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Abstract: The matching of cognitive load and working memory is the key for effective learning,
and cognitive effort in the learning process has nervous responses which can be quantified in
various physiological parameters. Therefore, it is meaningful to explore automatic cognitive load
pattern recognition by using physiological measures. Firstly, this work extracted 33 commonly used
physiological features to quantify autonomic and central nervous activities. Secondly, we selected a
critical feature subset for cognitive load recognition by sequential backward selection and particle
swarm optimization algorithms. Finally, pattern recognition models of cognitive load conditions
were constructed by a performance comparison of several classifiers. We grouped the samples in an
open dataset to form two binary classification problems: (1) cognitive load state vs. baseline state;
(2) cognitive load mismatching state vs. cognitive load matching state. The decision tree classifier
obtained 96.3% accuracy for the cognitive load vs. baseline classification, and the support vector
machine obtained 97.2% accuracy for the cognitive load mismatching vs. cognitive load matching
classification. The cognitive load and baseline states are distinguishable in the level of active state of
mind and three activity features of the autonomic nervous system. The cognitive load mismatching
and matching states are distinguishable in the level of active state of mind and two activity features
of the autonomic nervous system.
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1. Introduction

The aim of effective instructional design is to help learners construct or automate knowledge
schemas by means of specific strategies at certain learning circumstances [1–3]. For example,
collaborative group study helps learners with task-specific knowledge get better learning outcomes
than the novices [1]; incorporating positive emotional design principles into multimedia lessons helps
learners perform better on a subsequent retention test [2]; instructional animations are superior to
static graphics in short learning sections, but not in long learning sections [3]. The key for effective
learning is the matching of cognitive load and working memory [4]. Otherwise, when cognitive load
exceeds working memory capacity, cognitive overload leads to bad learning outcomes [4]. Therefore,
it is meaningful to monitor cognitive load in the learning process. An experienced teacher can judge
cognitive load through an observation of the learner’s behavior and learning outcome [3]. However,
teachers are often absent in e-learning, urging people to explore automatic cognitive load detection
methods by using physiological measures.
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Previous researchers have found that skin conductance response, which is controlled by the
sympathetic nervous system (SNS), is significantly associated with cognitive load condition [5,6].
Besides, heart rate variability (HRV), controlled by both branches of the autonomic nervous system
(ANS), has shown sensitivity to cognitive task load, conditions of event rate and task duration [7].
In addition to autonomic nervous measures, central nervous indices, e.g., theta power and alpha
suppression of the electroencephalography (EEG), are also valid objective measures of average cognitive
load [8–10]. These findings support that cognitive effort in the learning process has nervous responses
encoded in the variation of quantitative parameters of several physiological signals.

Many machine learning methods have been applied to cognitive load detection, as shown in
Table 1 [11–25]. The main idea of these methods is as follows. Firstly, define two or three categories
of cognitive load conditions. Secondly, extract a set of physiological parameters as the features of
cognitive load. Thirdly, train certain classifiers with data samples acquired from groups of subjects.
Finally, obtain computational models for the pattern recognition of cognitive load through performance
comparison of the classifiers. The strengths of the computational models are usually determined by
the amount of data samples and subjects, the dimension of feature sets, the accuracy of the classifiers,
and the validation methods of the models. For a given data sample set, a lower dimension of the
feature set and a higher accuracy of the classifier and subject-independent validation method lead
to a better pattern recognition model. As shown in Table 1, the subject-independent accuracy of the
cognitive load recognition models still needs to be improved by means of more effective features,
classifiers, or physiological signals.

Table 1. Related work in cognitive load recognition.

Study # Subjects # Features # Categories Classifier Signals Best
Accuracy

Validation
Approach

Hasanbasic [11] 10 12 3 SVM ECG, EDA 91.00% SD
Melillo [12] 42 3 2 LDA ECG 90.00% SI
Cheema [13] 30 5 2 LS-SVM PCG 96.67% SD

Wang [14] 10 32 2 PCA, SVM EEG 97.14% SD
Al-Shargie [15] 22 9 2 SVM EEG, fNIRS 95.10% SD

McDuff [16] 10 7 2 Naïve Bayes PPG (HR, HRV, BR) 86.00% SI
Ahn [17] 14 4 2 SVM ECG, EEG 87.50% SD
Xia [18] 22 4 2 PCA, SVM EEG, ECG 79.54% SD

