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Predicting building types using 
OpenStreetMap
Kuldip Singh Atwal 1*, Taylor Anderson 1, Dieter Pfoser 1 & Andreas Züfle 2

Having accurate building information is paramount for a plethora of applications, including 
humanitarian efforts, city planning, scientific studies, and navigation systems. While volunteered 
geographic information from sources such as OpenStreetMap (OSM) has good building geometry 
coverage, descriptive attributes such as the type of a building are sparse. To fill this gap, this study 
proposes a supervised learning-based approach to provide meaningful, semantic information for OSM 
data without manual intervention. We present a basic demonstration of our approach that classifies 
buildings into either residential or non-residential types for three study areas: Fairfax County in 
Virginia (VA), Mecklenburg County in North Carolina (NC), and the City of Boulder in Colorado (CO). 
The model leverages (i) available OSM tags capturing non-spatial attributes, (ii) geometric and 
topological properties of the building footprints including adjacent types of roads, proximity to 
parking lots, and building size. The model is trained and tested using ground truth data available for 
the three study areas. The results show that our approach achieves high accuracy in predicting building 
types for the selected areas. Additionally, a trained model is transferable with high accuracy to other 
regions where ground truth data is unavailable. The OSM and data science community are invited to 
build upon our approach to further enrich the volunteered geographic information in an automated 
manner.

OpenStreetMap1 (OSM) is a community-driven effort to provide free and open access to global spatial data. 
Volunteered geographic information, which leverages local knowledge to map the geometries and attributes of 
both natural and urban features, is widely used for humanitarian  crises2,3, city  planning4, scientific  studies5,6, and 
navigation  systems7. For example, OSM building footprints as well as streets, roads, rivers, and basic community 
services have been used to support urban planning and land administration, especially in parts of the world with 
little traditional data  availability8.

For many locations, OSM geometries delineating streets, natural features, and building footprints are highly 
complete and accurate, often matching or overtaking traditional data sources such as the Central Intelligence 
Agency (CIA) World Factbook and United States Census Topologically Integrated Geographic Encoding and 
Referencing (TIGER)/Line  data9–12. However, even in the data rich locations, the semantic information that 
records the type and function of these features is very sparse such that the vast majority of features mapped have 
little to no descriptive attributes.

To illustrate this, Table 1 compares the number of residential and non-residential buildings in OSM (both the 
total number and buildings that are correctly classified) with the ground truth data. OSM correctly labels 12.84% 
of residential and 19.26% of non-residential buildings for Fairfax County, 9.33% of residential and 10.48% of 
non-residential buildings for Mecklenburg County, and 67.75% of residential and 42.23% of non-residential build-
ings for the City of Boulder. Note that the total number of labeled buildings and the number of correctly labeled 
buildings for each type are almost the same. Thus, despite the lack of completeness in building type information, 
the number of misclassified buildings is less than 1%.

Figure 1 further illustrates this by mapping the building footprints in Fairfax County and color coding their 
accuracy when compared with ground truth data. We observe that in most of the cases where OSM building 
type information is available, it is correct. However, for the vast majority of buildings, building type informa-
tion is unknown or unclear. The incomplete nature of the attribute data is a shortcoming that limits the useful-
ness of OSM data. Therefore, this study proposes a supervised learning approach to add meaningful, semantic 
information to OSM data without manual intervention. We present a basic demonstration of this approach to 
classify OSM building footprints by their type as either residential or non-residential. This particular semantic 
information is of limited availability at the building footprint level in, both, OSM and official datasets across the 
United States (US) and globally.
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First, we use existing high quality data available through OSM to derive geometric attributes for each build-
ing footprint (e.g., area, distance to roads, distance to parking lots, underlying land use) as well as available 
descriptive attributes in three study areas in the US, as follows: Fairfax County in Virginia, Mecklenburg County 
in North Carolina, and the City of Boulder in Colorado. Our choice of location has been dictated by available 
ground truth data and to provide a mix of urban, sub urban and rural areas. Next, based on existing and newly 
derived building footprint attributes, a set of models are trained to classify the building type using ground truth 
data obtained from official sources from each study area. Upon comparing to ground truth testing data, we show 
that our learned models yield high accuracy in all three locations. The learned models from each study area are 

Table 1.  Ground truth comparison with OSM data.

Study area Dataset Residential Non-residential Total

Fairfax

Ground truth 194,491 10,180 20,4671

OSM (total) 25,129 (12.92%) 2040 (20.03%) 27,160 (13.27%)

OSM (correct) 24,989 (12.84%) 1961 (19.26%) 26,950 (13.16%)

Mecklenburg

Ground truth 306,700 20,973 327,673

OSM (total) 28,874 (9.41%) 2625 (12.51%) 31,499 (9.61%)

OSM (correct) 28,640 (9.33%) 2200 (10.48%) 30,840 (9.41%)

Boulder

Ground truth 20,687 2382 23,069

OSM (total) 14,140 (68.35%) 1118 (46.93%) 15,258 (66.14%)

OSM (correct) 14,017 (67.75%) 1006 (42.23%) 15,023 (65.12%)

Figure 1.  Residential and non-residential building types based on OpenStreetMap data for Fairfax County, 
USA. Most building types are unknown due to OSM not having explicit information.
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then transferred to classify building types in alternative study areas. As we will show, this approach again yields 
high accuracy. The results demonstrate that our approach (1) exhibits high accuracy in regions where authori-
tative ground truth data is available to train the model, and (2) transfers to new regions for which no ground 
truth may be available for training. We note that this is just one application of our approach and thus invite the 
OSM and data science community to build upon it in order to enrich such volunteered geographic information 
without extensive manual efforts.

