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The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2), has created an urgent global situation.

Therefore, it is necessary to identify the differentially expressed genes (DEGs)

in COVID-19 patients to understand disease pathogenesis and the genetic

factor(s) responsible for inter-individual variability and disease comorbidities.

The pandemic continues to spread worldwide, despite intense efforts

to develop multiple vaccines and therapeutic options against COVID-19.

However, the precise role of SARS-CoV-2 in the pathophysiology of

the nasopharyngeal tract (NT) is still unfathomable. This study utilized

machine learning approaches to analyze 22 RNA-seq data from COVID-19

patients (n = 8), recovered individuals (n = 7), and healthy individuals (n = 7) to

find disease-related differentially expressed genes (DEGs). We compared
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dysregulated DEGs to detect critical pathways and gene ontology (GO)

connected to COVID-19 comorbidities. We found 1960 and 153 DEG

signatures in COVID-19 patients and recovered individuals compared to

healthy controls. In COVID-19 patients, the DEG–miRNA, and DEG–

transcription factors (TFs) interactions network analysis revealed that E2F1,

MAX, EGR1, YY1, and SRF were the highly expressed TFs, whereas hsa-miR-

19b, hsa-miR-495, hsa-miR-340, hsa-miR-101, and hsa-miR-19a were the

overexpressed miRNAs. Three chemical agents (Valproic Acid, Alfatoxin B1,

and Cyclosporine) were abundant in COVID-19 patients and recovered

individuals. Mental retardation, mental deficit, intellectual disability, muscle

hypotonia, micrognathism, and cleft palate were the significant diseases

associated with COVID-19 by sharing DEGs. Finally, the detected DEGs

mediated by TFs and miRNA expression indicated that SARS-CoV-2 infection

might contribute to various comorbidities. Our results provide the common

DEGs between COVID-19 patients and recovered humans, which suggests

some crucial insights into the complex interplay between COVID-19

progression and the recovery stage, and offer some suggestions on

therapeutic target identification in COVID-19 caused by the SARS-CoV-2.
KEYWORDS

SARS-CoV-2, functional enrichment, gene regulatory networks, therapeutic targets,
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Introduction

In late December 2019, a novel respiratory disease, now popularly

termed “COVID-19”, caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China (1–3).

Immediately after its first outbreak in China, this fearsome virus

has emerged as one of the deadliest human pathogens (4, 5). As of

June 22, 2022, COVID-19 disease affected 217 countries and

territories, and more than 545 million cases have been confirmed

around the globe, with more than 6.3 million deaths (6). Due to its

worldwide spread and severity, the World Health Organization

(WHO) has declared the disease a public health emergency of

international concern (7–9). In the early stage of the outbreak, the

spectrum of clinical manifestations of COVID-19 ranges from the

common cold to respiratory failure depending on the demography

and environment (2, 7, 10). However, recent data show that the

clinical episodes of COVID-19 may range from asymptomatic

infection to critical illness, with a dysregulated inflammatory

response to infection a hallmark of severe cases (11) and life-

threatening multiorgan failure (10, 12–14). In most cases (~80%),

patients exhibit mild symptoms, while the remaining ∼20% may

develop severe lung injury and death from respiratory failure (15–17).

Some of the clinically infected patients may suffer from acute

respiratory distress syndrome (ARDS) and multiple organ failures,

requiring intensive care unit (ICU) facilities for life support and
02
medication (16). Risk factors for severe SARS-CoV-2 include age,

smoking status, ethnicity, and male sex (13, 18). Notably, the

persistence and prognosis of COVID-19 are greatly influenced by

the patients’ underlying health conditions and age (12, 19). With no

effective antiviral treatment and slow vaccine rollout, COVID-19

continues to threaten public health worldwide seriously (20).

Despite increasing global threats of COVID-19, the host

immune response against SARS-CoV-2 infection remains poorly

understood, and the perturbations result in a severe outcome

(15, 21). The nasal epithelium is a portal for initial infection and

transmission of the SARS-CoV-2 (7). SARS-CoV-2 employs

ACE2 (Angiotensin-converting enzyme 2) as a receptor for

cellular entry (22, 23), and the binding affinity of the S protein

and ACE2 was found to be a major determinant of SARS-CoV-2

replication rate and disease severity (21, 24). After the entrance

into the susceptible host, SARS-CoV-2 infects cells of the

respiratory epithelium and mucous membranes, such as those

of the nose or eyes (22, 25). The host immune response to SARS-

CoV-2 infection involves activation of both cellular and humoral

arms. The innate immune system recognizes the SARS-CoV-2

RNAs through three major classes of cytoplasmic pattern

recognition receptors: Toll-like receptors (TLRs), RIG-I-like

receptors (RLRs), and NOD-like receptors (NLRs) (21, 26).

This response involves the release of interferons (IFNs) and

inflammatory cytokines, including the IL-1 family, IL-6, and
frontiersin.org

https://doi.org/10.3389/fimmu.2022.918692
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hoque et al. 10.3389/fimmu.2022.918692
TNF, that activates a local and systemic response to infection

(7, 21). This inflammatory response cascade involves the

recruitment, activation, and differentiation of innate and

adaptive immune cells, including neutrophils, inflammatory

myeloid cells, CD8 T cells, and natural killer (NK) cells (15).

The infection resolution largely depends on the cytotoxic activity

of CD8 T cells and NK cells, which enable the clearance of virus-

infected cells (7, 21). It is believed that dysregulated host

immune response leads to the persistence of virus-infected

cells and may facilitate a hyper-inflammatory state termed

Macrophage (MF) activation syndrome (MAS) or “cytokine

storm”, and ultimately damage the infected lung (15, 21, 27).

However, the underlying molecular mechanisms of the aberrant

inflammatory responses in serology and histopathology under

SARS-CoV-2 infection are still not clear.

The ongoing pandemic of SARS-CoV-2 and lack of

comprehensive knowledge regarding the progression of

COVID-19 has constrained our ability to develop effective

treatments for infected patients. One way to understand the

host response to SARS-CoV2 is to examine gene expression in

relevant tissues. Until now, a scant amount of gene expression

profiles are available from patients with COVID-19 and have

yielded some insights into the pathogenic processes triggered by

infection with SARS-CoV-2 (15, 21, 28). Transcriptomic analyses

of cells upon viral infections are extremely useful for identifying

the host immune response dynamics and gene regulatory

networks (15, 29). However, because of the limited number of

samples and preliminary analysis, a full picture of the physical

state of SARS-CoV-2 affected tissues has not emerged. To address

this, we have employed RNA-seq techniques to investigate the

upper airway (nasopharyngeal tract) gene expression profile in 22

specimens of COVID-19 patients (n = 8), COVID-19 recovered (n

= 7) and healthy (n = 7) individuals using several orthogonal

bioinformatic tools to provide a complete view of the nature of the

COVID-19 inflammatory response and the potential points of

therapeutic intervention. Through DEG analyses in these datasets,

we identified several genes coding for translational activities (e. g.

