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Abstract The prevalence of heart failure (HF) is increas-

ing. A distinction is made between diastolic HF (preserved

left ventricular ejection fraction (LVEF)) and systolic HF

(reduced LVEF). Advanced glycation end-products (AGEs)

are crystallized proteins that accumulate during ageing, but

are particularly increased in patients with diabetes mellitus

and in patients with renal failure. Through the formation

of collagen crosslinks, and by interaction with the

AGE-receptor, which impairs calcium handling and

increases fibrosis, AGE-accumulation has pathophysiolog-

ically been associated with the development of diastolic and

renal dysfunction. Interestingly, diastolic dysfunction is a

frequent finding in elderly patients, diabetic patients and in

patients with renal failure. Taken together, this suggests that

AGEs are related to the development and progression of

diastolic HF and renal failure. In this review, the role of

AGEs as a possible pathophysiological factor that link the

development and progression of heart and renal failure, is

discussed. Finally, the role of AGE intervention as a possible

treatment in HF patients will be discussed.

Keywords Heart failure � Advanced glycation

end-products � Diastolic dysfunction � Renal failure �
Cardiorenal syndrome

Introduction

The prevalence of chronic heart failure (HF) increases fast

due to a population of increasing age and an increasing

prevalence of diabetes, resulting in a prevalence of HF of

10–20% in 70–80 year old people [1, 2]. Chronic HF may

occur in the presence of a preserved (diastolic HF) or

depressed (systolic HF) left ventricular ejection fraction

(LVEF), both having a similar (poor) prognosis [1, 3–5].

The prevalence of diabetes in systolic HF is estimated at

23% [6, 7] and in diastolic HF at 25–33% [8–11]. A pos-

sible mechanism underlying diastolic HF may be an

increase in advanced glycation end-products (AGEs).

AGEs are formed during a non-enzymatic reaction between

proteins and sugar residues [12, 13]. AGEs accumulate in

the body with age and are increased in patients with

chronic systolic and diastolic HF, diabetic complications

and renal dysfunction [12, 14]. In diabetic HF patients

tissue AGEs are more increased compared with HF patients

without diabetes [14]. Whether a difference in accumula-

tion of AGEs in diabetic patients between systolic and

diastolic HF is present, remains to be established. AGEs

can also activate the receptor for AGE (RAGE) and thereby

induce cardiovascular dysfunction [12]. In cardiovascular

disease, renal dysfunction often exists and is frequently

referred to as the cardiorenal syndrome [15]. The cardio-

renal syndrome is a disorder of the heart and kidneys

whereby acute or chronic dysfunction in one organ may

induce acute or chronic dysfunction in the other and vice

versa [16]. Interestingly, patients with renal dysfunction

often have diastolic dysfunction, and have an increased

prevalence of HF, in particular diastolic HF [17–20].

In addition, the risk factors for developing renal dysfunc-

tion have an overlap with the risk factors for the accumu-

lation of AGEs.
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Cardiorenal syndrome

In patients with chronic HF the co-existence of renal dys-

function is common, and renal failure is among the stron-

gest predictor of mortality in patients with HF [21]. This

co-existence has often been referred to as ‘‘cardiorenal

syndrome’’, in which acute or chronic dysfunction in one

organ may induce acute or chronic dysfunction in the other

organ [16, 22]. The pathophysiology of the cardiorenal

syndrome is multifactorial and involves decreased renal

perfusion, atherosclerosis and inflammation, endothelial

dysfunction and neurohormonal activation [23, 24].

Advanced glycation end-products

Advanced glycation end-products (AGEs) are a hetero-

geneous group of compounds, formed by oxidative and

non-oxidative reactions between proteins and sugar resi-

dues, called the Maillard reaction [12, 13]. The Maillard

reaction is a slow reaction and initiates when protein

amino groups are exposed to sugar adducts, and proceeds

from reversible Schiff base adducts to more stable, slowly

reversible Amadori products (e.g. HbA1c). It further

proceeds through the re-arrangement of Amadori products

to the formation of stable and irreversible AGE com-

pounds, for example Ne-(carboxymethyl)lysine (CML),

Ne-(carboxyethyl)lysine (CEL), and pentosidine [12, 13].