Results
Before the methodology, we first present the main findings of our approach. Figure 2 maps the prediction results 
for Fairfax County using our proposed supervised classification approach where ground truth data is used for 
both training and testing (80/20 random split, respectively). We observe that unlike using raw OSM data as shown 
in Fig. 1, all of the missing data have now been filled with predictions. We can observe visually that most of the 
building types are correctly classified. Our experiments show an overall accuracy of 98% (see “Experiments”), 
which is defined as the number of correctly classified buildings divided by the total number of buildings. This 
implies that only 2% of buildings have their type classified incorrectly. Our experiments also show that the trained 
model for Fairfax County transfers to other counties with high accuracy (96% when transferred to Mecklenburg 
County and 93% when transferred to City of Boulder), thus facilitating high-fidelity building type prediction 
for regions where no ground truth building type data is available. Complete details of the results for each study 
area are found in the “Experiments” section.

Methods
Recall that given the sparsity of the semantic information encoded in OSM building data, our objective is to 
predict the type of buildings based on data available in OSM. Below we describe (1) ground truth and OSM data 
acquisition for each of the study regions, (2) data processing, (3) feature extraction from OSM building footprints, 
and (4) building classification. For reproducibility, all our code is available at https:// github. com/ heyku ldip/ osm_ 
build ings_ class ifica tion and a repository of the data used is at https:// osf. io/ 3j46v/.

Figure 2.  Residential and non-residential building type based on our proposed model for Fairfax County, USA.

https://github.com/heykuldip/osm_buildings_classification
https://github.com/heykuldip/osm_buildings_classification
https://osf.io/3j46v/
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Data. We selected three study areas for which we were able to obtain ground truth data including Fairfax 
County, Mecklenburg County, and the City of Boulder. We included the City of Boulder to examine model dif-
ferences in a city versus suburban setting (see Table 2). While extremely useful, we note that official data map-
ping or defining building types is not publicly available for the vast majority of the counties in the US or other 
regions elsewhere.

We used  PyOsmium13 to extract building polygons from ways and relations elements of OSM. We extracted 
the building footprints based on whether the ‘building’ tag of OSM polygons have any values. This step is nec-
essary, as OSM include many spatial objects that are not buildings, such as bodies of waters, trees, roads, and 
intersections.

We downloaded the official building footprint data with associated building types from each administra-
tive unit’s spatial data portal. Ground truth data for Fairfax County was obtained  from14; ground truth data 
for Mecklenburg County was obtained  from15; and ground truth data for City of Boulder was obtained  from16.

Data preprocessing. Since our goal is to predict residential and non-residential building types, we first 
map a large number of heterogeneous building types in both OSM and the ground truth data (e.g. apartments, 
church, office) to these two classes. For OSM data, we aggregate building types based on the building tag values 
to create three meta-categories—residential, non-residential, and unknown (Table 3). We note that in OSM the 
unknown category is by far the most common, composed mostly of buildings with the tag value ‘yes’. This catego-
rization was used to compare the OSM raw data to the ground truth data to produce Fig. 1.

For the ground truth datasets for Fairfax County, Mecklenburg County, and City of Boulder, which we use to 
train and validate our models, we aggregate building types based on building tags to create two meta-categories—
residential and non-residential (Table 4). We exclude buildings for which no clear building type is provided or 
which are not clearly buildings, so as to not compromise our ground truth data (i.e. buildings labeled as build-
ing types ‘Mobile Home’, ‘Agricultural’, ‘Foundation/Ruin’, and ‘Misc’). This way, we excluded 2.24%, 0.35%, and 
32.33% of total buildings in the Fairfax, Mecklenburg, and Boulder official datasets, respectively.

To find the corresponding buildings in OSM and in the ground truth datasets, we perform a spatial join on 
the building polygons across the two datasets. Therefore, every building in OSM is mapped to the building in the 
ground truth data having the largest spatial intersection. Buildings in OSM that do not intersect any building in 
the ground truth data are removed from our study. For example, Fairfax County has 269,366 official buildings. 
A join between the official data and the OSM building footprint data results in 197,215 official buildings and 
204,672 OSM buildings. The difference can be explained whereby in some cases, many smaller buildings in OSM 
are contained by one official building. For each of these buildings, we now have both a rich source of data from 
OSM as well as the ground truth building type obtained from the official sources. In the data pre-processing step, 
we used the  Geopandas17 library for geospatial operations on our input data.