RPL4, RPS4X, RPL19, RPS12, RPL19, EIF3E), ATP-synthesis

(MT-CYB, MT-ATP6), transcription factors (e. g. E2F1, MAX,

EGR1, YY1, SRF), hub-proteins (e. g. KIAA0355, DCUN1D3,

FEM1C, ARHGEF12, THBS1), and mi-RNA (e. g. hsa-miR-19b,

hsa-miR-495, hsa-miR-340, hsa-miR-101, and hsa-miR-19a)

evidencing a sustained inflammation and cytokine storm in the

COVID-19 patients.
Materials and methods

Ethical statement and consent of
participants

his study was conducted following Bangladesh’s Director-

General of Health Services (DGHS) guidelines. The protocol
Frontiers in Immunology 03
for a sample collection from COVID-19 recovered, and

healthy humans, sample processing, transport, and RNA

extraction was approved by the National Institute of

Laboratory Medicine and Referral Center of Bangladesh. The

study participants provided written informed consent

consistent with the experiment.
Study subject and sample collection

COVID-19 diagnosis, laboratory testing, and treatment in

this cohort have been previously described (30). Patients with

confirmed COVID-19 were classified as having mild/moderate

(MM) or severe/critical (SC) disease based on symptomatology

(22). We recruited seven recovered COVID-19 patients (post-

hospital discharge) from this cohort and seven healthy subjects

with no history of SARS-CoV-2 infection (negative control.

Twenty-two (N = 22) nasopharyngeal samples (including

COVID-19 = 8, recovered = 7, and healthy = 7) were collected

from Dhaka city of Bangladesh. Collected samples were

preserved at -20°C until further use for RNA extraction and

RT-qPCR assay. The RT-qPCR was performed for ORF1ab and

N genes of SARS-CoV-2 using a novel Coronavirus (2019-

nCoV) Nucleic Acid Diagnostic Kit (PCR-Fluorescence

Probing, Sansure Biotech Inc.) according to the manufacturer’s

instructions. Viral RNA was extracted using a Pure Link viral

RNA/DNA mini kit (Thermo Fisher Scientific, USA). Thermal

cycling was performed at 50°C for 30 min for reverse

transcription, followed by 95°C for 1 min, and then 45 cycles

of 95°C for 15 s, 60°C for 30 s on an Analytik-Jena qTOWER

instrument (Analytik Jena, Germany).
RNA sequencing

We utilized the total RNA-seq approach for this study.

According to the manufacturer’s instructions, the cDNA of all

22 samples was used to prepare paired-end libraries with the

Nextera DNA Flex library preparation kit (Illumina, Inc., San

Diego, CA). Paired-end (2 x 150 bp reads) sequencing of the

prepared library pool of the samples was performed using a

NextSeq high throughput kit with an Illumina NextSeq 550

sequencer at the Genomic Research Laboratory, Bangladesh

Council of Scientific and Industrial Research (BCSIR),

Dhaka, Bangladesh.
Overview of the proposed
bioinformatics pipelines

Network-based approaches are common to identify and

analyze the pathogenesis of SARS-CoV-2. Datasets required in

this work were constructed and collected at the initial phase and
frontiersin.org
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detailed in the following subsections. Gene expression analysis

was performed to identify the DEGs from each dataset

(Figure 1). Next, the common DEGs between two groups of

COVID-19 datasets were identified. These common DEGs were

further used to discover their protein-protein interactions (PPIs)

and to perform gene set enrichment analysis (GSEA) to identify

enriched cell signaling pathways and functional gene ontology

(GO) terms. Next, the same common DEGs were used to

discover three types of GRNs: DEGs–micro RNAs (miRNA)

network, DEGs–transcription factors (TFs) network, and TF-

miRNA network. Finally, protein-chemical compound and
Frontiers in Immunology 04
protein-drug interactions were also investigated for the

common DEGs (Figure 1).
Dataset preparation and analysis of
differentially expressed genes

To assess the DEGs of COVID-19 and their genetic

association with host cells, we collected and analyzed the

RNA-seq datasets from our lab experiment. In this study, we

prepared two datasets as COVID-19 positive patients versus
FIGURE 1

Schematic representations of the paths for differentially expressed genes (DEGs) analysis in RNA-seq data of the COVID-19 patients, recovered
humans, and healthy controls nasopharyngeal tract.
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COVID-19 recovered humans with the same healthy control

group for analytical purposes. We performed several statistical

operations on the datasets to determine the DEGs. Moreover, the

Benjamini–Hochberg false discovery rate method was used to

balance the discovery of statistically significant genes and the

limitation of false positives. The BioJupies generator (31) online

server (https://maayanlab.cloud/biojupies/) was used for RNA-

seq raw data analysis. In this study, genes with adjusted P-value

< 0.05 and absolute value of log2 fold-change ≥ 1 were

considered DEGs. Next, we compared two COVID-19 datasets

to determine the shared DEGs using the Venny v2.1 web tool

(32). In this article, we use the term combined DEGs’ to refer to

the collection of these two sets of DEGs, which have been used in

the downstream bioinformatics analyses.
Functional enrichment analysis

We utilized Enrichr (33) with Fisher’s exact test to conduct

the functional enrichment analysis with the combined DEGs.

After performing an overrepresentation analysis, a collection of

enriched cell signaling pathways and functional GO keywords

were discovered, revealing the biological importance of the

previously detected DEGs. In Enrichr analysis, we combined

the signaling pathways from two libraries, including KEGG

(Kyoto Encyclopedia of Genes and Genomes) and Reactome

(https://reactome.org/), to create a single route. Only the

important paths for which the P-value was less than 0.05 were

evaluated and considered after deleting duplicate pathways. For

functional GO annotations, we looked at the GO biological

process, GO molecular function, and GO cellular component

datasets in Enrichr and selected the most important GO terms

based on set criteria and with an adjusted P-value < 0.05.
Protein-protein interaction
network analysis

Protein-protein interaction (PPI) of the shared DEGs was

analyzed using the STRING database (34). We applied different

local- and global-based methods using the cytoHubba plugin in

Cytoscape v3.8.2 (35) to determine potential hubs within the PPI

network. While the local method ranked hubs based on the

relationship between the node and its direct neighbor, the global

method ranked hubs based on the interaction between the node

and the whole network. In total, five different methods were

considered, including three local rank methods, i.e., degree,

maximum neighborhood component (MNC), maximal clique

centrality (MCC), and two global rank methods, i.e., edge

percolated component (EPC) and betweenness. Next, we

compared the results and identified the common nodes as the

most potential hubs. Finally, the protein networks were analyzed

through Cytoscape v3.8.2.
Frontiers in Immunology 05
Differential gene regulatory
network analysis

The findings of DEG–miRNA, TF–DEG, and TF-miRNA

interaction networks are part of the GRN analysis. Using the

Network Analyst platform (36), the commonly dysregulated

genes were utilized to identify GRN networks. Discovering

DEG–miRNA interaction networks was accomplished through

the miRTarBase database (37). To identify the TF–DEG

interaction network, the JASPAR database (38) was used.

