
n= ( ) ∀ ≤ ≥1 1, , , ,  … … 	 (3.1.1)

where N is the number of habitats.
In the initialization state, first put the gap in our given 

MSA randomly. The initial solution is given in Figure 1.

Binary encoding scheme: In the encoding scheme, put 
1 in the position of gap and put 0 in the position of protein 
sequences. Figure 2 shows an encoding of initial solution.

After that, we are taking decimal value of this binary 
encoded value from bottom to top of each column. Hence, 
habitat representation of this solution is X1 = (1, 0, 0, 8, 2, 4)  
and the number of columns in the MSA is equal to the number 
of features in the habitat. Now in this manner, we can gener-
ate 100 number of solutions putting gap in MSA. Hence, we 
can find 100 habitats in initialization.

Fitness function. The sum of pair is used to measure fit-
ness of MSAs. Here, each column in an alignment is scored 
by summing the product of the scores of each pair of symbols. 
The score of the entire alignment is then summed over all col-
umn scores by using (3.2.1) and (3.2.2).
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 where Cost( 	 (3.2.1)

Here, W is the cost of MSAs. P is the length (columns) of 
the alignment, Wi is the cost of the ith column of length P, N 
is the number of sequences, Cost(Al, Ak) is the alignment score 
between two aligned sequences Al and Ak. When Al ≠ “_” and 
Ak ≠ “_”, then Cost(Al, Ak) is determined from the percentage of 
acceptable mutations matrix. Also when Al = “_” and Ak = “_” 
then Cost(Al, Ak) = 0. Finally, the cost function Cost(Al, Ak) 
includes the sum of the substitution costs of the insertion/ 
deletions when Al = “_” and Ak ≠ “_” or Al ≠ “_” and Ak = “_” using 
a model with affine gap penalties as shown in (Eq. 3.2.2).

	 Z Q Ar= + .	 (3.2.2)

Here, Z is the gap penalty, Q is the cost of opening a gap, 
r is the cost of extending the gap, and A is the number of the 
gap. In this paper, gap penalties (gap opening penalty is −5 
and the gap extension penalty is −0.40).

New solution generation. In this process, two types of 
operators are used, one is migration and the other is mutation. To 
improve the solution, low HSI solution accepts the species from the 
high HSI solution. The entire process is called as migration.

Migration. Migration is used to diversify the solution 
space or to explore the solution search space, whereas mutation 
intensifies the solution search space. In each iteration, we are 
applying migration and mutation operators to the habitats. In 
the migration process, we share the feature of high HSI habitat 

C  G A _ G T 

A  T G T C _ 

T  G T T _ T 
_  C C A T C  

Figure 1. Initial solution.
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to low HSI to improve the solution quality. This operator is 
very effective, and the resultant habitat is much more different 
from the actual habitat. We chose two habitats according to 
immigration and emigration rates. Afterward, one index was 
chosen randomly in emigration habitat, and this SIV/element 
goes to the same position of immigration habitat. This process 
is presented in Figure 3.

Mutation. This operator is not much more effective, and 
the difference between actual habitat and resultant habitat 
is very less. This operator is not frequent and intensifies the 
solution of search space. In this operator, one habitat is chosen 
based on mutation probability. Afterward, one index is cho-
sen randomly of this habitat, and put one new SIV/element 
between 0 and 2N (where N is the total number of sequences in 
MSA) in place of this element. The graphical representation of 
this process is shown in Figure 4.

Algorithm 4. Main procedure of IBBOMSA

1 Begin

2 Initialize the population with N habitats randomly

3 Evaluate the fitness (HSI) for each Habitat in initial 
population

4 While (termination criteria are not satisfied)

5 Map the HSI to the number of species count S for each 
habitat

6 Calculate the immigration rate and emigration rate using 
a migration model

8 Modify habitats with the improved migration operator 
(algorithm 2)

9 Mutate habitats (algorithm 3)

11 End While

12 End

Habitat 

0 0 0 1 0 0 

0 0 0 0 0 1 

0 0 0 0 1 0 

1 0 0 0 0 0  

1 0 0 8 2 4 

Figure 2. Encoding scheme.