Table 2.  Characterization of the study areas.

Study area Type Population Area (sq mi)

Fairfax County Suburban 1,150,309 406

Mecklenburg County Suburban 1,115,482 546

City of Boulder Urban 108,250 27.366

Table 3.  OSM building type meta-categories for Fairfax, Mecklenburg, and City of Boulder.

Category Tag values

Residential residential, apartments, dormitory, house, semidetached_house

Non-residential public, commercial, industrial, school, church, office, retail, hotel, warehouse, kindergarten, civic, hospital

Unknown yes, detached, terrace, garage, roof, shed, parking, garages, greenhouse, static_caravan, service, construction, misc_build-
ings

Table 4.  Ground truth building type meta-categories for Fairfax, Mecklenburg, and City of Boulder.

Study area Residential Non-residential Not used

Fairfax Single Family Residential, Multi-Family Resi-
dential Commercial, Industrial, Public Mixed Use, Mobile Home, Multi Story Garage, Other

Mecklenburg Single-Family, Multi-Family, Condo/Townhome Commercial, Govt-Inst, Hotel/Motel, Office, Ware-
house Warehouse Lg, StadiumArena, Manufactured

Boulder Residential Commercial, Industrial, Public, Medical, Public Safety, 
Religious, School

Agricultural, Foundation/Ruin, Garage/Shed, Parking 
Structure, Tank, Misc
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Deriving features for classification. Geometric properties of building footprints and their spatial rela-
tionship to other features can be used to predict building  type18–20. Therefore, we enhance the sparse building 
attributes found in OSM data by deriving several new geometric attributes based on the shape and location of 
the building footprints. Below we describe the features, including proximity to roads, proximity to parking lots, 
building footprint area, intersection with land use, and existing tags, and how these features are obtained from 
OSM.

Proximity to roads. The road network is one of the most exhaustive features in OSM that has been used 
as an effective method for identifying residential  buildings21. We use a similar technique and extend it to predict 
both the residential and  non-residential class. While many buildings in OSM do not have an explicit building 
type tag, all road segments in OSM have tags (stored in the ‘highway’ tag of a road segment) indicating the 
specific road class (e.g., ‘residential’, ‘motorway’, or ‘service’). We hypothesise that this information is a useful 
predictor to classify the type of nearby buildings.

For this purpose, we enrich each building in OSM with multiple dichotomous indicator variables that dis-
criminate whether or not each building falls in range of four road meta-categories: (1) residential roads, (2) 
highways, (3) motorways, and (4) service roads. The OSM ‘highway’ tag defines the road types according to 
their types and capacities, varying from pathways to expressways. The road type tags in OSM map to our meta-
categories as follows: (1) Residential Roads: Using tag values ‘residential’ and ‘living_street’; (2) Highways: Using 
tag values ‘primary’, ‘secondary’ and ‘tertiary’; (3) Motorways: Using tag values ‘motorway’ and ‘trunk’; (4) Service 
roads: Using tag value ‘service’.

For each meta-category of roads, we add three indicator attributes to each building, where a value of 1 
indicates that the building is located in a 0–30 m, 0–60 m, and 0–90 m range of the road network and a value 
of 0 indicates that it is not. This yields a total of twelve indicator attributes for each building where indicators 0 
to 3 correspond to residential roads, 4 to 6 to highways, 7 to 9 to motorways, and 10 to 12 to service roads. For 
example, the indicator values [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1] indicate that a building falls within a 0–30 m radius 
of a residential road (indicated by the first indicator variable) and thus, also in a 0–60 m and 0–90 m radius 
(indicated by the second and third indicator variable). The building is not in range of any highways or motor-
ways. However, the building falls within 0–90 m distance of a service road (indicated by variables twelve), but 
not within 0–30 m or 0–60 m.

To efficiently compute the indicator variables for each building, we create corresponding buffers (of 0–30 
m, 0–60 m, and 0–90 m) around each road in OSM. Then, we perform a spatial join between these buffers and 
the polygons of the buildings in OSM. For each intersection, depending on the ‘highway’ tag of the road, the 
corresponding indicator variable (using the mapping above) is set to 1.

Proximity to parking lots. We hypothesize that distance from parking lots of various sizes can be used 
to predict building type. For example, we would expect that as parking lot size increases, the likelihood that the 
building is a non-residential building would also increase. We extract the parking lot geometries from the OSM 
data using the ‘amenity’ tag having a value of either ‘parking’ or ‘parking_space’. We first examine the distribution 
of parking lot size across the study region and create three classes of parking lots based on the natural breaks of 
the parking lot size distribution using the Fisher-Jenks  algorithm22.

Next, we enrich each building in OSM with parking lot indicator variables that indicate whether or not each 
building falls in a 30 m, 60 m, or 90 m range of three parking lot categories: (1) small, (2) medium, and (3) large, 
yielding a total of nine additional indicator variables. To compute the parking lot indicator variables for each 
building, we create corresponding buffers around the parking lots. We then perform a spatial join between these 
buffers and the polygons of the buildings in OSM.