Employing TF-miRNA coregulatory network database, the TF-

miRNA interaction was analyzed. The networks were filtered

with a betweenness value of 100 and degree centrality of 0 to 10

to remove unnecessary information.
Protein–chemical compound analysis

Analyses of protein–chemical compounds can be used to

identify the chemical molecules responsible for the

interaction of proteins in comorbidities. For example, this

study found protein–chemical interactions using the enriched

gene (common DEGs) that COVID-19 patients developed

several digestive problems. Furthermore, using the

Comparative Toxicogenomics Database (39), we have

identified the protein–chemical interactions through

Network Analyst (36).
Protein–drug interaction network

One of the key goals of this study is to identify potential

therapeutic compounds that could effectively mitigate SARS-

CoV-2 pervasiveness. Using the shared DEGs, we constructed

the protein-drug interaction (PDI) network through the

Network Analyst v3.0 web server (36) in conjunction with the

DrugBank v5.0 database (https://go.drugbank.com/docs/

drugbank_v5.0.xsd). To aid the analysis, we downloaded the

network data and configured the data with Cytoscape

v3.8.2 (35).
Gene-disease association prediction

DisGeNET (https://www.uniprot.org/database/DB-0218) is

a standardized gene-disease association database that

incorporates correlations from various sources involving

various biological features of disorders (40). It emphasizes the

increasing understanding of human genetic illnesses. We

examined the gene-disease connection using a network

analyzer (36) to find diseases and chronic problems associated

with common DEGs.
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Results

Differentially expression and distribution
of DEGs

To elucidate whether differentially expressed genes (DEGs)

contribute to the SAR-CoV-2 inflammatory response and the

potential points of therapeutic intervention, we analyzed 22

RNA-seq data of nasopharyngeal epithelial tissue of COVID-

19 patients, recovered humans, and healthy controls. To perform

RNA-seq analysis, we retrieved datasets from the National

Center for Biotechnology Information (NCBI) that belonged

to previously published BioProject under accession number

PRJNA720904 (https://www.ncbi.nlm.nih.gov/bioproject). We

identified 1960 and 153 gene signatures in COVID-19 patients

and recovered human NT epithelial tissues, which were

differentially expressed compared with healthy controls. We

particularly focused on the dysregulation (up or down-

regulation) of the identified DEGs during SARS-CoV-2
Frontiers in Immunology 06
pathophysiology and its overlap with the recovered or healthy

states of the humans. The volcano plots in Figure 2 show the

DEGs for COVID-19 with the red dots. The number of shared

DEGs between COVID-19 and recovered datasets is presented in

the Venn diagrams (Figures 2C, D). Thirty-seven shared DEGs

were identified between COVID-19 patients and recovered

subjects. Of the detected DEGs, 1,510 (77.04%) genes were

upregulated (Up) during SARS-CoV-2 pathogenesis, of which

1,489 (98.61%) genes had a sole association with COVID-19

patients. Likewise, 90 (58.82%) genes were upregulated in

recovered humans, and of them, 69 (76.67%) genes had a sole

association with the recovery phage of SARS-CoV-2 infection

(Figure 2C). By comparing the upregulated genes between

COVID-19 patients and recovered individuals, we found that

21 genes (i.e., RPL4, MT-ND2, SCD5, MT-CYB, EZR) were

shared between the conditions (Figure 2C). On the other hand,

450 (22.96%) and 63 (41.18%) DEGs were downregulated

(Down) in COVID-19 patients and recovered subjects,

respectively, and of them, only 12 genes (i.e., MAFF,
A B

C D

FIGURE 2

Volcano plots showing dysregulated genes in (A) COVID-19 patients vs. healthy control and (B) recovered humans vs. healthy controls. The red
and blue dots indicate the expressions of the upregulated (Up) and down-regulated (Down) DEGs, respectively. Venn diagrams depict the
unique and shared DEGs (C) upregulated and (D) down-regulated under the given conditions.
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ARHGEF12, DCUN1D3, DR1, MT-CO1.) were found to be

shared between COVID-19 and recovered cases (Figure 2D).

The DEGs shared between COVID-19 positive and recovered

people and their relationships from the perspective of adjusted

P-value, and log2 fold-change is presented in the heatmaps,

respectively (Figures 3A, B). Finally, 33 common dysregulated

(Up or Down) genes were presented in a bubble plot to show

relationships with 10 log fold-change values (Figure 3C).
Functional enrichment analysis identifies
significant cell signaling pathways and
gene ontology

We used the Enrichr tool to conduct a functional

enrichment analysis on the DEGs to identify the signaling

pathways and functional GO keywords significantly enriched

with DEGs in the nasopharyngeal epithelial cells from COVID-

19 patients. The 33 shared DEGs were used to identify key

pathways and GOs that may be linked to COVID-19

comorbidities. We combined the KEGG and Reactome

pathway databases with Enrichr tools to create a single

pathway database. We looked at the pathways whose

significance was determined by the P-value and plotted the top

20 pathways for each condition (Figure 4). Consideration was

given to the paths having a higher logarithmic P-value. The most

significant pathways were the ribosome signaling pathway,

coronavirus signaling pathway, and c-type-lectin receptor

signaling pathway for KEGG analysis (Figure 4B) and forming

a pool of free 40S subunits 3-UTR-mediated translational

regulation, and eukaryotic translational initiation signaling

pathways for the Reactome database (Figure 4B).

We used the Enrichr tool to identify significantly enriched

cellular signaling pathways and functional GO terms (molecular

function, biological process, and cellular component) with DEGs

in the nasopharyngeal epithelial cells from COVID-19 patients.

The 33 shared DEGs were used to identify key pathways and

GOs that may be linked to COVID-19 comorbidities. We looked

at the pathways whose significance was determined by the

P-value (having a higher logarithmic P-value) and plotted the

top 20 pathways for each condition (Figure 4).

We further conducted GO functional enrichment analysis

using the same common DEGs. We employed the GO biological

process, the GO molecular function, and the GO cellular

component databases obtained from Enrichr libraries. The

significantly enriched GO terms were identified if the

enrichment yielded the adjusted P-value’s high logarithmic

value. The top 20 cellular signaling pathways in the COVID-

19 patient’s nasopharyngeal epithelial cells were selected in this

study (Figure 5) in relevance to the recovered phase. The most

significant GO pathways were the ceramide 1-phosphate transfer

activity, and ceramide 1-phosphate binding pathways for the

molecular functions (Figure 5A), database nuclear-transcribed
Frontiers in Immunology 07
mRNA catabolic process and regulation of epithelial cell

differentiation pathways for biological process (Figure 5B), and

membrane raft, and cytosolic sizeable ribosomal subunit

pathways for cellular component (Figure 5C).
Protein-protein interaction network
construction and interaction analysis

A Protein-protein interaction (PPI) network was built from

the common DEGs interactions, consisting of 24 nodes and 72

edges. The PPI network clustering highlighted RPL4, RPL18A,

EIF3E, EIF3D, RPS4X, RPL19, EIF3K, RPS12, MT-ND2, MT-

CO1, MT-ATP6, and MT-CYB with high interaction activity

(Figure 6). The proteins with several connecting edges can be

identified as hub proteins. Figure 7 shows the top 10 hub nodes

within the PPI network. As anticipated by five different methods

(i.e., maximum neighborhood component; MNC, betweenness,

degree, edge percolated component; EPC and maximal clique

centrality; MCC), we recognized eight hub-nodes as potential

hub-proteins (i.e., RPL4, RPS4X, RPL19, RPS12, RPL19, EIF3E,

MT-CYB, and MT-ATP6) (Figures 7A–E). Interestingly, these

eight hub proteins were common in all methods. Only RPS4X

was found from 4 methods except for betweenness (Figure 7B).

