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Abstract 

COVID-19 and the renin-angiotensin system (RAS) are linked by angiotensin-converting enzyme 2 (ACE2), a key 
enzyme in RAS that has been validated as a SARS-CoV-2 receptor. Functional ACE1/ACE2 gene polymorphisms may 
lead to the imbalance between ACE/ACE2 ratio and thus generating RAS imbalance that is associated with higher 
degrees of lung damage in ARDS that may contribute to the COVID-19 infection outcome. Herein, we investigated 
the role of RAS gene polymorphisms, ACE1 (A2350G) and ACE2 (G8790A) as risk predictors for susceptibility and sever-
ity of COVID-19 infection. A total of 129 included: negative controls without a history of COVID-19 infection (n = 50), 
positive controls with a history of COVID-19 infection who were not hospitalized (n = 35), and patients with severe 
COVID-19 infection who were hospitalized in the intensive care unit (n = 44). rs4343 of ACE and rs2285666 of ACE2 
were genotyped using PCR–RFLP method. Our results indicated that susceptibility to COVID-19 infection was associ-
ated with age, GG genotype of A2350G (Pa = 0.01; OR 4.7; 95% CI 1.4–15.1 and Pc = 0.040; OR 2.5; 95% CI 1.05–6.3) 
and GG genotype of G8790A (Pa = 0.044; OR 6.17; 95% CI 1.05–35.71 and Pc = 0.0001; OR 5.5; 95% CI 2.4–12.4). The G 
allele of A2350G (Pa = 0.21; OR 1.74; 95% CI 0.73–4.17 and Pc = 0.007; OR 2.1; 95% CI 1.2–3.5) and G allele of G8790A 
(Pa = 0.002; OR 4.26; 95% CI 1.7–10.65 and Pc = 0.0001; OR 4.7; 95% CI 2.4–9.2) were more frequent in ICU-admitted 
patients and positive control group. Also lung involvement due to COVID-19 infection was associated with age and 
the comorbidities such as diabetes. In conclusion, our findings support the association between the wild genotype 
(GG) of ACE2 and homozygote genotype (GG) of ACE1 and sensitivity to COVID-19 infection, but not its severity. How-
ever, confirmation of this hypothesis requires further studies with more participants.
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Introduction
Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) emerged in the Wuhan province of 
China in late 2019 and had soon spread vastly world-
wide. On March 11th 2020, the coronavirus disease-19 

(COVID-19) was announced as a global pandemic by 
the WHO. The highly contagious and pathogenic dis-
ease has led to about 4.5 million deaths worldwide ever 
since [1, 2]. Surprisingly the death rate is not evenly 
distributed throughout the world and variously affects 
ethnicities. SARS-CoV-2 is a single-stranded RNA beta-
coronavirus with a spike protein that can enter cells by 
binding to angiotensin-converting enzyme 2 (ACE2) 
as an approved receptor [3–5]. The spike (S) consists 
of a large ectodomain that includes a receptor-binding 
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subunit S1 and a membrane fusion subunit S2. The 
S1 subunit has a receptor-binding domain (RBD) that 
recognizes ACE2. Moreover, virus/receptor binding is 
a vital initial step in viral infection [5–7]. The renin-
angiotensin system (RAS) which has substantial role in 
many illnesses [8–10] is among the candidate targets 
both in the pathogenesis and in treatment of COVID-
19 [11]. RAS is best known for its play in regulating 
blood pressure and electrolyte balance, thereby control-
ling cardiovascular and renal function [12]. Results of 
meta-analyses are indicative of increased mortality risk 
in co-existence of cardiovascular diseases and COVID-
19 infection [13–15]. Clinical cohort studies advo-
cate the possible association of unbalanced RAS with 
lung fibrosis and acute respiratory distress syndrome 
(ARDS) [16, 17] seen in COVID-19 patients. Alongside, 
angiotensin-converting enzyme inhibitors (ACEIs) and 
angiotensin receptor blockers (ARBs) has been shown 
to have protective effects in patients with COVID-19 by 
establishing this balance [18–20].