The final step is catalyzed by oxidative stress, defined as a

high steady state level of reactive oxygen species (ROS),

which causes an increase in AGEs [12]. This increase in

AGEs causes acceleration of oxidation, creating a vicious

circle. Rapid formation of AGEs occurs via another

pathway involving reactive carbonyl compounds (RCC)

during oxidative stress [25]. RCCs are produced from

lipids or carbohydrates reacting with ROS. AGE accu-

mulation in vivo occurs throughout the body, including

the skin, neural, vascular and renal tissue [26, 27].

Smoking cigarettes, heated, cooked or roasted food

products are possible sources of increased AGE accumu-

lation [12, 28, 29]. AGE degradation products are excre-

ted via the kidney [25].

AGE accumulation can be measured in blood and in

tissue. In blood, the preferred technique for determination

of CML and CEL is stable-isotope-dilution liquid chro-

matography tandem mass spectrometry (LC–MS/MS)

[30]. For determination of pentosidine in blood, a rapid

and sensitive high-performance liquid chromatography

(HPLC) method is considered the preferred technique

[31]. In skin tissue, AGE accumulation can be measured

at the volar side of the lower arm, more simple and non-

invasively with a skin auto-fluorescence (AF) reader

(AGE-reader) [32].

Advanced glycation end-products in diabetes mellitus

Accumulation of AGEs depends on both sugar concentra-

tion and the rate of protein turnover [33]. Diabetic patients

have a higher sugar concentration and therefore a higher

amount of AGEs compared to healthy controls. The rate of

formation of Amadori products is directly proportional to

the glucose concentration [33]. It has also been shown that

diabetes is a risk factor for the development of a more

impaired diastolic function, independent of age [34–36].

Furthermore, diabetes is not only increasing the risk of

developing HF, but also accelerates its occurrence [37].

This could be partly explained by a higher amount of

AGEs, which also occurs in HF patients [35]. Interestingly,

diabetics also have a more impaired diastolic function

compared with non-diabetics [34, 36]. We recently pro-

vided evidence for an association between tissue AGEs and

diastolic dysfunction (measured with mean E’), suggesting

that AGEs might explain diastolic dysfunction in diabetic

HF patients [14].

The RAGE axis

AGEs can also bind to the receptor of AGE (RAGE) and

thereby induce cardiovascular dysfunction [12]. RAGE is a

multi-ligand member of the immunoglobulin superfamily

of cell surface molecules that is expressed in a variety of

cell lines [38]. RAGE has a C-truncated secretory isoform,

soluble RAGE (sRAGE) that circulates in plasma [39].

sRAGE has been proposed to have an atherosclerotic-

protective function, in particular by acting as a decoy for

AGE [39–41]. AGE-accumulation can cause upregulation

of RAGE [42]. When AGE is interacting with RAGE,

nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase is activated, causing activation and inflammation

of NF-kappaB, which induces further inflammation and can

increase AGE-accumulation, creating a vicious cycle [42].

Advanced glycation end-products in heart failure;

pathophysiology

Patients with diastolic HF have decreased ventricular

relaxation, abnormal active relaxation, and/or an increase in

ventricular and arterial stiffness [5, 43, 44]. The degree of

diastolic dysfunction is correlated with the severity of

myocardial fibrosis [45]. Several other mechanisms under-

lying diastolic HF have been proposed [12, 46–49]. One

possible mechanism could be an increase in AGEs. AGEs

may induce diastolic dysfunction in the heart through three

different pathways (Fig. 1). First, AGE accumulation causes

excessive cross-linking, which increases rigidity, thereby
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causing diastolic dysfunction as well as renal dysfunction.

Second, when AGEs interact with the AGE receptor, the

receptor is activated. Activation of AGE receptors (most

important receptor is Receptor for AGE (RAGE)) causes

increased fibrosis via the upregulation of transforming

growth factor-ß (TGF- ß). Third, when the AGE receptor is

exposed to AGEs, it causes a significant delay in calcium

reuptake. As a consequence, the duration of the repolarisa-

tion phase of the cardiac contraction may increase, subse-

quently causing diastolic dysfunction. Based on these data it

can be hypothesized that AGEs are a causal factor in dia-

stolic HF.