Conversely, the betweenness method predicted only three

proteins (i.e., SCD5, EZR, and RIMS1) from the shared DEGs

as hubs that were not found by other methods (Figure 7B).
GRN analysis identifies DEGs–miRNA and
transcription factor–gene interactions

The common DEGs between COVID-19 patients and

recovered humans were used in this study. The DEG–miRNA

interactions network is depicted in Figure 8A. The dysregulated

genes are shown by the circles in the picture, while the squares

represent the miRNAs. The association among different nodes of

DEGs and miRNA (circles or squares) is represented by different

lines linking them. Significant nodes are those in a network that

connect several edges because they are more crucial. Out of 21

miRNAs detected, hsa-let-7e-5p, hsa-mir-7977, hsa-mir-155-5p,

hsa-mir-186-5p, and hsa-mir-1827 were the most expressed

miRNAs and had a stronger association with DEGs

(Figure 8A). Likewise, among the DEGs, DMD, AHDC1,

BAG4, EMP2, TIMM50, RPL7L1, and THBS1 were more

significant since these DEGs have a higher degree (number of

connecting edges) than the others and miRNAs (Figure 8A). We

further studied the interactions between TF and DEGs and

identified 14 TFs, of which FOXC1, FOXL1, NFIC, YY1, and

PPARG were significantly enriched and showed more

interactions with DEGs (Figure 8B).

Apart from these, the present study included TFs and

miRNAs highly relevant to SARS-CoV-2 interactions. This
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A B C

FIGURE 3

Heatmaps depicting the relationships among common DEGs in COVID-19 patients and recovered subjects based on (A) adjusted p-value and
(B) logFC values. (C) Bubble plots showing the combined Log10 fold-changes and p-values for the shared common genes between COVID-19
patients and recovered humans. The red color indicates the genes of COVID-19 patients, and the green color presents the genes of the
recovered people, while the mixed color indicates the overlapping genes.
A B

FIGURE 4

Signaling pathway analysis of nasopharyngeal epithelial cells on COVID-19 patients. We find that the top 20 terms depend on the P-value.
(A) KEGG pathway and (B) Reactome pathway.
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A B

C

FIGURE 5

Based on the adjusted P-value, the top 20 cell signaling pathways in the nasopharyngeal epithelial cells in COVID-19 patients. The pathways
have been formed by combining the DEGs that are common in the (A) gene ontology (GO) molecular function, (B) GO biological process, and
(C) GO cellular component.
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FIGURE 6

Protein-protein interaction (PPIs) network of common DEGs in COVID-19 patients. The nodes represent the proteins, and the edges represent
the interactions across the proteins. Proteins having more edges are highly expressed, and thickness between the edges indicates the strength
of interactions.
A B

C

D

E

FIGURE 7

Determination of hub genes from the protein-protein interaction (PPI) network by using the Cytohubba plugin in Cytoscape. We applied five
algorithms of the Cytohubba plugin to obtain the hub genes. Here (A) maximum neighborhood component (MNC), (B) betweenness,
(C) degree, (D) edge percolated component (EPC), and (E) maximal clique centrality (MCC). Red to yellow color gradients indicate the higher
ranking of hub genes.
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analysis identified 19 hub proteins, 10 TFs, and 5 miRNAs

(Figure 9A). In COVID-19 interaction, the TF–miRNA network

showed that E2F1, MAX, EGR1, YY1, and SRF were the highly

expressed TFs, and hsa-miR-19b, hsa-miR-495, hsa-miR-340,

hsa-miR-101, and hsa-miR-19a were among significant

miRNAs (Figure 9B).
Protein-drug and protein-chemical
interactions reveal possible drugs for
COVID-19 patients

Protein-drug interaction (PDI) networks provide a wealth of

information about possible pathogenesis mechanisms and drug

interactions thatmay not be evident using conventional approaches.

To disrupt the SARS-CoV-2 pervasiveness, we sought to find

pharmaceutical compounds that interact with viral proteins

(Methods). We detected nine pharmacological compounds (for

example, famoxadone, ubiquinone-2, 2-nonyl-4-hydroxyquinoline,

5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole) acting against one

protein, the human mitochondrial cytochrome b (MT-

CYB) (Figure 9B).

Protein–chemical interaction (PCI) is an important study to

understand the functionality of proteins underpinning the

molecular mechanisms within the cell, which may also help in

drug discovery. For example, it has been discovered that SARS-

CoV-2 infection causes PCI networks in the COVID-19 patients

and recovered humans. Figure 10A depicts a network of PCI

among significant proteins. The significant proteins identified

from this network include FEM1C, NCALD, THBS1, PCDH9,
Frontiers in Immunology 11
DMD, and PDGFA. Similarly, we identified three chemical

agents, Valproic Acid, Alfatoxin B1, and Cyclosporine,

enriched in this interaction analysis (Figure 10A).
Gene-disease network finds different
diseases associated with COVID-19

This study hypothesizes that many conditions can be

associated or connected with COVID-19 by sharing some

common genes. Disorder-specific therapeutic interface

strategies attempt to discover the link between genes and

diseases. In this study, we found 14 other diseases associated

with COVID-19 by sharing four DEGs (i.e., DMD, C2CD3,

WNT3, and AHDC1) most prevalent in COVID-19. Of the

detected diseases, mental retardation, mental deficiency,

intellectual disability, muscle hypotonia, micrognathism, and

cleft palate were the significant diseases interconnected with

COVID-19 (Figure 10B).
Discussion

The SARS-CoV-2 infection causes a wide spectrum of

diseases ranging from minimal, often asymptomatic,

respiratory illness to severe pneumonia with multisystem

failure and death. The ongoing rapid transmission and global

spread of COVID-19 have raised intriguing questions whether

the evolution and adaptation of SARS-CoV-2 is driven by
A B

FIGURE 8

Genes’ regulatory networks. (A) Gene regulatory networks (gene-miRNA) of the nasopharyngeal epithelial cell in COVID- 19 patients with the
shared dysregulated genes. The square shapes and circular shapes represent the miRNA and genes, respectively. (B) Gene regulatory networks
(transcription factors; TF) of the nasopharyngeal epithelial cell in COVID- 19 patients with the shared dysregulated genes. The square shapes and
circular shapes represent the TF and genes, respectively.
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changes at the gene levels (41). Therefore, this work investigates

the influences of SARS-CoV-2 infection on differential gene

expressions (DEGs) in the nasopharyngeal epithelial cells of the

COVID-19 patients and recovered individual. We identified

1960 and 153 DEGs in COVID-19 patients and recovered

humans with different expressions than healthy controls.
Frontiers in Immunology 12
Among these DEGs, 77.0% were upregulated during SARS-

CoV-2 pathogenesis, and more than 98.0% of the upregulated

gene signature had a sole association with COVID-19 patients.