RAS and COVID-19 are linked by ACE2 that SARS 
CoV-2 uses as the functional receptor for cell fusion and 
induction of infections in the respiratory system [21–23]. 
ACE2 is a key enzyme in RAS and is found on the sur-
face of lung alveolar epithelial cells, facilitating the entry 
of the SARS-CoV-2 [24]. ACE2 neutralizes the effects 
of Angiotensin II (Ang II) by turning it to the vasodila-
tor peptide Ang (1–7). Ang II is a potent vasoconstric-
tor peptide in RAS and the main product of the enzyme 
ACE-1, converting Ang-I to Ang-II. On the other hand, 
ACE2 converts the ACE substrate, Ang-I, to Angioten-
sin (1–9). ACE2 exerts opposite effects on ACE action by 
two different mechanisms [25–27].

The protective effects of ACE2 have been observed in 
various experimental models of acute lung failure that 
may contribute to COVID-19 treatment (7, 8). The vital 
role of ACE2 in COVID-19-induced lung injury has 
been repeatedly demonstrated [28]. COVID-19-induced 
inflammation begins with the binding of ectodomain S1 
of SARS-CoV-2 to ACE2. After membrane fusion and 
decline in ACE2 levels, metabolism of Ang II disrupts 
[29]. Elevated levels of Ang II stimulates the release of 
inflammatory cytokines and leads to local inflammation 
[30]. Pulmonary vascular inflammation leads to ACE1 
shedding phenomenon and an increase in its releases into 
the interstitium, which, in turn, exacerbates incline in 
Ang II generation and leukocyte infiltration [28, 31]. Fol-
lowing Ang II/ATR1 over-interactions, ROS production 
increases and as a result aggravates systemic inflamma-
tion in COVID-19 infection by increasing the production 
of inflammatory factors like tumor necrosis factor-alpha 
(TNF-a), Interleukin-6 (IL-6), and C-reactive protein 
(CRP) [32–34].

ACE2 is a polymorphic gene with about 140 single 
nucleotide polymorphism (SNP) loci determined on the 
human genome [35]. Many studies have identified vari-
ous SNPs on ACE2 that may be involved in COVID-19 
[36–38]. But only a handful of these options have been 
clinically tested; examples of these variants that have 
been recently studied are rs2106809 and rs2285666 [39, 
40]. Among the functional SNPs identified on the ACE2 
gene, G8790A (rs2285666) located on chromosome Xp22 
in intron 3 suggests that this variant may alter mRNA 
splicing and thus affect ACE2 gene expression [41]. Some 
genetic variants in the ACE2 can bring about variations 
in binding affinity of ACE-2 for SARS COV-2 RBD [42, 
43]. rs2285666 is one of these SNPs whose wild type 
enhances ACE2 production with a greater affinity for 
SARS-CoV-2 [44].

The other SNP studied in the present study, is A2350G 
(rs4343), a functional variant located on exon 17 of ACE1 
gene. Considering the effects of this polymorphism on 
the activity and serum level of the ACE-1 enzyme [45, 
46], it might be postulated that carriers of specific geno-
types of this variant may be more susceptible to COVID-
19 [45, 47].

In the present study we hypothesized the association 
between rs4343 and rs2285666 with susceptibility and 
severity of COVID-19. To the best of our knowledge, the 
link between ACE2 gene (G8790A) variants and COVID-
19 has not been studied yet in the Iranian population 
and the association between ACE1 gene (A2350G) and 
COVID-19 has not been studied in any ethnicity so far.

Materials and methods
Ethics statement and patients collection
This study was approved by the Research Ethics Com-
mittee of Shiraz University of Medical Sciences with the 
ethical code of IR.SUMS.REC.1399.293 and conducted 
under the ethical principles of the World Medical Associ-
ation (Helsinki Declaration). The study population in this 
case–control study comprises 129 cases which were clas-
sified into three groups: healthy controls with no history 
of COVID-19 infection to date, patients with a history 
of COVID-19 infection who were not hospitalized and 
patients who suffered severe COVID-19 and were hospi-
talized in the intensive care unit (ICU) of Shiraz Shahid 
Faghihi Hospital, the main referral center for manage-
ment of COVID-19 in Shiraz, Iran (Table 1).

Inclusion criteria of COVID-19 patients were as 
follows:

Diagnosis of COVID-19 was made based on patients’ 
clinical status as defined by World Health Organiza-
tion [2] and a positive PCR test [48]. The positive con-
trol group included individuals with a history of PCR 
confirmed Covid-19 infection with mild to moderate 
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symptoms. According to WHO definition for mild dis-
ease, patients with mild pulmonary or extra pulmonary 
symptoms, showing no hypoxia, did not require further 
workup and hospital admission and were categorized as 
non-ICU admitted group of patients.