Building footprint size. The size of a building footprint can a key predictor of building  type23. Therefore, 
in addition to the road network and parking lot buffers, we compute the area based on the building footprint 
geometry and use the area as another (ratio-scaled) feature for our decision tree model.

Intersection with land use. OSM data includes the geometries and descriptive attributes for different 
underlying land use upon which the buildings are located. This data may explicitly contain information on the 
use of the land that the buildings are built on, thus providing insight into the use of the building  itself24. There-
fore, we extracted polygons having the ‘landuse’ tag in the OSM data and spatially joined them with the building 
footprints, resulting in another feature for our machine learning model.

OSM building tags. In addition to geometry, each building has a set of associated tags, which describe 
features using pairs of unique keys and corresponding values. Besides the above derived features, we utilized 
the tags from the OSM data that we deemed relevant for accurately categorizing the buildings. The tags are: 
‘building’, ‘name’, ‘source’, ‘addr:street’, ‘building:levels’, ‘shop’, ‘website’, ‘brand’, and ‘amenity’. With the exception 
of the ‘building’ tag, each of the tags themselves are treated as a binary indicator variable where buildings have a 
value of 0 if they do not have a tag and 1 if they do. For the ‘building’ tag, we utilize the tag value rather than the 
presence or absence of the tag itself and encode each of the values as a nominal indicator variable. Since there 
are theoretically an infinite number of building tag values, we select the most common values, namely the val-
ues ‘apartments’, ‘church’, ‘civic’, ‘commercial’, ‘construction’, ‘detached’, ‘dormitory’, ‘garage’, ‘garages’, ‘greenhouse’, 
‘hospital’, ‘hotel’, ‘house’, ‘industrial’, ‘kindergarten’, ‘office’, ‘parking’, ‘public’, ‘residential’, ‘retail’, ‘roof ’, ‘school’, 
‘semidetached_house’, ‘service’, ‘shed’, ‘static_caravan’, ‘terrace’, ‘warehouse’, and ‘yes’. We create a separate nomi-
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nal variable called ‘miscellaneous’ that includes all the remaining unique building values across the three study 
areas.

In general, we manually selected these tags based on their relevance to distinguish building types while mak-
ing sure that the model is capable of transfer learning independently of any geographic area. For example, if a 
building contains a website address, it seems more likely to be classified as ‘non-residential’. It is worth noting, 
however, that our model is flexible to handle any tags available in the OSM raw data, the hand-picked tags are a 
proof-of-the-concept of our proposal.

Decision tree classification. Using the features described in the previous sections, we use a classic C4.5 
binary decision tree  classifier25 to recursively find the attributes that yield the highest information gain to con-
struct the decision tree. To train the decision tree, we use the authoritative ground truth building type obtained 
from the respective counties and city. Our choice of using a decision tree for classification was made due to it’s 
interpretability, allowing us to understand where and why classification errors are made to guide our search for 
discriminatory features to separate the residential and non-residential classes. To parameterize our decision tree, 
we use Gini-index26 which is commonly used as a measure of impurity between classes. We prune the decision 
tree when no additional decision criterion increases the impurity of a node by no more than 0.01%.

Experiments
Qualitative analysis of the decision tree model. Figure 3 shows the resulting decision tree for Fairfax 
County, using a 80% random sample of all buildings having a total of 171,872 building out of which 16,272 are 
non-residential and 155,600 are residential. This decision tree has a total of 148 nodes including 72 leaf nodes. 
Note that the root of the tree starts by using the area of the building, indicating that it is the most discriminating 
feature. This result confirms existing work, which has shown that the size of the building footprint area is an 
important predictor of a building  type23. Specifically, the decision-tree first checks whether the area of the build-
ing is less than 1319.7 square meters. Given that there is a larger proportion of residential buildings in the group 
with the small building footprints (10,174 non-residential and 154,003 residential buildings), the decision-tree 
learns that smaller buildings tend to be residential. In contrast, given that there is a larger proportion of non-
residential buildings in the group with the larger building footprints (6098 non-residential and 1597 residential 
buildings), the decision-tree learns that larger buildings tend to be non-residential.

Figure 3.  The full decision tree for Fairfax County. Each node specifies the purity of a node measured using 
the Gini coefficient, the number of buildings (samples) in the node, and the corresponding distribution of types 
(non-residential, residential). Internal (decision) nodes also specify the attribute which is used to split the node. 
The color of a node corresponds to class distribution of a node, having mostly non-residential nodes in red, 
and mostly residential nodes in blue. A high resolution electronic version of this image (to allow zooming and 
scrolling) can be found in our Github repository at https:// github. com/ heyku ldip/ osm_ build ings_ class ifica tion.

https://github.com/heykuldip/osm_buildings_classification
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In both resulting branches, the decision tree then checks the ‘landuse’ tag, confirming our intuition that the 
type of land use is a useful predictor of the type of a building. But it is nowhere near sufficient to classify the 
type of all buildings. The decision tree learns that buildings that are (1) smaller than 1319.7m2 and (2) are of 
residential land use tend towards residential buildings (8186 non-residential and 153,963 residential buildings). 
However, in the case that buildings are (1) smaller than 1319.7m2 and (2) are of non-residential land use tend 
to be non-residential buildings (1988 non-residential and 40 residential buildings). In fact, for this branch, the 
decision tree concludes that other attributes no longer provide sufficient reduction of impurity (as measured by 
Gini index) of this node, thus that this node is a leaf node, thus predicting all such buildings as non-residential.