Therefore, relatively higher genes were upregulated in COVID-

19 patients compared to recovered and healthy humans. Earlier

studies reported that certain differences in gene expression
A B

FIGURE 10

Protein-chemical and gene-disease association. (A) Protein-chemical interaction network. Three phytochemical compounds were found against
11 genes. Circles showed the shared DEGs, while square shapes indicated interacting phytochemical compounds. (B) Gene-disease association
network. Circles indicate the common differential genes, and the 14 square shapes represent the common diseases interconnected to the
COVID-19 patients.
A B

FIGURE 9

Gene regulatory and protein-drug interactions. (A) Gene regulatory networks (TF-miRNA) of the nasopharyngeal epithelial cell in COVID- 19
patients with the shared dysregulated genes. The blue color and square shapes indicate the miRNA, while the green color is square-shapes,
representing TF. (B) Protein-drug interaction network. Nine pharmacological compounds are indicated by squares (pink color), while one circle
shape (red) represents the hub node.
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between patient groups might be driven by changes in tissues’

cellular composition, including through the recruitment of

immune cell types to the site of infection (14). By analyzing

the RNA-seq dataset of lung epithelial cells infected with SARS-

CoV-2, Jha et al. (42) identified 338 DEGs, including 92

increased and 246 decreased genes across the datasets. In this

study, top abundant DEGs such as genes encoding for ribosomal

protein (RPL4), controlling the production of the mitochondrial

reactive oxygen species (MT-ND2) (43), modulating cell

proliferation and differentiation (SCD5) (44), mitochondrial

deficiencies and associated disorders (MT-CYB) (45), epithelial

marker ezrin (EZR) associated with cell surface structure

adhesion, migration and organization of the SARS-CoV-2 (46)

were found to be co-expressed in the nasopharyngeal epithelial

cells of COVID-19 patients and recovered humans (Figure 2C).

Conversely, SARS-CoV-2 infection suppressed the expression of

genes associated with transcription factors (MAFF) (47),

erythropoiesis (ARHGEF12) (48), membrane neddylation

(DCUN1D3) (49), a global regulator of transcription (DR1)

(50), and cytochrome-c oxidase activity (MT-CO1) (51) in both

COVID-19 patients and recovered humans (Figure 2D).

We next investigated whether host gene expression during

SARS-CoV-2 pathophysiology is associated with functional

enrichment, for example, cell signaling pathways and gene

ontology. Our results showed that DEGs related to ribosome

signaling pathway, coronavirus signaling pathway, c-type-lectin

receptor signaling pathway, forming a pool of free 40S subunits,

3-UTR-mediated translational regulation, and eukaryotic

translational initiation signaling pathways were significantly

enriched in the nasopharyngeal epithelial cells on COVID-19

patients. These findings corroborated with the previously

published studies conducted to understand host transcriptional

response to influenza A virus and SARS-CoV-2 in primary

human bronchial epithelial cells (28, 42). Gene ontology

analysis identified several pathways: ceramide 1-phosphate

transfer activity, ceramide 1-phosphate binding pathways,

nuclear-transcribed mRNA catabolic process, regulation of

epithelial cell differentiation pathways for biological process,

membrane raft and cytosolic sizeable ribosomal subunit

pathways for cellular component significantly enriched in

COVID-19 patients. Ceramide 1 phosphate (C1P) can

augment immunity and control COVID-19 infection by

enhancing autophagy, adaptive immunity (Th1 programming),

and MHC-I-dependent cytotoxic T lymphocytes (CTL) response

(52). The epithelium lining the airways plays a key role in the

defense against infections. Several lines of evidence showed that

SARS-CoV-2 infection induces epithelial barrier function, as

documented by decreased trans-epithelial resistance, increased

permeability, and altered tight junction protein distribution

(53, 54). However, this functional impairment remained

transient, with signs of epithelial regeneration during the

recovery phage of SARS-CoV-2 infection. Basal cell

mobilization and replication can also be observed to exert a
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moderate effect on epithelial barrier integrity (53). With these

dysregulated genes, we have conducted the PPI network

analyses. PPIs network analysis is the most prominent section

of the study as hub gene detection, analysis of modules and drug

identification thoroughly depends on the PPIs network.

According to the PPIs network (Figures 6, 7), ribosomal

proteins (RPL4, RPS4X, RPL19, RPS12, RPL19), translation

initiation factor 3 subunit E (EIF3E), mitochondrial

deficiencies and associated disorders (MT-CYB) (45), and

cytochrome-c oxidase activity (MT-CO1) (51), and

mitochondrial oxidative phosphorylation (MT-ATP6) proteins

were declared as hub genes because of their high interaction rate

or degree value. SARS-CoV-2 infection regulates the

mitochondrial transcription of the proteins (MT-CO1 and

MT-ATP6) involved in ATP synthesis, respiratory activity,

oxidative stress, pro-inflammatory state, and cytokine

production (55). The increased expression of ribosomal

proteins can be attributed to the virus hijacking the host’s

translational machinery for its survival by the mechanisms

such as ribosome shunting and phosphorylation of ribosomal

proteins (42). The PPI and gene enrichment analyses of these

hyper-interactive proteins showed significant biological

functions connected to COVID-19 related to the cell signaling

pathway and the host response to SARS-CoV-2 infections (56).

As discussed earlier, these proteins are involved in several other

disorders (28, 55, 56).

We further studied relationships of the common DEGs

between COVID-19 patients and recovered humans

concerning protein-protein, gene-miRNA, TF-gene, protein-

drug, and protein-chemical interactions. Our results showed

that hsa-miR-19b, hsa-miR-495, hsa-miR-340, hsa-miR-101 and

hsa-miR-19a were the mostly expressed miRNAs (Figure 8A),

and E2F1, MAX, EGR1, YY1 and SRF were the highly expressed

transcription factors (TFs) (Figure 8B). While host responses to

infection are critical in differential outcomes of SARS-CoV-2

infection, the role of miRNAs in COVID-19 pathogenesis is

poorly understood. We observed that most of these miRNAs

were strongly upregulated in COVID-19 patients, which could

be used as the circulating biomarkers for the diagnosis or

prognosis of COVID-19 (57). Circulating miRNAs are

extracellular serum/plasma miRNAs that could be involved in

cell-cell communication and might contribute to disease

progression. Besides their diagnostic value, miRNAs are well

known for their therapeutic potential, especially in viral diseases.

A recent report has compared the miRNA signature in the

peripheral blood of COVID-19 patients versus healthy donors

and several miRNAs have been identified to be deregulated, and

interfered with the shaping of the immune responses (58).

Therefore, the upregulated levels of miRNAs could be involved

in the inflammatory storm seen in COVID-19 patients by

inhibiting the immunosuppressive and anti-inflammatory role

ensured by the transcription signaling pathway. Recent studies

reported that transcription of mRNAs in epithelial cells is
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induced by TNF-a and triggers a negative feedback loop

involving E-selectin to control inflammatory signaling (42, 59).

Although we identified the 14 TF-genes showing more

interactions with DEGs, we have to assess further whether

these genes have the potential causal effects on the COVID-19

development. Our network-based approach identified TF hubs

that likely regulate many cellular functions (e.g., cytokine storm)

overexpressed in COVID-19 patients. Previous research

identified 95 TFs in cytokines upregulated in the COVID-19

patients, and of them, 19 TFs are targets of FDA-approved drugs

(60). Targeting TFs associated with the cytokine-releasing

syndrome provides candidate drugs and targets to treat

COVID-19 (60). However, additional research is needed to

determine whether these combinations elicit the same

immunomodulatory response in the context of SARS-CoV-

2 infection.