Individuals with no clinical confirmation of the infec-
tion accompanied by a negative PCR test, were consid-
ered as the healthy control group.

Demographic information of participants such as age, 
sex, and underlying medical conditions and past medi-
cation history was collected (Table  1). Extent of lung 
involvement was evaluated and categorized as minimal, 
intermediate and severe in each patient based on High 
Resolution Computed Topography (HRCT) results [49].

DNA extraction and genotype determination
The blood samples were collected and DNAs were 
extracted from leukocytes of whole blood using a boiling 
method as described previously by Miller et al. [50]. DNA 
extraction efficiencies were assessed using NanoDrop®. 
The extracted DNAs were stored at -20 °C for polymerase 
chain reaction restriction fragment length polymorphism 
(PCR–RFLP) analysis. PCR amplification of G8790A and 
A2350G was performed using primers mentioned in 
Table 2 [51, 52]. PCR amplification/detection of G8790A 
was performed as described previously [53]. A total of 
50 ng genomic DNA was mixed with 1 pmol of each PCR 

primer in a total volume of 25 µl containing 12.5 µl Mas-
ter Mix (1X) (Ampliqon, Denmark). After PCR amplifi-
cation at a primer annealing temperature of 60  °C, the 
products (10  µl) were digested with 1 U of AluI (Fer-
mentas, Lithuania) at 37 °C for 16 h (Fig. 1). For A2350G 
genotyping, with a slight modification of a previously 
described protocol [45, 54], a total of 50  ng genomic 
DNA was mixed with 0.3 pmol of each PCR primer in a 
total volume of 20 µl containing 200 µM dNTPs, 2.5 mM 
MgCl2, and 0.3 mM of each primer and 1.25 U DNA Taq 
polymerase (Cinaclone, Iran). After initial denaturation 
at 96  °C for 5  min, PCR was carried out for 35 cycles, 
each one comprised of denaturation at 94  °C for 30  s, 
annealing at 60  °C for 30  s, and extension at 72  °C for 
30 s, with a final extension time of 10 min at 72 °C. PCR 
products (7  µl) were digested with 0.5 U of BstUI (Fer-
mentas, Lithuania) at 60 °C for 24 h. The digested prod-
ucts were run on a 3% agarose gel for 30 min at a 100 (v). 
G-allele was visualized as 122 bp and A-allele as 100-bp 
and 22-bp using a UV trans-illuminator (Fig. 2).

Statistical analysis
Data were analyzed using SPSS® 23.0 for Windows (SPSS 
Inc., Chicago, Illinois) software. Data are demonstrated 
as mean ± SD for quantitative variables and percentages 
for categorical parameters. Chi-Square test (χ2) was used 
for comparing categorical parameters between groups. 

Table 1  Demographic properties and co-morbidities of enrolled subjects and their relation with the possibility to COVID-19 infection

ICU, Intensive care unit; Pa, Adjusted P value; BMI, Body mass index

Variables Negative (N = 50) Positive (N = 35) ICU (N = 44) Total (N = 129) Pa (< 0.05)

Sex, n (%) 0.991

 Female 24 (48) 20 (57.15) 18 (41) 62 (48.1)

 Male 26 (52) 15 (42.85) 26 (59) 67 (51.9)

Age (years) 37.5 ± 14.5 39.5 ± 14.8 56.5 ± 15.5 0.008

BMI (kg/m2) 23.7 ± 4.9 24.7 ± 3.6 23.9 ± 2.0 0.433

Occupation (Health care person-
nel/Others), n (%)

22/28 (44/56) 18/17 (51.4/48.6) 13/31 (29.5/70.5) 0.216

Cardiovascular dx, n (%) 3 (6) 1 (2.85) 8 (18.18) 12 (9.3) 0.577

Diabetes, n (%) 1 (2) 1 (2.85) 1 (2.27) 3 (2.3) 0.304

Immunodeficiency dx, n (%) 2 (4) 1 (2.85) 1 (2.27) 4 (3.1) 0.845

Table 2  List of forward and reverse primers for PCR–RFLP of rs4343 and rs2285666 and their associated restriction enzymes and DNA 
fragments

TA, the temperature of annealing; bp, Base pair

Polymorphism Primer sequence (5′-3′) TA (°C) Restriction enzyme DNA fragment size (bp) References