Dimitrakopoulos [19] 28 23 2 SVM EEG 86.00% SD
Yu [20] 20 4 2 ELM ECG 84.75% SI

Wang [21] 160 - 2 LFDM,
XGBoost ECG, PPG 97.2% -

Das Chakladar [22] 48 6 2 BLSTM-LSTM EEG 86.33% -

Barua [23] 66 42 2 Random
Forest HRV, GSR, RESP 78.00% SD

Plechawska [24] 11 52 3 KNN EEG 91.50% SI
Fan [25] 20 5 3 SVM, PCA EEG, ECG 80.00% SI

SD: subject-dependent. In this case, samples belonging to one subject appear both in the training dataset and
in the validation dataset, usually causing over-optimistic accuracy of the classifier. SI: subject-independent,
which means subjects and samples belonging to the validation dataset are totally new to the trained classifier.
LS-SVM: least-square support vector machine; PCG: phonocardiography; PPG: photoplethysmography; ELM:
extreme learning machine; LFDM: linear feature dependency modeling; XGBoost: eXtreme Gradient Boosting;
BLSTM-LSTM: a combination of bidirectional long short-term memory (BLSTM) and long short-term memory
(LSTM) networks. PCG: phonocardiography; PPG: photoplethysmography; EDA: electrodermal activity; fNIRS:
functional near-infrared spectroscopy; HR: heart rate; BR: breathing rate; RESP: respiration. #: number.

In order to accurately recognize cognitive load conditions, the current work explored a large
set of initial features of HRV and EEG, and selected a low-dimension critical feature subset by using
sequential backward selection (SBS) and particle swarm optimization (PSO) algorithms. We trained
several common classifiers with selected feature subset, and finally constructed effective pattern
recognition models of cognitive load through subject-independent validation. Although previous work
has shown that no explicit HRV parameters were continuously correlated with EEG parameters [26],
we hypothesize that HRV and EEG parameters are complementary with each other, and their
combination can improve the recognition of cognitive load conditions.
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2. Materials and Methods

The dataset used in this work is available on Physiobank, and has been contributed by Igor
Zyma, Sergii Tukaev, and Ivan Seleznov [27,28]. Firstly, necessary information about this dataset,
e.g., subjects and mental task procedure, is introduced in this section. Secondly, we regrouped the
data to form two binary classification problems of cognitive load. Thirdly, HRV and EEG parameters
commonly used in literature were extracted as physiological features of cognitive load conditions.
Lastly, we introduced the methods of feature selection and the criteria of classification accuracy.

2.1. Subjects

In total, 66 healthy right-handed volunteers (47 women and 19 men) were initially involved in the
study. All subjects were 1st–3rd year students of the Taras Shevchenko National University of Kyiv,
aged 18 to 26 years (18.6 ± 0.87 years). The subjects were eligible to enroll in the study if they had
normal or corrected-to-normal visual acuity, normal color vision, and had no clinical manifestations of
mental or cognitive impairment or verbal or non-verbal learning disabilities. Exclusion criteria were the
use of psychoactive medication, drug or, alcohol addiction, and psychiatric or neurological complaints.

2.2. Experiment Procedure

The mental arithmetic task for inducing cognitive load was to continuously subtract the two-digit
number from the four-digit number, and the accurate calculation times of each subject in four minutes
were counted out after the arithmetic task. The subjects were rated according to the number of accurate
calculations, and they were divided into two groups [27,28]. Group “G” had 24 subjects who performed
good quality count (number of accurate calculations in 4 min: 21 ± 7.4); Group “B” had 12 subjects
who performed bad quality count (number of accurate calculations in 4 min: 7 ± 3.6) [27,28]. Before
the 4-min mental arithmetic task began, there were 3 min of baseline state recorded from each subject.
ECG and EEG data were acquired throughout the experiment, but only the 3-min baseline data and
the data in the first-minute calculation were kept in the dataset [27,28].

The EEGs were recorded monopolarly using the Neurocom EEG 23-channel system.
The silver/silver chloride electrodes were placed on the scalp according to the International 10/20
scheme. All electrodes were referenced to the interconnected ear reference electrodes. Noise and
artifacts in EEG data were removed by a 0.5 Hz cut-off frequency high-pass filter, a 45 Hz low-pass
filter, a 50 Hz power-line notch filter and an independent component analysis (ICA) method [27,28].