Nine pharmacological compounds were found to be effective

against SARS-CoV-2, and of them, fungicide (famoxadone),

blood pressure controlling coenzyme (ubiquinone-2), secondary

metabolite producing quinoline (2-nonyl-4-hydroxyquinoline),

and xenobiotic compound (5-n-undecyl-6-hydroxy-4,7-

dioxobenzothiazole) showed their activity against the human

mitochondrial cytochrome b (MT-CYB). These compounds

have significant antimicrobial, antidiabetic, anti-inflammatory,

antiviral, and antioxidant activities (61) against SARS-CoV-2

infections. Furthermore, protein-chemical interaction (PCI)

showed that FEM1C, NCALD, THBS1, PCDH9, DMD, and

PDGFA proteins interacted with three chemical agents such as

Valproic acid (VPA), Alfatoxin B1, and cyclosporine. Numerous

promising antiviral therapies against SARS-CoV-2 are being

investigated to prevent interindividual transmission and severe

complications of the COVID-19. The VPA can reduce the SARS-

CoV-2 receptor ACE-2 expression level and can be used as a

potential drug candidate for the prevention strategy against

COVID-19 (62). Aflatoxin B1 (AFB1), which alters immune

responses to mammals, is one of the most common

mycotoxins in feeds and food and a potential aggravating risk

factor in COVID-19 patients (63). The effect of cyclosporine on

coronaviruses, including the new SARS-CoV2, has been

extensively studied (64). Several earlier studies showed that

cyclosporine has the potential to prevent uncontrolled

inflammatory response, SARS-CoV-2 replication, and acute

lung injury (64, 65). Therefore, effective drugs are urgently

needed to target this life-threatening complication, particularly

for patients developing acute respiratory distress syndrome. In

addition, we identified 14 other diseases associated with COVID-

19 by sharing four DEGs (i.e., DMD, C2CD3, WNT3 and

AHDC1) which were most prevalent in COVID-19. People

with SARS-CoV-2 infections often have coexisting conditions

like mental retardation, mental deficiency, intellectual disability,

muscle hypotonia, micrognathism, and cleft palate. There is a

dearth of information regarding the impact of COVID-19 in

patients with tuberculosis, HIV, chronic hepatitis, and other
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concurrent infections (66). COVID-19 patients developed

serious symptoms, including difficulty breathing, chest pain,

loss of muscle control, severe inflammation, and organ damage.

The adverse health and economic impact of the COVID-19

pandemic influenced mental health, causing distress, anxiety,

and depression (67). These complications are not necessarily

short-lived and can cause long-term effects of multiorgan injury

following SARS-CoV-2 infections. COVID-19 presents a greater

risk to people with intellectual and developmental disabilities,

especially younger ones, and recent evidence suggests that mental

health problems significantly increased worldwide during this

pandemic (68, 69). Since muscle possesses the ACE2 receptor to

which SARS-Cov-2 binds, it follows that the involvement of the

muscle could be due not only to the secondary effects of the

infection (e.g., reduced oxygen supply from persistent lung

disease, perfusion defects from cardiovascular defects and

vascular damage), but also to the direct action of virus (SARS-

CoV-2 myositis) (70).
Conclusions

Gene expression analysis may potentially reveal disease-

pathogenesis pathways and point to novel targets for potential

therapeutic approaches. This study examines the RNA-seq data

of COVID-19 patients, recovered persons, and healthy

individuals to find DEGs and biomarkers between the SARS-

CoV-2 pathogenesis and recovery stage from a molecular and

cellular standpoint. We found that COVID-19 patients had a

much larger number of DEGs than recovered humans and

healthy controls and that some of these were co-expressed in

both COVID-19 patients and recovered humans. We used gene

expression analysis with the biomarker to identify cellular

signaling pathways and GO terms. In the COVID-19 patients,

we found several genes coding for translational activities,

transcription factors, hub-proteins, and miRNA expressions,

all of which indicated a persistent inflammation and cytokine

storm. The signaling pathways, GO terms, and chemical

compounds discovered in this study could help researchers

figure out how genes are linked together to find possible

therapeutic approaches. However, the DEGs’ direct molecular

biological functions and significant pathways discovered in this

study should be investigated further to understand better the

mechanisms underlying the host response to SARS-CoV-2 and

identify potential therapeutic targets and drug candidates for

COVID-19.
Data availability statement

The data presented in the study are deposited in the National

Center for Biotechnology Information (NCBI) repository under

BioProject accession number PRJNA720904.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.918692
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hoque et al. 10.3389/fimmu.2022.918692
Ethics statement

The protocol for sample collection from COVID-19,

recovered and healthy humans, sample processing, transport,

and RNA extraction was approved by the National Institute of

Laboratory Medicine and Referral Center of Bangladesh.

Written informed consent was obtain from the participants.
Author contributions

MNH conceived and designed the experiments, analysed

data, and wrote the manuscript. MAK, MAH, MIH and MHR

contributed to data analysis and interpreting results. MMHS,

MAH, SA, TAB, BG, IJ, TN, and MMAM collected samples and

performed sequencing. MES edited the manuscript. YA reviewed

and edited the manuscript. MSK coordinated the study and

performed sequencing. CZ critically evaluated the results and

edited the manuscript. TI conceived and designed the

experiments, coordinated the study, and critically edited the

manuscript. All authors contributed to the article and approved

the submitted version.
Frontiers in Immunology 15
Acknowledgments

The authors would like to thank the individuals who helped

in sample collection.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer AZS declared a past collaboration with the

author MNH to the handling editor at the time of review.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of
patients infected with 2019 novel coronavirus in wuhan, China. Lancet (2020) 395
(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5

2. Hoque MN, Chaudhury A, Akanda MAM, Hossain MA, IslamMT. Genomic
diversity and evolution, diagnosis, prevention, and therapeutics of the pandemic
COVID-19 disease. PeerJ (2020) 8:e9689. doi: 10.7717/peerj.9689

3. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2
associated with the COVID-19 outbreak. Curr Biol (2020) 30(7):1346–51.e2. doi:
10.1016/j.cub.2020.03.022

4. Rahman MS, Hoque MN, Islam MR, Akter S, Alam ARU, Siddique MA, et al.
Epitope-based chimeric peptide vaccine design against s, m and e proteins of SARS-
CoV-2, the etiologic agent of COVID-19 pandemic: an in silico approach. PeerJ
(2020) 8:e9572. doi: 10.7717/peerj.9572

5. Islam MR, Hoque MN, Rahman MS, Alam A, Akther M, Puspo JA, et al.
Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates
heterogeneity. Sci Rep (2020) 10(1):1–9. doi: 10.1038/s41598-020-70812-6

6. Hopkins JJohns Hopkins coronavirus resource center. COVID-19 case tracker
( 2 0 2 0 ) . A v a i l a b l e a t : h t t p s : / / c c p . j h u . e d u / k a p - c o v i d / ? g c l i d =
Cj0KCQjwgMqSBhDCARIsAIIVN1XZXbLT6Dr8AJW6UL1jMd-lbvg7wBz3EK_
Sklpj6hcq6U1POShYGNkaAvEyEALw_wcB (Accessed April 10, 2022).