A2350G (rs4343) F-CTG​ACG​AAT​GTG​ATG​GCC​GC
R-TTG​ATG​AGT​TCC​ACG​TAT​TTCG​

61 BstUI 60 °C/24 h 122/100/22 [52]

G8790A (rs2285666) F-TTC​TCC​CTG​CTC​CTA​TAC​TACCG​
R-TTC​ATT​CAT​GTC​CTT​GCC​CTTA​

60 Alu1 37 °C/16 h 817/589/228 [53]
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Hardy–Weinberg equilibrium (HWE) for the distribu-
tions of genotypes was estimated by chi-square (χ2) 
test. To estimate the association of genotypes and allele 
frequencies, and other variables with the possibility and 
severity of COVID-19 disease, we measured the odds 
ratio (OR) and the corresponding 95% confidence inter-
val (CI) by multiple logistic regression analyses. All tests 
were two-sided and P < 0.05 was considered statistically 
significant.

Results
Table  1 shows the demographic data of COVID-19 
patients and healthy controls. Among 129 participants 
in our study, 51.9% were men and 48.1% were women, 
showing a female to male ratio of approximately 1:1. In 
the negative control group, the mean age and BMI were 
37.5 ± 14.5  years and 23.7 ± 4.9  kg/m2 respectively. In 
the non-ICU admitted COVID-19 group mean age and 
BMI were 39.5 ± 14.8 years and 24.7 ± 3.6 kg/m2 respec-
tively. Mean age and BMI of the ICU-admitted group 
were 56.5 ± 15.5 years and 23.9 ± 2.0 kg/m2 respectively. 
Regarding susceptibility to COVID-19 infection, sex and 
comorbidities showed no significant difference between 
controls vs COVID-19 patients neither using chi-square 
test nor after applying logistic regression (P > 0.05). How-
ever, severity of the disease was associated with dia-
betes (P = 0.033). Using logistic regression, there was 
significant difference regarding age between controls and 
COVID-19 patients (P = 0.008). Severity of the infection 
was associated with age in ICU-admitted patients and 
severe lung involvement was significantly more observed 
in older patients (P = 0.0001).

Lung involvement was diagnosed in 31.4% of the total 
study group. 61.4% and 22.7% of the ICU patients were 
diagnosed with severe and intermediate lung involve-
ment based on HRCT records, respectively. Mortality 
rate was 21.7% (n = 28) among the patients. It is to note 
that all 28 patients were among the ones admitted to ICU.

Genotype and allele distribution of ACE1 and ACE2 
gene polymorphism are presented in Tables 3 and 4. As 
shown, for ACE1 gene, the individuals with GG and GA 
genotypes were more susceptible to COVID-19 disease 
compared to the AA genotype (Pa = 0.01; OR 4.7; 95% 
CI 1.4–15.1 and Pc = 0.04; OR 2.5; 95% CI 1.05–6.3). The 
GG genotype of G8790A was associated with susceptibil-
ity to COVID-19 infection (P = 0.044; OR 6.17; 95% CI 
1.05–35.71 and Pc = 0.0001; OR 5.5; 95% CI 2.4–12.4). 
The G allele of A2350G (Pa = 0.21; OR 1.74; 95% CI 0.73–
4.17 and Pc = 0.007; OR 2.1; 95% CI 1.2–3.5) and G allele 
of G8790A (Pa = 0.002; OR 4.26; 95% CI 1.7–10.65 and 
Pc = 0.0001; OR 4.7; 95% CI 2.4–9.2) were more frequent 
in ICU and positive control groups. No significant asso-
ciation was observed in the severity of lung involvement 

Fig. 1  Agarose gel electrophoresis of the PCR–RFLP products 
of ACE2 G8790A digested with AluI restriction enzyme. The GG 
genotype was recognized as a single band at 817 bp, the AA 
genotype as two bands at 589 and 228 bp and the GA genotype as 
three bands at 817, 589 and 228 bp

Fig. 2  Agarose gel electrophoresis of the PCR–RFLP products 
digested with BstUI restriction enzyme. The GG genotype was 
recognized as a single band at 122 bp, the AA genotype as 
two-bands at 100 and 22 bp and the AG genotype as three-bands at 
122, 100 and 22 bp
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due to COVID-19 disease and the outcome of the infec-
tion in the ICU-admitted group with different ACE 1 
and 2 genotypes and sex (P > 0.05). Notably, patients with 
GG/GG genotypes (ACE1 and ACE2) were significantly 
more prone to COVID-19 infection (P = 0.008; OR 5.0, 
95% CI 1.4–17.8).