We applied an adaptive threshold method based on wavelet decomposition to locate the position
of R peaks in the ECG data and to obtain the RR interval series [29]. Due to the variation of heartbeat
speed of different subjects, the number of RR intervals in one minute varies from 60 to 120. In order to
obtain a compromise between the length of RR interval series and the number of subjects included in
the dataset, we set 80 as the length of the RR interval series, and those without 80 RR intervals in one
minute were excluded from the original dataset, keeping the data of 29 subjects (21 women and 8 men)
for further analysis. The data selection and exclusion process is shown in Figure 1.

2.3. Grouping Rules

We aimed to solve two binary classification problems: cognitive load (CL) state vs. baseline
(BL) state and cognitive load mismatching (CLMM) state vs. cognitive load matching (CLM) state.
These two binary classification problems have practical values in e-learning. Distinguishing CL from BL
helps the e-learning system to tell whether the learner is currently learning. Recognition of CLMM and
CLM also helps the e-learning system to judge whether the learner is effectively learning. For the CL
vs. BL classification problem, we divided the data into CL and BL groups: the CL group corresponding
to data of the first-minute calculation, and the BL group corresponding to data of one-minute baseline.
For the CLMM vs. CLM classification problem, we divided the data into CLMM and CLM groups:
the CLMM group having first-minute calculation data of the subjects with bad quality count, and the
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CLM group having first-minute calculation data of the subjects with good quality count. We took effort
to construct three different pattern recognition models for each of the above two binary classification
problems, and these models were based on different options of physiological signals. The detailed
information of the models is shown in Table 2.
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Table 2. Grouping rules.

Group # Subjects # Male # Female Model Name Physiological Signal

CL vs. BL 27 vs. 27 8 vs. 7 19 vs. 20
Model A HRV
Model B EEG
Model C HRV and EEG

CLMM vs. CLM 9 vs. 18 3 vs. 5 6 vs. 13
Model D HRV
Model E EEG
Model F HRV and EEG

Among the data of 29 subjects, the BL data of two subjects and the CL data of another two subjects were heavily
distorted by noise and eliminated from the dataset. #: number.

2.4. Feature Extraction

In order to quantify the ANS activity, we extracted 27 linear and nonlinear parameters from the
RR interval series as features of cognitive load conditions. These parameters were commonly applied
to HRV analysis in literature [30–33]. Besides, six commonly used EEG parameters which measured
the central nervous system (CNS) activity, e.g., powers of sub-band brainwaves [34], were also applied
as features of cognitive load conditions. The HRV and EEG features are respectively shown in
Tables 3 and 4.

2.5. Balanced Sample Sets

As shown in Table 2, the sample sets of CLMM and CLM are unbalanced, which may cause the
bias of the pattern recognition model to the majority samples. In order to avoid such bias, we adopted
the Borderline-SMOTE1 algorithm to oversample the minority samples [35], so that the sample size of
the CLMM group expanded to 18, the same to that of the CLM group.
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Table 3. HRV features of cognitive load.

Indices Description Relation with ANS Activity

SDRR Standard deviation of RR intervals A measure of HRV in time domain [26], which reflects the
activities of SNS and PNS, mainly SNS activity [27].

RMSSD Square root of the mean squared
differences of successive RR intervals

A measure of HRV at one adjacent beat scale, which reflects
the vagal activity [27].

Mean Mean of RR intervals A measure of the average level of ANS activity [26].
Area Summation of RR intervals A measure of total amount of ANS activity in time domain.

MFD Mean of the first differences of
RR intervals

A measure of HRV at one adjacent beat scale, which reflects
the average fluctuation of ANS activity [25].

pNN20 Proportion of differences between
successive RR intervals longer than 20 ms

A measure of HRV in time domain, which reflects the
fluctuation of ANS activity.

pNN10 Proportion of differences between
successive RR intervals longer than 10 ms

A measure of HRV in time domain, which reflects the
fluctuation of ANS activity.

HRVC Heart rate variation coefficient, calculated
by the ratio of SD to Mean A measure of normalized fluctuation of ANS activity.

VLF The power of RR intervals between 0 Hz
and 0.04 Hz A measure of SNS activity [28].