Advanced glycation end-products in heart failure;

evidence

Evidence for a role of AGEs in HF patients comes from

experimental work and increasing number of clinical

studies. In diabetic obese rats diastolic function measured

by cardiac catheterization has been shown to correlate with

levels of CML [50]. AGE receptor activation influences

calcium metabolism and thereby induces diastolic dys-

function. In transgenic mice that over expressed human

RAGE in the heart, diastolic and systolic intracellular

calcium concentration was reduced [51]. We recently

showed that tissue AGEs are related to diastolic function in

dialysis patients [18]. In another clinical study, we found

an association between tissue AGEs and diastolic function

(measured with mean E’) [14].

The overall prevalence of HF is increasing. Further-

more, roughly 50% of patients die in 4 years [1]. Several

factors have been established as independent predictors for

survival in HF patients, among which are LVEF, New York

Heart Association (NYHA) functional class, anemia and

renal function [46, 52–54]. Four studies investigated the

prognostic role of AGEs in HF patients. We have previ-

ously shown that plasma AGE CML was related to the

severity and prognosis of 102 HF patients, but after

correction for renal function this relation subsided [46].

In a second study in 141 HF patients, pentosidine was

related to severity of HF and it was an independent

risk factor to predict adverse clinical outcome [55].

However, the authors did not adjust their findings for all

known risk factors for mortality, such as hemoglobin and

gender. Furthermore, they may have introduced a possible

co-linearity problem by simultaneously introducing creat-

inine levels and estimated glomerular filtration rate (GFR)

in the multivariable model. A third study showed that pent-

osidine was an independent predictor for cardiac events in

160 HF patients [56]. Cardiac events were defined as a

composite end point of cardiac death and rehospitalization.

Advanced glycation end-products and renal failure;

pathophysiology

Several mechanisms underlying renal dysfunction have

been proposed, for example decreased renal perfusion,

atherosclerosis and inflammation, endothelial dysfunction

Fig. 1 Schematic representation of the pathophysiological pathways by which advanced glycation end-products causes diastolic heart failure

and renal dysfunction
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and neurohormonal activation [24, 57–59]. Another possible

mechanism could be an increase in AGEs. AGE-accumu-

lation in patients with renal dysfunction can occur through

two different pathways (Fig. 1). First, increased AGE

accumulation is caused by decreased clearance of AGE

degradation products. After modification or degradation in

proximal tubuli, AGEs are eventually cleared in the urine

[60–62]. Patients with renal dysfunction have a decreased

clearance and thereby accumulation of AGEs occurs. Sec-

ond, oxidative stress is enhanced in patients with renal

dysfunction, which also causes an increase in AGE forma-

tion [63]. An increase in AGEs causes acceleration of oxi-

dation, regenerating another increase in AGEs.

When endothelial cells in the kidney are stimulated by

AGEs, they release the pro-inflammatory mediators vas-

cular cell adhesion molecule-1 and intercellular adhesion

molecule-1 [61, 64, 65]. This may lead to tissue damage in

the kidney. In summary, it can be hypothesized that AGEs

are a possible mechanism underlying renal dysfunction.

Advanced glycation end-products and renal failure;

evidence

Evidence for a role of AGEs in patients with renal failure

comes from experimental and clinical studies. In 50 heal-

thy male Sprague-Dawley rats AGEs were increased by

adding AGE-modified albumin. This resulted in structural

changes in the glomerulus [66]. In healthy nondiabetic rats

and rabbits administrating AGE-modified albumin led to an

increase in vascular permeability and inflammation in the

vasculature [66]. In clinical studies, AGEs accumulate

during renal failure and dialysis [61, 67]. In patients with

renal failure plasma AGEs are elevated [67, 68]. In patients

on dialysis, tissue AGEs are even more increased compared

to patients with renal failure without dialysis [69]. After

renal transplantation AGE accumulation is lower than

during hemodialysis, but remains elevated [69].