As shown in Table  5, subgroup analysis revealed that 
GG genotype of ACE2 was associated with COVID-
19 both in female and male patients (P = 0.005, OR 5.2, 
95% CI 1.7–16.5 and P = 0.002, OR 5.8, 95% CI 1.8–18.6, 

respectively). However, neither of the genotypes were 
associated with disease severity in neither sex (P > 0.05).

Discussion
Results of our study indicated that the carriers of GG 
genotype of A2350G were significantly more prone 
to COVID-19. Regarding the ACE2 genetic variant, 
G8790A, our results advocate the association between 
GG genotype as well as its associated allele, the G allele, 
and the incidence of COVID-19.

Table 3  Genotype distribution in COVID-19 patients and healthy controls

Pa, adjusted P-value; Pc, P-value for Chi-Square test; OR, Odds ratio; CI, Confidence interval

SNP Subjects (n) Genotype frequencies (%) Pa OR; 95% CI Pc OR; 95% CI

GG GA AA

A2350G Negative control (n = 50) 8 (16) 20 (40) 22 (44) 0.010 4.7; 1.4–15.1 0.040 2.6; 1.1–6.3

Positive control (n = 35) 11 (31.5) 14 (40) 10 (28.5)

ICU-admitted patients (n = 44) 15 (34.1) 19 (43.2) 10 (22.7)

G8790A Negative control (n = 50) 24 (48) 19 (38) 7 (14) 0.044 6.2; 1.1–35.7 0.0001 5.5; 2.4–12.4

Positive control (n = 35) 28 (80) 6 (17.2) 1 (2.8)

ICU-admitted patients (n = 44) 38 (86.3) 5 (11.4) 1 (2.3)

Table 4  Allele frequencies in COVID-19 patients and healthy controls

Pa: adjusted P-value; Pc: P-value for Chi-Square test; OR: Odds ratio; CI: Confidence interval

SNP Subjects (n) Allele frequencies (%) Pa OR; 95% CI Pc OR; 95% CI

A G

A2350G Negative control (n = 50) 64 (64) 36 (36) 0.21 1.74; 0.73–4.17 0.007 2.1:1.2–3.5

Positive control (n = 35) 34 (48.6) 36 (51.4)

ICU patients (n = 44) 39 (44.3) 49 (55.7)

G8790A Negative control (n = 50) 33 (33) 67 (67) 0.002 4.26; 1.7–10.65 0.0001 4.7; 2.4–9.2

Positive control (n = 35) 8 (11.4) 62 (88.6)

ICU patients (n = 44) 7 (8) 81 (92)

Table 5  Genotype distribution in COVID-19 patients and healthy controls disaggregated by sex

P, P-value; OR, odds ratio; CI, confidence interval

SNP Sex Subjects (n) Genotype frequencies (%) P OR; 95% CI

AA GA GG

G8790A Female Non-COVID-19 (n = 24) 4 (17.7) 9 (37.5) 11 (45.8) 0.005 5.2; 1.7–16.5

COVID-19 (n = 38) 2 (5.3) 5 (13.1) 31 (81.6)

Male Non-COVID-19 (n = 26) 3 (11.5) 10 (38.5) 13 (50) 0.002 5.8; 1.8–18.6

COVID-19 (n = 41) 0 (0) 6 (14.6) 35 (85.4)

A2350G Female Non-COVID-19 (n = 24) 12 (50) 9 (37.5) 3 (12.5) 0.01 5.6; 1.4–22.3

COVID-19 (n = 38) 8 (21) 13 (34.2) 17 (44.7)