LF The power of RR intervals between 0.04
Hz and 0.15 Hz A measure of combined activities of SNS and PNS [26,27].

HF The power of RR intervals between 0.15
Hz and 0.4 Hz A measure of PNS activity [26,27].

TOTPWR The power of RR intervals between 0 Hz
and 0.4 Hz

A measure of total amount of ANS activity in frequency
domain [26].

HF/(LF+HF) The ratio of HF/(LF+HF) A measure of normalized PNS activity.
LF/(LF+HF) The ratio of LF/(LF+HF) A measure of normalized PNS+SNS activity [26].

LF/HF The ratio of LF/HF A measure of the balance between SNS and ANS [27].

Entropy PeEn, ApEn, MFEn, SampEn Measures of the complexity of RR interval series caused by
competition between SNS and PNS [27].

DFA (α1, α2, α1/α2) Detrend fluctuation analysis Measures of the fractal properties of RR interval series caused
by competition between SNS and PNS [27].

TFC Total fluctuation coefficient A measure of the fluctuation of ANS activity in scales 1~M
[33]. We set M = 10 in the current work.

PP (SD1, SD2, SD1/SD2) Poincaré Plot Measures of short-term and long-term HRV, which reflects the
fluctuation of ANS activity [26,27].

RLHE Range of the local Hurst exponents A measure of the complexity of RR interval series, which is
controlled by competition between SNS and PNS [25].

PeEn: permutation entropy; ApEn: approximate entropy; SampEn: sample entropy; MFEn: multiscale fuzzy
measure entropy; PNS: parasympathetic nervous system; α1 and α2 were calculated with the small scale (4 ≤ n ≤ 16)
and large scale (16 ≤ n ≤ 32), respectively.

2.6. Feature Selection and Classification

The original 27 HRV parameters and 6 EEG parameters were commonly applied to the analysis of
ANS and CNS activities in literature [30–34]. However, they are not specific to the pattern recognition
of cognitive load conditions. In terms of accuracy and computational efficiency, some features can
even be a burden of the classification problems. Therefore, feature selection is necessary to find out
the feature subset that is critical to the classification problems. The feature selection process is a
combinatorial optimization problem to find a vector

⇀
x
∗

in the feature space X, so that

∀
⇀
x ∈ X, f (

⇀
x
∗

) = min f
(⇀

x
)

(1)

where
⇀
x = [x j]1×M is a vector consisting of M features, with x j = 1 denoting the jth feature is selected,

and x j = 0 denoting the jth feature is not selected. f (·) is the evaluation function of the selected feature
subset. In order to keep the complementary information among the features in the subset, we chose
sequential backward selection (SBS) algorithm and particle swarm optimization (PSO) algorithm to
perform feature selection [36,37]. SBS eliminates the least important feature from the subset at each
iteration, until there is only one feature left in the subset. On the one hand, SBS is good at reducing the
dimension of the feature subset. On the other hand, PSO has a strong ability of global optimization [38].
Therefore, when combining PSO and SBS, we firstly applied PSO to get an optimal feature subset
which has the best evaluation function value in the searching process, and then used SBS to further
reduce the dimension of the optimal feature subset. The quality of selected feature subset in each
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iteration of SBS and PSO process was evaluated by evaluation functions, i.e., f 1 for SBS and f 2 for PSO,
which are calculated as in Equations (2) and (3):

f1 =

∑N
n=1 ncorrect

ntotal
(2)

f2 = α×
#Features

#All Features
+ (1− α) ×

ErrorRate
ER

(3)

where N is the number of subjects (N = 36 for CLMM vs. CLM, and N = 29 for CL vs. BL), ncorrect is the
number of correctly classified samples of one subject, and ntotal is the number of samples of all subjects.
α is the weighting coefficient, which is empirically set as α = 0.8. Moreover, #Features means the
number of features currently selected, and #All Features is the total number of initial features. ErrorRate
and ER respectively represent the mean error rates obtained by currently selected features and all
features. ncorrect, ntotal, ErrorRate and ER were calculated in leave-one-subject-out cross validation.
The leave-one-subject-out cross validation is to leave the samples belonging to one subject as the test
set, and to repeat such test until the samples of every subject are tested. In the PSO feature selection
process, the population size P = 30, the maximum iteration T = 50 in Model A and D and T = 100 in
other models, the inertia weight ω = 0.7298, and the acceleration constants C1 = C2 = 2.