12345 94678

94378

Emigration habitat Immigration habitat

Figure 3. Graphical representation of migration process.

Algorithm 5. Improved migration operator

1 Begin

2 For I = 1 to N

3 If rand (0,1) , λi

4 Hi is selected

5 End If

6 For j = 1 to N

7 Generate two different integers p1 and p2 in 
{1, N}

8 If rand (0,1) , µj

9 Hj is selected

10 Hi(SIV) = Hj(SIV) - F * (Hp1 (SIV) + Hp2 (SIV))

11 End If

12 End For

13 End For

14 End

Algorithm 6. Mutation operator

1 Begin

2 For I = 1 to N

3 Use µ to compute the probability Pi

4 If rand (0,1) , Pi

5 Hi is selected

6 Hi(SIV) = Random Value generated within 
the search space

7 End if

9 End for

10 End

Test Dataset
We have tested a large number of datasets from Bali base 
benchmark database to check the quality of our approach. 
Bali base version 1.030 contains 142 reference alignments, 
which keeps more than 1000sequences. Bali base version 2.031 
is an extended version of Bali base version 1.0. Bali base ver
sion 2.0 contains 167 reference alignments, which keeps more  
than 2100sequences. Bali base version 2.0 contains eight 
reference sets. Each reference set keeps different types of 
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sequences. Reference set 1 contains a small number of equi
distance sequences. Reference set 2 contains totally different or 
unrelated sequence. Reference set 3 contains a pair of divergent 
subfamilies. Reference set 4 contains long terminal extension 
sequence. Reference set 5 contains large internal insertions and 
deletions. Finally, reference sets 6–8 contain test case problems 

where the sequences are repeated and the domains are inverted. 
Bali score is a score that measures the quality of algorithm. Bali 
score compares between manual alignment sequence (which is 
available on Bali base version 2.0) and alignment (which comes 
from some existence method). Range of Bali score is 0–1. If the 
manual alignment file and our output file are the same, then the 
score is 1. If the manual alignment file and our output file are 
totally different, then the score is 0. It gives the value between 
0 and 1 according to similarity between Bali base manually 
alignment file and our output file.

Experimental Analyses
In this section, first, we compare IBBOMSA with the recently 
proposed MSA algorithms based on evolutionary algorithms, 
including VDGA,23 GAPAM,22 and MOMSA24 to prove 
its dominance. After that, we also compare the performance 
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Figure 4. Graphical representation of mutation process.
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of IBBOMSA with many well-liked aligners. In this paper, 
IBBOMSA is coded in C language and implemented in the 
personal computer in Linux platform.

Effect of improved operator in BBO. The BBO 
algorithm was invented for immigration and emigration of spe-
cies between habitats in multidimensional search space. Each 
habitat represents a solution. In traditional BBO, migration 
features of good solution appear in poor solution as a new 
feature while still remaining in good solution. Since this fea-
ture may exist in several number of solutions, this may increase 
the exploitation capability and decrease the diversity of search 
space. An improved migration with in updated feature appears 
in poor solution, where updated features come from our pro-
posed migration operator. We used one scaling function for 
maintaining the exploration (diversity) and exploitation capa-
bility. But we have to use this scaling function in a proper way 
to maintain diversity and exploitation capability. If F = 0, it is 

similar to traditional BBO. Hence if F = 0, diversity of search 
space is decreasing and exploitation capability is decreasing. If 
F = 1, diversity of search space is increasing and exploitation 
capability is increasing. For maintaining these two things, we 
have taken F = 0.5. To analyze the effect of this proposed opera-
tor on the algorithms performance, we have designed five set of 
experiments. In this set, GAPAM, VDGA, BBO, MOMSA, 
and improved BBO were run. We measure the fitness of each 
habitat according to fitness function, which is given in “Fitness  
function” section. We have used eight BAliBASE datasets for 
these experiments (4 from each of reference sets 1 and 2, which 
are illustrated in Figs. 5 and 6, respectively).