7. Hoque MN, Akter S, Mishu ID, Islam MR, Rahman MS, Akhter M, et al.
Microbial co-infections in COVID-19: Associated microbiota and underlying
mechanisms of pathogenesis. Microb Pathog (2021), 104941. doi: 10.1016/
j.micpath.2021.104941

8. Sohrabi C, Alsafi Z, O'neill N, Khan M, Kerwan A, Al-Jabir A, et al. World
health organization declares global emergency: A review of the 2019 novel
coronavirus (COVID-19). Int J Surg (2020) 76:71–6. doi: 10.1016/j.ijsu.2020.02.034

9. Hoque MN, Faisal GM, Chowdhury FR, Haque A, Islam T. The urgency of
wider adoption of one health approach for the prevention of a future pandemic. Int
J One Health (2022) 8(1):20–33. doi: 10.14202/IJOH.2022.20-33

10. Bajgain KT, Badal S, Bajgain BB, Santana MJ. Prevalence of comorbidities
among individuals with COVID-19: A rapid review of current literature. Am J
Infect Control (2021) 49(2):238–46. doi: 10.1016/j.ajic.2020.06.213

11. Rafiqul Islam S, Foysal M, Hoque MN, Mehedi H, Rob M, Salauddin A, et al.
Dysbiosis of oral and gut microbiomes in SARS-CoV-2 infected patients in
Bangladesh: elucidating the role of opportunistic gut microbes. Front Med (2022)
163:821777. doi: 10.3389/fmed.2022.821777

12. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk
factors for mortality of adult inpatients with COVID-19 in wuhan, China: a
retrospective cohort study. Lancet (2020) 395(10229):1054–62. doi: 10.1016/S0140-
6736(20)30566-3

13. Bui LT, Winters NI, Chung M-I, Joseph C, Gutierrez AJ, Habermann AC,
et al. Chronic lung diseases are associated with gene expression programs favoring
SARS-CoV-2 entry and severity. Nat Commun (2021) 12:4314. doi: 10.1038/
s41467-021-24467-0

14. Mick E, Kamm J, Pisco AO, Ratnasiri K, Babik JM, Castañeda G, et al. Upper
airway gene expression reveals suppressed immune responses to SARS-CoV-2
compared with other respiratory viruses. Nat Commun (2020) 11(1):1–7. doi:
10.1038/s41467-020-19587-y

15. Daamen AR, Bachali P, Owen KA, Kingsmore KM, Hubbard EL, Labonte
AC, et al. Comprehensive transcriptomic analysis of COVID-19 blood, lung, and
airway. Sci Rep (2021) 11(1):1–19. doi: 10.1038/s41598-021-86002-x

16. Liu T, Jia P, Fang B, Zhao Z. Differential expression of viral transcripts from
single-cell RNA sequencing of moderate and severe COVID-19 patients and its
implications for case severity. Front Microbiol (2020) 11:603509. doi: 10.3389/
fmicb.2020.603509

17. Hoque MN, Rahman MS, Ahmed R, Hossain MS, Islam MS, Islam T, et al.
Diversity and genomic determinants of the microbiomes associated with COVID-
19 and non-COVID respiratory diseases. Gene Rep (2021) 23:101200. doi: 10.1016/
j.genrep.2021.101200

18. Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, et al. Risk factors of critical &
mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect
(2020) 81(2):e16–25. doi: 10.1016/j.jinf.2020.04.021

19. Nain Z, Barman SK, Sheam MM, Syed SB, Samad A, Quinn JM, et al.
Transcriptomic studies revealed pathophysiological impact of COVID-19 to
predominant health conditions. Brief Bioinform (2021) 22(6):bbab197. doi:
10.1093/bib/bbab197

20. Dong E, Du H, Gardner L. An interactive web-based dashboard to track
COVID-19 in real time. Lancet Infect Dis (2020) 20(5):533–4. doi: 10.1016/S1473-
3099(20)30120-1
frontiersin.org

https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.7717/peerj.9689
https://doi.org/10.1016/j.cub.2020.03.022
https://doi.org/10.7717/peerj.9572
https://doi.org/10.1038/s41598-020-70812-6
https://ccp.jhu.edu/kap-covid/?gclid=Cj0KCQjwgMqSBhDCARIsAIIVN1XZXbLT6Dr8AJW6UL1jMd-lbvg7wBz3EK_Sklpj6hcq6U1POShYGNkaAvEyEALw_wcB
https://ccp.jhu.edu/kap-covid/?gclid=Cj0KCQjwgMqSBhDCARIsAIIVN1XZXbLT6Dr8AJW6UL1jMd-lbvg7wBz3EK_Sklpj6hcq6U1POShYGNkaAvEyEALw_wcB
https://ccp.jhu.edu/kap-covid/?gclid=Cj0KCQjwgMqSBhDCARIsAIIVN1XZXbLT6Dr8AJW6UL1jMd-lbvg7wBz3EK_Sklpj6hcq6U1POShYGNkaAvEyEALw_wcB
https://doi.org/10.1016/j.micpath.2021.104941
https://doi.org/10.1016/j.micpath.2021.104941
https://doi.org/10.1016/j.ijsu.2020.02.034
https://doi.org/10.14202/IJOH.2022.20-33
https://doi.org/10.1016/j.ajic.2020.06.213
https://doi.org/10.3389/fmed.2022.821777
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1038/s41467-021-24467-0
https://doi.org/10.1038/s41467-021-24467-0
https://doi.org/10.1038/s41467-020-19587-y
https://doi.org/10.1038/s41598-021-86002-x
https://doi.org/10.3389/fmicb.2020.603509
https://doi.org/10.3389/fmicb.2020.603509
https://doi.org/10.1016/j.genrep.2021.101200
https://doi.org/10.1016/j.genrep.2021.101200
https://doi.org/10.1016/j.jinf.2020.04.021
https://doi.org/10.1093/bib/bbab197
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.3389/fimmu.2022.918692
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hoque et al. 10.3389/fimmu.2022.918692
21. Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, et al. Transcriptomic
characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear
cells in COVID-19 patients. Emerg Microbes Infect (2020) 9(1):761–70. doi:
10.1080/22221751.2020.1747363

22. Li S, Duan X, Li Y, Li M, Gao Y, Li T, et al. Differentially expressed immune
response genes in COVID-19 patients based on disease severity. Aging (Albany NY)
(2021) 13(7):9265. doi: 10.18632/aging.202877

23. Rahman MS, Islam MR, Hoque MN, Alam ASMRU, Akther M, Puspo JA,
et al. Comprehensive annotations of the mutational spectra of SARS-CoV-2 spike
protein: a fast and accurate pipeline. Transbound Emerg Dis (2021) 68(3):1625–38.
doi: 10.1111/tbed.13834

24. Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, et al.
SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together
with innate immune genes. Nat Med (2020) 26(5):681–7. doi: 10.1038/s41591-020-
0868-6

25. Subbarao K, Mahanty S. Respiratory virus infections: understanding
COVID-19. Immunity (2020) 52(6):905–9. doi: 10.1016/j.immuni.2020.05.004

26. Nelemans T, Kikkert M. Viral innate immune evasion and the pathogenesis
of emerging RNA virus infections. Viruses (2019) 11(10):961. doi: 10.3390/
v11100961