Other branches are longer, up to a length of 17. An important branch of this tree is the branch in which the 
decision tree learns that buildings that are (1) small, (2) of non-residential land use, (3) are not within a 60 m 
range of Category 1 (residential) roads, (4) do not have a building name, (5) do not have ‘misc’ land use, (6) are 
not within a 60 range of a Category 4 (service) road, (7) are not have the value ‘miscellaneous’ in the ‘building’ 
tag, (8) does not have the value ‘commercial’ in the building tag, (9) does not have the value ‘amenity’ in the 
building tag, and (10) does not have the value ‘office’ in the building tag tend towards residential buildings (710 
non-residential and 121,496 residential buildings). Based on the Gini index, the decision tree decides this node to 
be a leaf node, thus classifying such buildings as non-residential buildings. The interested reader may refer to the 
high resolution complete decision tree in our Github repository at https:// github. com/ heyku ldip/ osm_ build ings_ 
class ifica tion for Fairfax County to understand which attributes and their values guide this decision tree model.

Evaluation metrics. To quantitatively evaluate our model, we first measure the accuracy of the classifica-
tion, defined as the fraction of correctly classified building types across all buildings. However, some of the study 
regions such as Fairfax County have a class imbalance, where the number of residential buildings far outweigh 
the number of non-residential buildings (194,491 residential versus 10,180 non-residential, see Table  1). Due 
to this class imbalance, using only accuracy as a measure can be misleading, as a naive approach that classifies 
all buildings as residential would already have an accuracy of 194,491

194,491+10,180
= 0.9503 . We additionally want to 

understand how well our model is able to predict non-residential buildings. For this purpose, we compute three 
measures that capture the ability of the models to predict the two classes (residential and non-residential):

1. The precision of a class, defined as the number of buildings correctly predicted as that class divided by the 
total number of buildings predicted as that class. Intuitively, the precision of class corresponds to the prob-
ability that a building that is predicted to have class X actually has class X.

2. The recall of a class, defined as the number of buildings correctly predicted as that class divide by the total 
number of buildings in that class (in the ground truth). Intuitively, the recall of a class corresponds to the 
probability that a building have class X is correctly classified as class X.

3. The F1-score of a class, which is the harmonic mean of precision and recall of a class.

Building type prediction results. Recall that in the “Results” section, we presented the high level results 
for one of the models that was trained and tested on Fairfax County as an example. Here we describe the results 
for Fairfax County and the other two study regions in detail. Table 5 shows prediction results for each of the 
three models that were trained and tested on the authoritative ground truth data. To evaluate each model, we 
use 80% of buildings (chosen uniformly at random) as the training set for which to build the decision tree, and 
the remaining 20% of buildings as the test set. Table 5 shows our evaluation metrics and Fig.  2 shows the results 
for Fairfax County. All remaining maps presenting the prediction results can be found in the Supplemental 
Materials.

We observe that Fairfax County has the highest accuracy at 98.02% followed by Mecklenburg County ( 96.96% ) 
and City of Boulder ( 96.73% ). However, by looking at precision and recall for individual classes, we observe that 
the high accuracy for Fairfax County is attributed to the high precision and recall ( 99.0% ) for the residential 
class. This comes at a cost for the non-residential class, having a precision of 81.22% and implying that almost 
20% of buildings predicted as non-residential are predicted incorrectly. We also observe a recall of only 79.84% , 
meaning that more than one in five non-residential buildings are incorrectly predicted as residential buildings. 
For City of Boulder, where the overall accuracy is lower than for Fairfax County, we see that the non-residential 
class is classified more accurately, indicated by higher precision and recall values. Summarizing, we observe 
that our model is very accurate at predicting residential buildings, evident by an F1-score of nearly 99% for the 

Table 5.  Prediction results.

Study area Class Precision Recall F1-score Accuracy Avg F1-score

Fairfax
Non-residential 0.8122 0.7851 0.7984

0.9802 0.8940
Residential 0.9887 0.9905 0.9896

Mecklenburg
Non-residential 0.8081 0.6981 0.7491

0.9696 0.8664
Residential 0.9792 0.9885 0.9838

Boulder
Non-residential 0.8571 0.8233 0.8399

0.9673 0.9108
Residential 0.9795 0.9840 0.9818

https://github.com/heykuldip/osm_buildings_classification
https://github.com/heykuldip/osm_buildings_classification
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residential class. However, our model does make more errors predicting the non-residential class, evident by F1
-score between 74.91 and 83.99% across the three study regions for the non-residential class.