Table 4. EEG Features of Cognitive Load.

EEG Index Description Relation with CNS Activity

DP Delta band (1–4 Hz) power A measure of unconscious mind [34].
TP Theta band (4.1–5.8 Hz) power A measure of subconscious mind [34].
AP Alpha band (5.9–7.4 Hz) power A measure of relaxed mental state [34].
BP Beta band (13–19.9 Hz) power A measure of active state of mind [34].
GP Gamma band (20–25 Hz) power A measure of hyper brain activity [34].

WE Wavelet entropy A measure of energy distribution of
EEG at different scales [39].

In this work, we chose DB4 as wavelet packet decomposition function with the scale of 7 to calculate the WE.

Four kinds of classifiers, namely support vector machine (SVM, kernel function types: ‘quadratic’
and ‘rbf’), K-nearest neighbor (KNN) and decision tree (DT), were adopted to solve the above-mentioned
binary classification problems, and they were trained by the samples of N − 1 subjects. Sensitivity
(Sens.), specificity (Spec.), precision (Prec.), accuracy (Acc.), F1-score (F1) and the area under receiver
operating characteristic (AUC) of the leave-one-subject-out cross validation were calculated to evaluate
the performance of each classifier, as shown in Equations (4)–(9):

Sens =
TP

TP + FN
(4)

Spec =
TN

TN + FP
(5)

Prec =
TP

TP + FP
(6)

Acc =
TP + TN

TP + FP + TN + FN
(7)

F1 =
2 ∗ Sens ∗ Spec
(Sens + Spec)

(8)

AUC =
1
2

( TP
TP + FN

+
TN

TN + FP

)
(9)
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For each of the binary classification problems, we set samples in the CL and CLM categories as the
positive ones, and samples in the BL and CLMM categories as the negative ones. In Equations (4)–(9),
TP denotes the number of correctly classified samples in the positive category, TN denotes the number
of correctly classified samples in the negative category, FP is the number of incorrectly classified samples
in the negative category, and FN is the number of incorrectly classified samples in the positive category.

3. Results

3.1. Parameter Settings of Entropy Features

The value of entropy index depends on the settings of embedding dimension m, tolerance threshold
r and delay time τ. The delay time τ was calculated with the mutual information method proposed
in literature [40]. For the embedding dimension m and tolerance threshold r, we firstly set an initial
variation range of m and r, and then determined the values of m and r through Mann–Whitney U
test. The appropriate values of m and r resulted in the entropy indices, which were significantly
different between the positive group (CL or CLM) and the negative group (BL or CLMM). The detailed
parameter settings are shown in Table 5.

Table 5. Settings of entropy parameters based on MANN–WHITNEY U test.

Feature Group Mean ± SD Embedding
Dimension

Tolerance
Threshold Sig. Description

ApEn

CL 0.67 ± 0.16
m = 2 r = 0.4 × SDRR 0.002

m varies from 1 to 3, and r varies
from 0.1 × SDRR to 0.9 × SDRR

BL 0.78 ± 0.14
CLMM 0.62 ± 0.12

m = 2 r = 0.6 × SDRR 0.041CLM 0.47 ± 0.18

SampEn

CL 1.17 ± 0.33
m = 1 r = 0.3 0.01

m varies from 1 to 3, and r varies
from 0.1 to 0.9

BL 1.39 ± 0.29
CLMM 0.70 ± 0.16

m = 2 r = 0.6 0.03CLM 0.52 ± 0.21

PeEn

CL 0.59 ± 0.03
m = 6 - 0.009 m varies from 3 to 7, and τ is

calculated by mutual
information method

BL 0.61 ± 0.02
CLMM 0.97 ± 0.13

m = 3 - 0.017CLM 0.93 ± 0.40

MFEn

CL 0.33 ± 0.18
m = 1 r = 0.1 <0.001

m varies from 1 to 3, and r varies
from 0.1 to 0.9. The scale of CL vs.
BL and CLMM vs. CLM are 5 and

2, respectively

BL 0.50 ± 0.13
CLMM 1.25 ± 0.16

m = 3 r = 0.2 0.015CLM 1.02 ± 0.27

Sig.: significance of Mann–Whitney U test.