Male Non-COVID-19 (n = 26) 10 (38.5) 11 (42.3) 5 (19.2) 0.9 1.2; 0.35–4.0

COVID-19 (n = 41) 12 (29.2) 20 (48.8) 9 (22)
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ACE2, the entry receptor of SARS-CoV-2, is abun-
dantly expressed in the respiratory and cardiovascular 
systems such as airway cells, alveolar epithelial type II 
cells, and endothelial cells [55–58]. Increased SARS-
CoV-2/ACE2 binding, in addition to increased virus 
replication in target host cells, causes RAS imbalance 
[23, 41]. Binding of SARS-CoV-2 to ACE2 inhibits the 
high-affinity conversion of Ang II to Ang (1–7) by this 
enzyme [57, 59]. Past studies have shown that inhibi-
tion of ACE2, or ACE2 knockdown, significantly inten-
sifies lung damage and the secretion of inflammatory 
cytokines [60]. An imbalance between ACE and ACE2 
activity in favor of ACE activity is associated with gen-
erating RAS imbalance and higher degrees of lung 
damage in ARDS, which may be due to the reduction 
of pulmonary Ang-(1–7) levels and the elimination of 
its anti-inflammatory effects in the pulmonary system 
[61–64]. Increased AT1 receptor activity significantly 
worsens pulmonary function and edema that is associ-
ated with an increased in ACE activity and a decrease 
in ACE2 availability and the production of Ang-(1–7) 
[65, 66]. Ang- (1–7) regulates multiple intracellular 
signaling pathways and exhibits vasodilator, anti-pro-
liferative, anti-inflammatory, and anti-fibrotic effects by 
binding to the Mas receptor [57, 67, 68].

G8790A (rs2285666) another SNP investigated in our 
study, is located in an intronic position that can alter 
mRNA splicing and affect gene expression and protein 
level of ACE2 [41, 69]. An investigation of the relation-
ship between rs2285666 genotypes and circulating ACE2 
in T2DM patients showed that the AA genotype has 
maximum expression level compared to other genotypes 
[70]. As we have observed in our study the wild geno-
type [71] and the G allele were significantly associated 
with the prevalence and risk of SARS-CoV-2 infection, 
similar to the results reported in the Indian and Cauca-
sian populations [39, 72]. Moreover, in confirmation of 
previous studies, these variants did not affect the sever-
ity of the disease or the mortality rate of COVID-19 [73, 
74]. SARS-CoV-2 induces ACE2 deficiency by down-
regulation of ACE2, resulting in ACE1/ACE2 imbalance 
[75]. RAS imbalance at the level of the lung facilitates 
inflammatory and coagulation processes due to local 
Ang II overproduction and Ang-(1–7) deficiency [76, 
77]. On the other hand, SARS-CoV-2 has an intrinsically 
high affinity for ACE2 receptors, and a mild or moder-
ate ACE2 deficiency cannot play a protective role on 
host defense against viral invasion [78, 79]. As our results 
showed, age and the comorbidities such as diabetes that 
were previously reported to be associated with ACE2 
deficiency can exacerbate COVID-19 induced-ACE2 
deficiency and increase the severity and mortality rate of 
the disease [75].

Previous studies have shown that the G allele of ACE1 
A2350G SNP in the ACE1 gene is associated with higher 
ACE activity and its serum concentrations. Hence, it can 
be concluded that in COVID-19 this variant may lead to 
increased levels of Ang II and subsequent inflammation 
[47, 80, 81]. Activation of AT receptors by Ang II, in addi-
tion to increasing vasoconstriction, leads to endothelial 
damage and endovascular thrombosis with activation of 
the coagulation cascade [82–84], which is observed in 
COVID-19 patients [85, 86]. ACE and ACE2 have diver-
gent physiological functions. Because of the important 
role of RAS in the pathogenesis of cardiovascular, res-
piratory diseases and diabetes, cross-models of ACE and 
ACE2 genotypes may exacerbate COVID-19 by causing 
RAS imbalance through the increase in the increasing 
ACE/ACE2 ratio [87–91].

In our study, it was shown that gender was not sig-
nificantly associated with the severity and incidence of 
COVID-19 disease, while previous studies have shown 
that men are more likely to develop severe COVID-19 
disease., Also, similar to previous studies, our results 
showed the effect of age on the incidence and severity of 
COVID-19 disease [74, 92, 93].

As the study limitation, we should allude to the rela-
tively small sample size of the enrolled subjects. However, 
the results of our study, especially regarding the ACE1 
genetic variant, A2350G, which has not been studied in 
any other populations to date, may provide preliminary 
insights for further investigations in various ethnicities.

In conclusion, significant associations with COVID-19 
susceptibility were identified for A2350G and G8790A 
polymorphism. In this study, we identified the possi-
ble risk genotypes, wild genotype (GG) of ACE2 and 
homozygote genotype (GG) of ACE1, for COVID-19 
susceptibility. Meanwhile, neither of the variants of 
A2350G and G8790A were associated with the severity of 
COVID-19 in our study population. However, confirma-
tion of this hypothesis requires further studies with more 
participants.
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