Transfer learning results. Our study was motivated by the fact that it is hard to find descriptive attributes 
(such as building type) in both, official and OSM data  sources27,28. This type of data is commonly used for a 
variety of applications ranging from geospatial modeling and analysis and urban planning applications. To this 
end, we designed our pre-trained classification model so that it can be applied to any study area, requiring only 
OSM data as an input. To demonstrate the effectiveness of the pre-trained model, we tested each of the three 
models (trained on all data available for the respective study region) on the alternative study areas. The result of 
the transfer learning experiments (that transfer the model trained on one region to another region) are presented 
in Table 6. The transfer learning results for the model trained on Fairfax and tested on Mecklenburg County are 
presented in Fig. 4. All remaining maps presenting transfer learning results can be found in the Supplemental 
Materials.

Overall, we observe that transferring models reduces their accuracy and F1-scores. While the Fairfax model 
had an accuracy of 0.9802 (Table 6), the accuracy drops to 0.9645 and 0.9253 when applied to Mecklenburg 
County and City of Boulder, respectively. Despite the drop in accuracy, it is a very promising result, showing 
that for Mecklenburg County, more than 96% of buildings are classified correctly. Thus, even if no authoritative 
ground truth data was available in Mecklenburg County (as is the case for most regions in the US and across the 
world), our model learned in Fairfax County and applied to Mecklenburg County still yields very good building 
type classification results.

Looking at precision and recall for individual classes, we observe that the predictions for the residential class 
are still very good, with F1-scores of 0.9812 and 0.9581 for Mecklenburg County and City of Boulder, respec-
tively. It is a particularly important result for urban planning applications that require an accurate estimation of 
the residential buildings. However, precision and recall further drop for the non-residential class, having values 
between 0.5929 and 0.7704 for the models trained in Fairfax County and Mecklenburg County. For the model 
trained for the City of Boulder, the results of transferring the model to Fairfax and Mecklenburg County are 

Figure 4.  Residential and non-residential building type based on transfer learning model for Fairfax County 
transferred to Mecklenburg County.
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substantially worse. We mainly attribute this bad performance to the small size of the City of Boulder dataset, 
having an order of magnitude fewer buildings (see Table 1). Due to the much lower number of buildings, the 
model is not able to generalize as well as the Fairfax and Mecklenburg County models. Summarizing, we see 
that the rules learned by the decision tree models trained in Fairfax County and Mecklenburg county generalize 
well and can be applied to high accuracy to other counties. It implies that our model can be used to obtain high 
accuracy building type maps for any county or city—at least in the United States.

Ablation study results. Our proposed solution combines multiple building features extracted from OSM, 
including user-specified tags, land use polygons, area of building footprints, and distance distance from roads 
and parking lots. In the following experiment, we aim at understanding which of these features has the high-
est predictive power to classify building types. For this purpose, we evaluate the results by iteratively turning 
individual features on. Table 7 shows the results of this experiment. We first run a baseline experiment which 
only uses the ‘building’ tag information and builds a decision tree only based on the values of this tag. For this 
straightforward model, we observe an overall accuracy of 0.9595, which is high. However, we observe that this 
high accuracy is mainly a result of simply classifying all buildings as residential. This is evident by the low recall 
of as low as 0.1471 in Mecklenburg county of the non-residential class, indicating that more than 85% of non-
residential buildings in Mecklenburg County are incorrectly classified as residential based on ‘building’ tags only. 
A measure that treats the two classes equally despite their imbalance, is the average F1 score, only 0.6098 for 
Mecklenburg County in this experiment, which is only slightly higher than a uniformly random choice (flipping 
a coin for each building) that would have an average F1-score of 0.5.

In the next experiment, we increase the complexity of the decision tree model by adding other selected tags 
(such as ‘name’, and ‘website’—see our “Methods” section under paragraph OSM Building Tags) to train the 
decision tree. We observe that this feature significantly increases all metrics, in particular for the non-residential 
class, which confirms out intuition that the presence of additional tags helps to identify non-residential build-
ings. Adding landuse information further increases all metrics, confirming our hypothesis that in cases where 
no building information is available, the landuse information of the land the building is built is useful as a proxy. 
We then observe that adding the footprint area (in square meters) of a building does not substantially increase 
the overall accuracy, but it does increase the average F1-score by allowing to identify more non-residential build-
ings. Looking at our decision tree in Fig. 3, we observe that the model learns that very large buildings (larger 
than 1319.7 m 2 ) are mostly non-residential, which appears to be an intuitive rule learned by the decision tree. 
Finally, we also include information on the distance to roads and parking lots (as described in the “Methods” 
section) to obtain our full model, which yields a very high boost in all metrics.

Comparison with other classification methods. We chose decision trees as our classification method 
due to their interpretability. Yet, an open question is whether other classification algorithms may perform better 
and thus, have a higher accuracy and F1 score in classifying building types. To answer this question, we compared 
the decision tree classifier with k-nearest neighbors  classification29 having k = 10 , naive bayes  classification30 
assuming Gaussian distributed conditional distributions, random  forest31, support vector  machines32, and a sin-
gle layer  perceptron33 as a representative of a neural network model. Results for the comparisons are presented in 
Table 8. The results show that for our use-case of building type classification decision trees, in addition to being 
easily interpretable, yield results comparable to other classification paradigms.