3.2. Results of Feature Selection

Figures 2–4 respectively show the number of selected features and corresponding mean accuracy
in the process of feature selection. Although the evaluation function of PSO in Equation (3) takes
feature dimension into consideration, the dimension of the best feature subset found by PSO is still
high, e.g., 6 for KNN (CL vs. BL) in Figure 2a, 7 for SVM (rbf) (CLMM vs. CLM) in Figure 3a, and 9 for
KNN (CLMM vs. CLM) in Figure 4a. Considering the relatively small sample amount in the dataset,
the higher dimension of feature set leads to higher risk of over fitting.

Therefore, we made a compromise between the accuracy of the classifier and the dimension of
selected features, i.e., decreasing the dimension of selected features at the cost of a small decrease of
mean accuracy. As marked in Figures 2–4, if we constrain the dimension of the feature subset to be no
more than 4, the highest mean accuracies with HRV features, EEG features and HRV+EEG features,
were respectively obtained by DT (CL vs. BL and CLMM vs. CLM) and SVM (rbf) (CLMM vs. CLM)
in Figure 2, KNN (CLMM vs. CLM) and DT (CL vs. BL) in Figure 3, and SVM_quadratic (CLMM vs.
CLM) and DT (CL vs. BL) in Figure 4. Compared with the SBS algorithm alone, PSO and SBS found
better 3-dimension feature subsets for models B, D and E. As shown in Table 6, the cost of doing this is
that the computation time increases more than ten times.
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DT AP_Fp2, AP_Pz, BP_O1 PSO and SBS 2234.7 0.82 78.1 92.6 74.1 0.83 83.3 

Model C 

SVM_q 
AP_O1, AP_A2A1, GP_O1, 

Mean 
SBS 167.8 0.93 92.6 92.6 92.6 0.93 92.6 

SVM_r WE_P3, Area, LF, ApEn SBS 198.5 0.91 92.3 88.9 92.6 0.91 90.7 
KNN TP_O1, Mean, LF, ApEn PSO and SBS 762.9 0.90 86.7 96.3 85.2 0.91 90.7 
DT BP_F4, Mean, LF, ApEn SBS 178.5 0.96 93.1 100 92.6 0.96 96.3 

Model D 

SVM_q MFD, SampEn, MFEn  SBS 7.9 0.88 100 77.8 100 0.89 88.9 
SVM_r CVrr, SD1, SD1/SD2 PSO and SBS 515.8 0.91 100 83.3 100 0.92 91.7 
KNN ApEn, SD1, SD1/SD2 PSO and SBS 558.3 0.85 93.3 77.8 94.4 0.86 86.1 
DT HF/(LF+HF), α2/α1, TFC PSO and SBS 555.0 0.92 94.1 88.9 94.4 0.92 91.7 

Model E 

SVM_q DP_T4, AP_Pz, PSO and SBS 1207.0 0.80 86.7 72.2 88.9 0.81 80.6 
SVM_r WE_F4, WE_F7 SBS 29.0 0.78 73.9 94.4 66.7 0.81 80.6 
KNN DP_Cz, BP_F3 PSO and SBS 1141.8 0.92 94.1 88.9 94.4 0.92 91.7 

DT DP_T6, GP_T4 SBS 35.2 0.85 81.0 94.4 77.8 0.86 86.1 

Model F 

SVM_q BP_T4, BP_O1, MFD, TFC SBS 114.0 0.97 100 94.4 100 0.97 97.2 
SVM_r GP_Fz, MFD, SampEn, SD2 SBS 125.8 0.94 94.4 94.4 94.4 0.94 94.4 
KNN GP_T4, MFD, PeEn, TFC SBS 200.8 0.94 100 88.9 100 0.94 94.4 
DT AP_T4, LF, TFC, SD1/SD2 SBS 149.3 0.92 89.5 94.4 88.9 0.92 91.7 

Figure 4. The results of EEG+HRV feature selection for Models C and F. (a) SBS and PSO, and (b) SBS.

Table 6. Critical feature subsets of models A–F and performance indices of the classifiers.

Model Classifier Critical Feature Subset Mfs
Tfs

(min) F1 Prec.
(%)

Sens.
(%)

Spec.
(%) AUC Acc.