Experimental results and analysis. Comparison of 
IBBOMSA with MOMSA, VDGA, and GAPAM. In 
order to examine the performance of our proposed method, 
IBBOMSA, we compare with well-known existence methods 
such as VDGA,23 GAPAM,22 and MOMSA,24 which are 
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Table 1. Result of IBBOMSA, MOMSA-W, VDGA, and GAPAM on Bali base reference set 1.

name Seq number Seq length GAPAM22 VDGA23 MOMSA24 IBBOMSA

1idy 50 58 0.5650 0.5730 0.2154 0.5745

1tvxA 4 69 0.3160 0.2670 0.0526 0.4234

1uky 4 220 0.4020 0.4490 0.5148 0.5879

kinase 5 276 0.4870 0.5450 0.8496 0.7834

1ped 3 374 0.4980 0.4820 0.7389 0.8269

2myr 4 474 0.3170 0.3590 0.4372 0.4678

1ycc 4 116 0.8450 0.7550 0.9345 0.8269

3cyr 4 109 0.9110 0.8210 0.8154 0.8934

1ad2 4 213 0.9560 0.9410 0.9562 0.9279

1ldg 4 675 0.9630 0.9060 0.9886 0.8256

1fieA 4 442 0.9630 0.9300 0.9820 0.9852

1sesA 5 63 0.9820 0.9620 0.9583 0.9929

1krn 5 82 0.9600 0.9600 1.0000 0.9286

2fxb 5 63 0.9700 0.9780 0.9357 0.9798

1amk 5 258 0.9980 0.9840 0.9947 0.9456

1ar5A 4 203 0.9740 0.9380 0.9604 0.9238

1 gpb 5 828 0.9830 0.9840 0.9862 0.9889

1taq 5 928 0.9450 0.9590 0.9477 0.9125

Avg. score – – 0.7797 0.7662 0.7926 0.8219
 

Table 2. Result of IBBOMSA, MOMSA-W, VDGA, and GAPAM on Bali base reference set 2.

name Seq number Seq length GAPAM22 VDGA23 MOMSA24 IBBOMSA

1aboA 15 80 0.7960 0.6910 0.8398 0.8425

1idy 19 60 0.9890 0.9920 0.9743 0.9270

1csy 19 99 0.7640 0.8850 0.8536 0.8576

1r69 20 76 0.9650 0.8340 0.9450 0.9789

1tvxA 16 69 0.9200 0.9740 0.9365 0.9819

1tgxA 19 71 0.8780 0.8780 0.9522 0.9628

1ubi 15 60 0.7670 0.7780 0.9211 0.8967

1wit 20 106 0.8510 0.8150 0.9203 0.9119

2trx 18 94 0.9860 0.9860 0.9863 0.9468

1sbp 16 262 0.7650 0.7720 0.8808 0.9226

1havA 26 242 0.8790 0.8460 0.8969 0.8997

1uky 23 225 0.8080 0.8910 0.9404 0.9525

2hsdA 20 255 0.7960 0.8290 0.9192 0.9249

2pia 16 294 0.8280 0.8500 0.9733 0.9345

3grs 15 237 0.7460 0.7510 0.8492 0.8719

kinase 18 287 0.7990 0.8880 0.9397 0.9452

1ajsA 18 389 0.8990 0.9050 0.9015 0.9110

1cpt 15 434 0.8750 0.8120 0.8862 0.8943

1lvl 23 473 0.7810 0.8190 0.9462 0.9268

1pamA 18 511 0.8600 0.8630 0.9581 0.9719

1ped 18 388 0.9120 0.9470 0.9717 0.9779

2myr 17 482 0.8220 0.8300 0.9659 0.9618

4enl 17 440 0.8960 0.8890 0.9151 0.9201

Avg. score – – 0.8513 0.8576 0.9249 0.9270
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the best methods for MSA in recent time. We have taken a 
selected dataset from MOMSA for comparing our proposed 
method to other methods in an appropriate manner. The 
authors chose 56 test cases in Bali base 2.0, which contains 
18 test cases from reference set 1, 23 test cases from refer-
ence set 2, 11 test cases from reference set 3, and 2 test cases 
from reference sets 4 and 5, respectively. Calculation of fitness 
function of MSA is given in “Fitness function” section, and 
the fitness value of the corresponding MSA is calculated. 
IBBOMSA is performed 10 times, and the best of their results 
are recorded. Tables  1–5  show the results of IBBOMSA, 
MOMSA, VDGA, and GAPAM on Bali base reference sets 
1, 2, 3, 4, and 5, respectively.