Related work
Several studies have been conducted to address the OSM buildings classification problem. While some of 
the studies are specifically done for building footprints enrichment by complementing OSM with additional 
data  sources19,20,23,27, others use the classified buildings for tasks such as population  estimation34, medical 
 interventions35, and semantic  maps36. An urban morphology analysis-based approach is proposed for building 
types estimation that derives the correlations among geometries of the building footprints and their types, and 

Table 6.  Transfer learning results.

Training dataset Test dataset Class Precision Recall F1-score Accuracy Avg F1-score

Fairfax

Mecklenburg
Non-residential 0.8005 0.5929 0.6812

0.9645 0.8312
Residential 0.9726 0.9899 0.9812

Boulder
Non-residential 0.6235 0.6982 0.6587

0.9253 0.8084
Residential 0.9648 0.9515 0.9581

Mecklenburg

Fairfax
Non-residential 0.6236 0.7375 0.6758

0.9648 0.8286
Residential 0.9861 0.9767 0.9814

Boulder
Non-residential 0.6046 0.7704 0.6775

0.9243 0.8173
Residential 0.9727 0.9420 0.9571

Boulder

Fairfax
Non-residential 0.4125 0.7838 0.5406

0.9337 0.7524
Residential 0.9881 0.9416 0.9643

Mecklenburg
Non-residential 0.5026 0.7651 0.6067

0.9365 0.7861
Residential 0.9833 0.9482 0.9655
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a set of rules are established to classify OSM buildings into six  categories18. Furthermore, the morphological 
analysis presented in this work also validated the hypotheses that buildings share attributes, such as type, if their 
footprints are similar geometrically and are closely located. Our model combines these geospatial characteristics 
with other contextual features, such as proximity to roads and parking lots, to learn the building types in an 
automated way, addressing the scalability and rigidness challenges of the rule-based technique while achieving 
accuracy of 0.9802% compared to 0.8577 % of this model. The building classification problem is also addressed 

Table 7.  Ablation study results.

Experiment Study area Class Precision Recall F1-score Accuracy Avg F1-score

‘building’ tag only

Fairfax
Non-residential 0.9595 0.2062 0.3394

0.9595 0.6593
Residential 0.9595 0.9995 0.9791

Mecklenburg
Non-residential 0.8218 0.1471 0.2496

0.9425 0.6098
Residential 0.9439 0.9978 0.9701

Boulder
Non-residential 0.9375 0.4582 0.6156

0.9391 0.7913
Residential 0.9392 0.9964 0.9669

‘building’ tag and selected tags

Fairfax
Non-residential 0.8596 0.3774 0.5245

0.9661 0.7535
Residential 0.9685 0.9968 0.9824

Mecklenburg
Non-residential 0.8545 0.2475 0.3838

0.9502 0.6789
Residential 0.9520 0.9972 0.9741

Boulder
Non-residential 0.8781 0.5806 0.6990

0.9476 0.8351
Residential 0.9527 0.9906 0.9713

‘building’ tag, selected tags, and landuse polygons

Fairfax
Non-residential 0.9145 0.5150 0.6590

0.9740 0.8227
Residential 0.9757 0.9975 0.9865

Mecklenburg
Non-residential 0.9160 0.4397 0.5942

0.9620 0.7871
Residential 0.9635 0.9973 0.9801

Boulder
Non-residential 0.8712 0.6543 0.7474

0.9534 0.8608
Residential 0.9605 0.9886 0.9743

‘building’ tag, selected tags, landuse polygons, and footprint area

Fairfax
Non-residential 0.8040 0.6989 0.7478

0.9765 0.8677
Residential 0.9843 0.9911 0.9877

Mecklenburg
Non-residential 0.8237 0.6130 0.7029

0.9664 0.8425
Residential 0.9736 0.9909 0.9822

Boulder
Non-residential 0.8093 0.7925 0.8008

0.9588 0.8889
Residential 0.9759 0.9782 0.9770

‘building’ tag, selected tags, landuse polygons, footprint area, and distance to 
roads and parkings lots

Fairfax
Non-residential 0.8122 0.7851 0.7984

0.9802 0.8940
Residential 0.9887 0.9905 0.9896

Mecklenburg
Non-residential 0.8081 0.6981 0.7491

0.9696 0.8664
Residential 0.9792 0.9885 0.9838

Boulder
Non-residential 0.8571 0.8233 0.8399

0.9673 0.9108
Residential 0.9795 0.9840 0.9818

Table 8.  Comparison of decision tree with other models using Fairfax data.