27. Abassi Z, Knaney Y, Karram T, Heyman SN. The lung macrophage in
SARS-CoV-2 infection: a friend or a foe? Front Immunol (2020) 11:1312. doi:
10.3389/fimmu.2020.01312

28. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R,
et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19.
Cell (2020) 181(5):1036–45.e9. doi: 10.1016/j.cell.2020.04.026

29. Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carre C, et al. RNA-Seq
signatures normalized by mRNA abundance allow absolute deconvolution of
human immune cell types. Cell Rep (2019) 26(6):1627–40.e7. doi: 10.1016/
j.celrep.2019.01.041

30. Hoque MN, Sarkar M, Hasan M, Rahman MS, Akter S, Banu TA, et al.
SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiome
with inclusion of pathobionts. Sci Rep (2021) 11(1):1–17, 24042. doi: 10.1038/
s41598-021-03245-4

31. Torre D, Lachmann A, Ma'ayan A. BioJupies: automated generation of
interactive notebooks for RNA-seq data analysis in the cloud. Cell Syst (2018) 7
(5):556–61.e3. doi: 10.1016/j.cels.2018.10.007

32. Venny OJ. An interactive tool for comparing lists with venn's diagrams.
2007–2015 (2016). Available at: http://bioinfogp.cnb.csic.es/tools/venny/index.
html (Accessed 28 December 2021).

33. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr:
interactive and collaborative HTML5 gene list enrichment analysis tool. BMC
Bioinform (2013) 14(1):1–14. doi: 10.1186/1471-2105-14-128

34. Snel B, Lehmann G, Bork P, Huynen MA. STRING: a web-server to retrieve
and display the repeatedly occurring neighborhood of a gene. Nucleic Acids Res
(2000) 28(18):3442–4. doi: 10.1093/nar/28.18.3442

35. Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD. Cytoscape
web: an interactive web-based network browser. Bioinformatics (2010) 26
(18):2347–8. doi: 10.1093/bioinformatics/btq430

36. Zhou G, Soufan O, Ewald J, Hancock RE, Basu N, Xia J. NetworkAnalyst 3.0:
a visual analytics platform for comprehensive gene expression profiling and meta-
analysis. Nucleic Acids Res (2019) 47(W1):W234–W41. doi: 10.1093/nar/gkz240

37. Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S, Hong H-C, et al.
miRTarBase 2020: updates to the experimentally validated microRNA–target
interaction database. Nucleic Acids Res (2020) 48(D1):D148–D54. doi: 10.1093/
nar/gkz896

38. Sandelin A, AlkemaW, Engström P, WassermanWW, Lenhard B. JASPAR:
an open-access database for eukaryotic transcription factor binding profiles.
Nucleic Acids Res (2004) 32(suppl_1):D91–D4. doi: 10.1093/nar/gkh012

39. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, McMorran R, Wiegers J, et al.
The comparative toxicogenomics database: update 2019. Nucleic Acids Res (2019)
47(D1):D948–54. doi: 10.1093/nar/gky868

40. Piñero J, Queralt-Rosinach N, Bravo A, Deu-Pons J, Bauer-Mehren A,
Baron M, et al. DisGeNET: a discovery platform for the dynamical exploration of
human diseases and their genes. Database (2015) bav028. doi: 10.1093/database/
bav028

41. RahmanMS, Hoque MN, IslamMR, Islam I, Mishu ID, RahamanMM, et al.
Mutational insights into the envelope protein of SARS-CoV-2. Gene Rep (2021)
22:100997. doi: 10.1016/j.genrep.2020.100997

42. Jha PK, Vijay A, Halu A, Uchida S, Aikawa M. Gene expression profiling
reveals the shared and distinct transcriptional signatures in human lung epithelial
cells infected with SARS-CoV-2, MERS-CoV, or SARS-CoV: potential implications
in cardiovascular complications of COVID-19. Front Cardiovasc Med (2021)
7:623012. doi: 10.3389/fcvm.2020.623012
Frontiers in Immunology 16
43. Zhang W, Hou L, Wang T, Lu W, Tao Y, Chen W, et al. The expression
characteristics of mt-ND2 gene in chicken. Mitochondrial DNA Part A (2016) 27
(5):3787–92. doi: 10.3109/19401736.2015.1079904

44. Igal RA, Sinner DI. Stearoyl-CoA desaturase 5 (SCD5), a D-9 fatty acyl
desaturase in search of a function. Biochim Biophys Acta - Mol Cell Biol Lipids
(2021) 1866(1):158840. doi: 10.1016/j.bbalip.2020.158840

45. Scozzi D, Cano M, Ma L, Zhou D, Zhu JH, O'Halloran JA, et al. Circulating
mitochondrial DNA is an early indicator of severe illness and mortality from
COVID-19. JCI Insight (2021) 6(4):e143299. doi: 10.1172/jci.insight.143299

46. Giobbe GG, Bonfante F, Jones BC, Gagliano O, Luni C, Zambaiti E, et al.
SARS-CoV-2 infection and replication in human gastric organoids. Nat Commun
(2021) 12(1):1–14. doi: 10.1038/s41467-021-26762-2

47. Kannan MB, Solovieva V, Blank V. The small MAF transcription factors
MAFF, MAFG and MAFK: current knowledge and perspectives. Biochim Biophys
Acta Mol Cell Res (2012) 1823(10):1841–6. doi: 10.1016/j.bbamcr.2012.06.012

48. Xie Y, Gao L, Xu C, Chu L, Gao L, Wu R, et al. ARHGEF12 regulates
erythropoiesis and is involved in erythroid regeneration after chemotherapy in
acute lymphoblastic leukemia patients. Haematologica (2020) 105(4):925. doi:
10.3324/haematol.2018.210286

49. Meyer-Schaller N, Chou Y-C, Sumara I, Martin DD, Kurz T, Katheder N,
et al. The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at
membranes. Proc Natl Acad Sci (U.S.A.) (2009) 106(30):12365–70. doi: 10.1073/
pnas.0812528106

50. Kim S, Na JG, Hampsey M, Reinberg D. The Dr1/DRAP1 heterodimer is a
global repressor of transcription in vivo. Proc Natl Acad Sci (U.S.A.) (1997) 94
(3):820–5. doi: 10.1073/pnas.94.3.820

51. Shoubridge EA. Cytochrome c oxidase deficiency. Am J Med Genet (2001)
106(1):46–52. doi: 10.1002/ajmg.1378

52. Prakash H, Upadhyay D, Bandapalli OR, Jain A, Kleuser B. Host
sphingolipids: Perspective immune adjuvant for controlling SARS-CoV-2
infection for managing COVID-19 disease. Prostaglandins Other Lipid Mediat
(2021) 152:106504. doi: 10.1016/j.prostaglandins.2020.106504

53. Robinot R, Hubert M, de Melo GD, Lazarini F, Bruel T, Smith N, et al.
SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and
impairs mucociliary clearance. Nat Commun (2021) 12(1):1–16. doi: 10.1038/
s41467-021-24521-x

54. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus
from patients with pneumonia in China, 2019. N Engl J Med (2020) 382:727–33.
doi: 10.1056/NEJMoa2001017
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