Comparison of IBBOMSA with MOMSA. MOMSA was 
recently developed for MSA, which is based on multiobjec-
tive optimization. MOMSA method has the ability to develop 
more than one solution at a time. The authors of MOMSA 
have described related results with many of the alignment algo-
rithms. The proposed method, IBBOMSA, also has the ability 
to develop more than one solution at a time. For assessment of 
both algorithms, we have taken all the datasets of BAliBASE 

version 2.0 and 3.0. Tables 6 and 7 show average SP and TC 
scores obtained by these two algorithms based on every group of 
test cases of BAliBASE versions 2.0 and 3.0. The values of SP 
and TC scores obtained by MOMSA are reported in Ref. 24.  
From Table 2, we can say that the proposed IBBOMSA per-
formed better than in most of the cases in both terms, SP and 
TC scores, in BAliBASE version 2.0. From Table 7, we can 
also say that the proposed IBBOMSA outperforms in terms of 
SP and TC scores in BAliBASE version 3.0.

Comparison of IBBOMSA with the state-of-the-art alignment 
algorithms. In order to prove the accuracy of our proposed 
IBBOMSA algorithm, we compare the proposed method with 
some of the widely used alignment algorithms such as MSAP-
robs,30 Probalign,31 MAFFT,32 Procons,33 Clustal Omega,34 
T-Coffee,35 Kalign,36 MUSCLE,37 FSA,38 DIALIGN,39 
PRANK,40 and CLUSTALW.9 Table 4 shows the average TC 
scores of these algorithms on six subsets of BAliBASE 3.0. The 
data used in Table 8 are drawn from Ref. 24, except the data 
about IBBOMSA. The proposed IBBOMSA is the fourth 
best aligner in terms of accuracy. The top aligners are MSAP-
robs, which reach the highest SP and TC scores on almost all 

Table 3. Result of IBBOMSA, MOMSA-W, VDGA, and GAPAM on Bali base reference set 3.

name Seq number Seq length GAPAM22 VDGA23 MOMSA24 IBBOMSA

1idy 27 60 0.6010 0.5990 0.4600 0.6025

1r69 23 78 0.7090 0.7330 0.8784 0.8879

1ubi 22 97 0.3860 0.4140 0.6606 0.7107

1wit 19 102 0.7580 0.8730 0.8895 0.7935

1uky 24 220 0.4680 0.4810 0.6393 0.6634

kinase 23 287 0.8280 0.8900 0.8912 0.8345

1ajsA 28 396 0.3110 0.4530 0.5422 0.5754

1pamA 19 511 0.8350 0.7880 0.9236 0.8689

1ped 21 388 0.8130 0.8930 0.9131 0.9240

2myr 21 482 0.5130 0.6510 0.7278 0.7464

4enl 19 427 0.8000 0.8660 0.8158 0.8698

Avg score. – – 0.6383 0.6946 0.7583 0.7706
 

Table 5. Result of IBBOMSA, MOMSA-W, VDGA, and GAPAM on Bali base reference set 5.

name Seq number Seq length GAPAM22 VDGA22 MOMSA24 IBBOMSA

2cba 8 328 0.8520 0.8350 0.9875 0.8687

s51 15 301 0.8350 0.7430 0.9814 0.9829

Avg. score – – 0.8435 0.7890 0.9844 0.9258
 

Table 4. Result of IBBOMSA, MOMSA-W, VDGA, and GAPAM on Bali base reference set 4.

name Seq number Seq length GAPAM22 VDGA23 MOMSA24 IBBOMSA

1dynA 6 848 0.0330 0.0330 0.8000 0.8978

kinase2 18 468 0.3840 0.5420 1.0000 0.8426

Avg. score – – 0.2085 0.2875 0.9000 0.8702
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the subsets of BAliBASE version 3.0. The fastest method is 
Kalign2, and the slowest one is PRANK. IBBOMSA is the 
seventh best aligner in terms of time. It proves that the effort 
in improving the accuracy and running time for the proposed 
IBBOMSA method is successful.