(%)

Model A

SVM_q Area, LF, HF/(LF+HF) SBS 11.9 0.87 83.3 92.6 81.5 0.87 87.0
SVM_r RMSSD, LF, MFEn SBS 10.4 0.83 82.1 85.2 81.5 0.83 83.3
KNN Area, LF, LF/HF SBS 9.6 0.86 81.3 96.3 77.8 0.87 87.0
DT Area, LF, ApEn SBS 10.6 0.91 92.3 88.9 92.6 0.91 90.7

Model B

SVM_q AP_Pz, BP_F7, BP_O2 SBS 29.3 0.72 71.4 74.1 70.4 0.72 72.2
SVM_r DP_F8, AP_Fp1, BP_Pz SBS 25.8 0.78 75.9 81.5 74.1 0.78 77.8
KNN DP_T3, TP_F8, AP_O1 PSO and SBS 1455.3 0.72 73.1 70.4 74.1 0.72 72.2
DT AP_Fp2, AP_Pz, BP_O1 PSO and SBS 2234.7 0.82 78.1 92.6 74.1 0.83 83.3

Model C

SVM_q AP_O1, AP_A2A1, GP_O1, Mean SBS 167.8 0.93 92.6 92.6 92.6 0.93 92.6
SVM_r WE_P3, Area, LF, ApEn SBS 198.5 0.91 92.3 88.9 92.6 0.91 90.7
KNN TP_O1, Mean, LF, ApEn PSO and SBS 762.9 0.90 86.7 96.3 85.2 0.91 90.7
DT BP_F4, Mean, LF, ApEn SBS 178.5 0.96 93.1 100 92.6 0.96 96.3

Model D

SVM_q MFD, SampEn, MFEn SBS 7.9 0.88 100 77.8 100 0.89 88.9
SVM_r CVrr, SD1, SD1/SD2 PSO and SBS 515.8 0.91 100 83.3 100 0.92 91.7
KNN ApEn, SD1, SD1/SD2 PSO and SBS 558.3 0.85 93.3 77.8 94.4 0.86 86.1
DT HF/(LF+HF), α2/α1, TFC PSO and SBS 555.0 0.92 94.1 88.9 94.4 0.92 91.7

Model E

SVM_q DP_T4, AP_Pz, PSO and SBS 1207.0 0.80 86.7 72.2 88.9 0.81 80.6
SVM_r WE_F4, WE_F7 SBS 29.0 0.78 73.9 94.4 66.7 0.81 80.6
KNN DP_Cz, BP_F3 PSO and SBS 1141.8 0.92 94.1 88.9 94.4 0.92 91.7

DT DP_T6, GP_T4 SBS 35.2 0.85 81.0 94.4 77.8 0.86 86.1

Model F

SVM_q BP_T4, BP_O1, MFD, TFC SBS 114.0 0.97 100 94.4 100 0.97 97.2
SVM_r GP_Fz, MFD, SampEn, SD2 SBS 125.8 0.94 94.4 94.4 94.4 0.94 94.4
KNN GP_T4, MFD, PeEn, TFC SBS 200.8 0.94 100 88.9 100 0.94 94.4

DT AP_T4, LF, TFC, SD1/SD2 SBS 149.3 0.92 89.5 94.4 88.9 0.92 91.7

SVM_q: quadratic polynomial as kernel function of SVM. KNN: k-nearest neighbors using Euclidean distance
weighting. SVM_rbf: rbf as kernel function of SVM. Fp2, F7, Pz, T3, C3, A2, A1, F4, T4, T5, F8, C4, O1, O2, F3, Fp1,
Cz, P4 and T6 represent various channels of EEG signal. Naming rules for EEG features: feature name _ channel
name. Mfs: Method of feature selection. Tfs: Time of feature selection.

The performance indices of the classifiers in Models A–F are shown in Table 6. Compared with
single-modal signal (HRV or EEG), the fusion of HRV and EEG obtained better pattern recognition
performances for CL vs. BL and CLMM vs. CLM problems. In Models C and F, we can see that the
features of EEG and those of HRV are complementary to each other, so that the combination of EEG
and HRV features improves the distinguishability of the positive and negative samples, verifying the
hypothesis made in the introduction section. The confusion matrices of Models C and F are shown in
Table 7. The bold parts in Tables 6 and 7 represent the best classification results for each model.
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Table 7. The confusion matrices of Models C and F.