Renal dysfunction is strongly associated with a poor

clinical outcome in HF patients [54, 70–72]. In addition,

AGEs are related to the severity of HF and its clinical

outcome as well. The prognostic role of AGEs in end-stage

renal disease has however been inconsistent [73–76]. Two

studies reported that high level of CML were associated

with an increased mortality, but a third study showed an

association with a decreased mortality. However, AGEs are

a heterogenous group of compounds. Several different

AGEs exist; some show cross-linking properties (pentosi-

dine), whereas others do not (CML and CEL). All three

studies only measured accumulation of the non-cross-

linking AGE CML. The cross-linking AGE pentosidine

was not measured. Furthermore CML was not measured

with LC–MS/MS, which is the preferred technique with

highest specificity. Another study reported that tissue AGE

was an independent predictor of mortality and associated

with cardiovascular disease in hemodialysis patients [77].

Further research is warranted to provide more insight

into the prognostic role of AGEs in patients with renal

dysfunction.

AGEs as a pathophysiological factor in cardiorenal

syndrome

The data presented in this review suggests that AGEs may

be involved as a pathophysiological factor in cardiorenal

syndrome (Fig. 1 and 2). AGE-accumulation is not

restricted to specific patient groups and accumulates in the

body with age. With ageing, diastolic function impairs,

while systolic function remains unchanged [1]. Diastolic

dysfunction can be caused by AGEs through increasing

rigidity and by causing a delay in calcium reuptake [12].

Patients with renal dysfunction are known to have increased

AGE-accumulation and diastolic dysfunction is a frequent

finding in these patients. The prevalence of diastolic dys-

function in dialysis patients varies from 25–87% depending

on definitions used and patients included [17, 20]. Diastolic

dysfunction predisposes to the development of HF, which

causes a further decrease in renal function, creating a

vicious circle (Fig. 1 and 2). [19]. Patients with diabetes

mellitus are also known to have increased AGE-accumu-

lation, independent of their age (Fig. 1). Accumulation of

AGEs depends on both sugar concentration and the rate of

protein turnover [33]. Furthermore, diabetic patients have a

more impaired diastolic function compared to non-diabetics

[34, 36]. Interestingly, the risk factors for developing renal

dysfunction have a certain overlap with the risk factors for

the accumulation of AGEs.

Taken together, diabetic patients and patients with renal

dysfunction have an increased accumulation of AGEs, and

an increased prevalence of diastolic dysfunction. In addi-

tion, patients with renal dysfunction and diabetes have

higher tissue AGE levels compared to patients with renal

dysfunction without diabetes [14, 25]. Whether this trans-

lates into a higher risk for new onset heart failure remains

to be established. Together with its pathophysiology, where

AGEs can be linked with diastolic dysfunction, we there-

fore suggest that increased amount of AGEs in heart and

renal failure can be a common pathophysiological factor

which causes both heart and renal failure (Fig. 2).

Interventions

AGE-accumulation was associated with a reduced survival

in patients with diabetes, renal failure, and HF and may
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therefore be a target for intervention. The adverse effects of

AGE-accumulation can be targeted in several ways.

In vitro and in vivo studies have shown that angiotensin II

type 1 receptor blockers (ARBs) can reduce AGE formation

[78–80]. ARBs prevent the production of reactive carbonyl

and dicarbonyl compounds (RCOs), which are critical pre-

cursors of AGEs [78–81]. However, we recently showed that

the angiotensin II type 1 receptor blocker eprosartan did not

decrease levels of AGEs, within 6 months, in patients with

hypertension and diastolic function [82].

AGE intake can also increase AGE-accumulation. Both

smoking and certain food products contain high levels of

AGEs and AGE precursors. Smoking cessation and low-

AGE diets have been shown to reduce AGE intake and

thereby AGE levels in blood [12, 28, 29].

Several AGE crosslink breakers, such as alagebrium and

TRC4186, are currently under investigation for use in dia-

betic and non-diabetic patients. We recently conducted the

BENEFICIAL study, the first prospective, randomized,

double-blind, placebo controlled study to examine the

effects of the AGE-breaker alagebrium on exercise capacity

and cardiac function in patients with systolic HF [83].

Conclusion

There is a pathophysiological and epidemiological link

between AGEs, renal dysfunction and heart failure. This

suggests that AGEs are related to the development and

progression of diastolic HF and renal failure. Therapies

targeted at reducing the effects of AGEs will have to

provide further evidence for this hypothesis.
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