Conclusions
In this paper, we have proposed an improved BBO algorithm for 
solving MSA. We design a new migration operator to maintain 

exploration and exploitation. However, we have to use scaling 
function carefully. We compared the new algorithm with the 
existing BBO algorithm. It shows that the new algorithm is 
superior to the existing BBO or at least competitive. To test 
our present approach, we considered a good number of bench-
mark datasets from Bali base 2.0, so as to cover all the test 
sets of MOMSA. Therefore, the corresponding Bali score of 
this solution was used to compare with other methods, as they 
used Bali score as their measure of the quality/accuracy of the 

Table 7. Alignment score comparison between MOMSA and IBBOMSA on the BAliBASE version 3.0

ALGORITHMS MOMSA-W (SP) MOMSA-W (TC) IBBOMSA (SP) IBBOMSA (TC)

BB11 (38) 0.496 0.379 0.543 0.396

BB12 (44) 0.848 0.814 0.869 0.879

BB2 (41) 0.784 0.362 0.798 0.342

BB3 (30) 0.694 0.371 0.793 0.396

BB4 (49) 0.763 0.534 0.742 0.523

BB5 (16) 0.683 0.418 0.692 0.498

Total (218) (mean & SD) 0.722 ± 0.183 0.500 ± 0.309 0.739 ± 0.2925 0.505 ± 0.436
 

Table 8. Average TC score of several algorithms on BAliBASE version 3.0.

Alignment 
algorithms

Average  
Score (218)

BB11  
(38)

BB12  
(44)

BB2  
(41)

BB3  
(30)

BB4 
(49)

BB5  
(16)

Total  
time(s)

MSAProbs 0.607 0.441 0.865 0.464 0.607 0.622 0.608 12382

Probalign 0.589 0.453 0.862 0.439 0.566 0.603 0.549 10095.2

MAFFT (auto) 0.588 0.439 0.831 0.45 0.581 0.605 0.591 1475.4

IBBOMSA 0.571 0.411 0.874 0.418 0.592 0.635 0.498 2472.6

Procons 0.558 0.417 0.855 0.406 0.544 0.532 0.573 13086.3

Clustal omeg 0.554 0.358 0.789 0.45 0.575 0.579 0.533 539.91

T-Coffee 0.551 0.41 0.848 0.402 0.491 0.545 0.587 81041.5

Kalign 0.501 0.365 0.79 0.36 0.476 0.504 0.435 21.88

MOMSA-W 0.500 0.379 0.814 0.362 0.371 0.534 0.418 110289

MUSCLE 0.475 0.318 0.804 0.35 0.409 0.45 0.46 789.57

MAFFT (default) 0.458 0.318 0.749 0.316 0.425 0.48 0.496 68.24

FSA 0.419 0.258 0.818 0.187 0.259 0.474 0.398 53648.1

Dialign 0.415 0.27 0.696 0.292 0.312 0.441 0.425 3977.44

PRANK 0.376 0.265 0.68 0.257 0.321 0.36 0.356 128355

CLUSTALW 0.374 0.223 0.712 0.22 0.272 0.396 0.308 766.47
 

Table 6. Alignment score comparison between MOMSA and IBBOMSA on the BAliBASE version 2.0.

ALGORITHMS MOMSA-W (SP) MOMSA-W (TC) IBBOMSA (SP) IBBOMSA (TC)

Ref1 (82) 0.844 0.771 0.892 0.774

Ref2 (23) 0.925 0.557 0.947 0.637

Ref3 (12) 0.766 0.488 0.802 0.442

Ref4 (12) 0.871 0.617 0.876 0.653

Ref5 (12) 0.936 0.802 0.948 0.812

Total (141) (mean & SD) 0.861 ± 0.181 0.893 ± 0.079 0.702 ± 0.305 0.663 ± 0.290
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MSA. The experimental results proved that the proposed BBO 
performed better for most of the test cases. Since the solution 
of the proposed method was not best for some test cases, but 
it is close to the best. The proposed method performed better 
than the others because of its improved migration operator to 
help maintain diversity of search space. After the experimental 
analysis, we can say that the proposed method can effectively 
solve an MSA problem.
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