Model Classifier Mfs Classified as CL BL CLMM CLM

Model C

SVM_q SBS
CL 92.6% 7.4% - -
BL 7.4% 92.6% - -

SVM_r SBS
CL 88.9% 11.1% - -
BL 7.4% 92.6% - -

KNN SBS and PSO
CL 96.3% 3.7% - -
BL 14.8% 85.2% - -

DT SBS
CL 100 0% - -
BL 7.4% 92.6% - -

Model F

SVM_q SBS
CLMM - - 100% 0%
CLM - - 5.6% 94.4%

SVM_r SBS
CLMM - - 94.4% 5.6%
CLM - - 5.6% 94.4%

KNN SBS
CLMM - - 100% 0%
CLM - - 11.1% 88.9%

DT SBS
CLMM - - 88.9% 11.1%
CLM - - 5.6% 94.4%

3.3. Validation with E-Learning Data

We acquired e-learning data from real-world math courses for model validation. Five subjects
took our e-learning math course and had their EEG and ECG data recorded. As our EEG device had
128 channels, the sub-band brainwave energy was very different from that of the 23-channel EEG data
in literature [27,28]. Therefore, we only used the ECG data to validate our Model A. Each subject
provided 10 min of ECG data, including 5 min of baseline state and 5 min of e-learning state. After
eliminating noisy data, the sample size of the validation data set is 41 (21 of CL state and 20 of BL
state). Each sample was described as 3-dimension vector of the critical ECG features of Model A, i.e.,
Area, LF and ApEn. Finally, we got 65.5% F1 score of the validation accuracy of Model A in the real
e-learning status, and the confusion matrix is shown in Table 8.

Table 8. The confusion matrix of validation using e-learning data.

Classifier Classified as CL BL

DT
CL 55.0% 45.0%
BL 19.0% 81.0%

4. Discussion

Compared with the previous research in Table 1, our work not only considered the CL vs. BL
classification problem, but also explored the pattern recognition of CLMM vs. CLM. For the CL vs.
BL classification problem, the best subject-independent results of the previous research are those in
literature [11], i.e., 90% of Acc, 86% of Sens. and 95% of Spec. with SD1, SD2 and a complex measure
of HRV named En(0.2). The best subject-independent results of CL vs. BL classification in this work
are given by the DT classifier of Model C in Table 6. As shown in Table 6, better performance indices
than those in [11] were obtained, with three HRV features and one EEG feature. If we use the same
dimension of features to that in [11], the SVM (quadratic) classifier with three features, namely AP_O1,
GP_O1 and Mean, got the Acc., Sens. and Spec. indices of 90.7%, 96.3% and 85.2%, respectively. For the
CLMM vs. CLM problem, we use two HRV features and two EEG features to get better classification
results than those in literature [19]. By using the real e-learning ECG data, we got a validation accuracy
of 65.5% F1 score, much higher than that of a random guess.

It is worth noting that the relatively small amount of samples and subjects has limited further
exploration of the generalization performance of the models proposed in this work. Although the
validation accuracy of Model A is better than that of random guess, it is far away from the requirement
of real application. There are two ways to improve the accuracy of CL vs. BL and CLMM vs. CLM
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classification. The first one is to enlarge the amount of data samples, and the second one is to use
other math tasks which elicit CLMM and CLM states of the college students (i.e., the subjects). In our
validation data acquisition, we found that subtracting a two-digit number from a four-digit number
was too easy for the college students, and the CLMM state failed to be elicited.

5. Conclusions

By using the combination of one EEG feature (BP_F4) and three HRV features (Mean, LF and
ApEn), the DT classifier has classified the CL and the BL states with the accuracy of 96.3%, showing that
the CL and BL states are distinguishable in the level of active state of mind, the average level of ANS
activity, the combined activities of SNS and PNS, and the competition between SNS and PNS. For the
classification of CLMM and CLM states, the SVM (quadratic) classifier, two EEG features (BP_T4,
BP_O1) and two HRV features (MFD, TFC) have obtained the accuracy of 97.2%, showing that the
CLMM and CLM states are distinguishable in the level of active state of mind, the total and the average
fluctuation of ANS activity. The current work has application value in practice, because it provides an
objective quantitative method for the monitoring of cognitive load conditions in e-learning.
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