Model Class Precision Recall F1-score Accuracy Avg F1-score

Decision tree
Non-residential 0.8122 0.7851 0.7984

0.9802 0.8940
Residential 0.9887 0.9905 0.9896

K-nearest neighbors
Non-residential 0.7824 0.4092 0.5374

0.9645 0.7594
Residential 0.9694 0.9940 0.9815

Gaussian naive Bayes
Non-residential 0.7506 0.6421 0.6921

0.9720 0.8387
Residential 0.9817 0.9890 0.9853

Random forest
Non-residential 0.8410 0.6994 0.7637

0.9791 0.8764
Residential 0.9849 0.9933 0.9891

Support vector machine (SVM)
Non-residential 0.9293 0.6433 0.7603

0.9799 0.8749
Residential 0.9817 0.9975 0.9895

Linear perceptron classifier
Non-residential 0.7388 0.5967 0.6602

0.9701 0.8225
Residential 0.9795 0.9892 0.9843



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19976  | https://doi.org/10.1038/s41598-022-24263-w

www.nature.com/scientificreports/

in the public health domain using the attributes of buildings’  structures37. However, the lack of comparative 
results with authoritative ground truth data limits the practical usability of this model.

Machine learning approaches are successfully employed to extract building footprints from satellite and 
aerial  images38,39 and classify buildings from remote sensing  imagery40–43, Google Earth  images44, and light 
detection and ranging (LiDAR)  data45,46. Semantic analysis is also coupled with the random forest method 
to classify urban buildings from images into finer  categories47,48. A natural language processing (NLP)-based 
approach is used to classify point-of-interest (POI), land use, and roads data extracted from Baidu Maps that 
can infer building  types49. Similar methods are used for correcting OSM building  annotations50, street labels 
 predictions51, autonomous robot  navigation52, 3D building  models53, and land cover  classification54,55. However, 
these approaches either use region-specific or proprietary datasets that are hard to obtain for applying the models 
in different places. Our model relies only on the OSM features, eliminating the bottleneck of unavailability or 
incompatibility of additional data for certain regions. Therefore, the novelty of our approach lies in incorporat-
ing geometric, topological, and non-spatial features including distance to surrounding roads of different types, 
distance to parking lots of different sizes, underlying land use, the area of a building polygon, and a wide variety 
of user-generated OSM tags.

Discussion
Previous work shows that attributes such as shape and area are effective for building  classification18. Our hypoth-
esis is that by combining multiple attributes derived from OSM data, we can improve the quality of such a clas-
sification. Thus, we extracted various spatial and non-spatial features of buildings with surroundings and trained 
a decision tree classier to interpret the generated rules. We corroborated the effectiveness of our approach by 
applying our model to Fairfax County, Mecklenburg County, and City of Boulder, and comparing the results with 
corresponding ground truth data. An important outcome of this study is that our model transfers, thus allowing 
to apply a model learned in one region to a different region, while maintaining high accuracy. Specifically, we 
observe that a model learned using data from Fairfax County achieves an accuracy of 96.4% when applied to 
buildings in Mecklenburg County. This result indicates that the models learned in the three regions for which 
building type data is publicly available can be used for other regions where no authoritative ground truth data 
is available.

Our analysis shows that although OSM building footprints coverage is extensive, the geometries are still 
incomplete, observed in cases where building footprints exist in authoritative data sources but not in OSM data. 
For example, the ground truth data we used from Fairfax County Geographic Information System (GIS) and 
Mapping Services has 269,366 buildings, but OSM data for the same region includes only 204,672 buildings, 
which means  24% of buildings are still missing in OSM. Other studies also highlight the incompleteness of OSM 
buildings compared to authoritative data  sources56–58. Furthermore, it remains unclear how well our proposed 
building type classification model transfers to regions and cities outside of the United States. As OSM data is 
available globally, and tags of buildings, road types, and parking lots are available globally, we theorize that our 
models should be applicable globally. But further studies using regions outside the United States is needed.

Conclusion
The lack of standards for OSM user attribute tags and values results in sparse and heterogeneous attribute 
information, limiting the usage of otherwise rich and accurate OSM data for a variety of applications. Using the 
approach developed in this work, we can enrich existing OSM data and achieve complete and highly accurate 
semantic information for such data. Specifically, we designed a supervised learning model that uses OSM raw 
data to predict building types as residential or non-residential. Our solution for classifying building types broadly 
using OSM data has applications in systems that use OSM data, for example for semantic  mapping59. By enriching 
OSM data with accurate building types, our model improves the input data for such applications.

For this work, we chose decision trees to allow for easy interpretability of the resulting classification mod-
els. Future work may investigate whether more sophisticated classification methods, including deep learning 
 models60, may further improve building type prediction. Additionally, we formulated the classification of build-
ings as a two-class problem and predicted the labels according to their functionality. It could limit the usefulness 
of our approach, especially for the non-residential class, which can be further classified as commercial, industrial, 
public, etc. As a future line of research, we are interested in extending this work to a multi-class classification 
problem. We hope that the OSM and data science communities will support this automated enrichment effort and 
increase the value and usefulness of volunteered geographic information. There is a lot of ‘intrinsic’ information 
in OSM that is waiting to be uncovered!

Data availability
Data are available from OSF at https:// osf. io/ 3j46v/.

Code availability
The code is available in a GitHub repository at https:// github. com/ heyku ldip/ osm_ build ings_ class ifica tion.
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