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ABSTRACT

Findings from clinical and biological studies are of-
ten not reproducible when tested in independent co-
horts. Due to the testing of a large number of hy-
potheses and relatively small sample sizes, results
from whole-genome expression studies in particu-
lar are often not reproducible. Compared to single-
study analysis, gene expression meta-analysis can
improve reproducibility by integrating data from mul-
tiple studies. However, there are multiple choices
in designing and carrying out a meta-analysis. Yet,
clear guidelines on best practices are scarce. Here,
we hypothesized that studying subsets of very large
meta-analyses would allow for systematic identifica-
tion of best practices to improve reproducibility. We
therefore constructed three very large gene expres-
sion meta-analyses from clinical samples, and then
examined meta-analyses of subsets of the datasets
(all combinations of datasets with up to N/2 samples
and K/2 datasets) compared to a ‘silver standard’ of
differentially expressed genes found in the entire co-
hort. We tested three random-effects meta-analysis
models using this procedure. We showed relatively
greater reproducibility with more-stringent effect
size thresholds with relaxed significance thresholds;
relatively lower reproducibility when imposing ex-
traneous constraints on residual heterogeneity; and
an underestimation of actual false positive rate by
Benjamini–Hochberg correction. In addition, multi-
variate regression showed that the accuracy of a
meta-analysis increased significantly with more in-
cluded datasets even when controlling for sample
size.

INTRODUCTION

Reproducibility in research

Non-reproducibility of results is a major problem in
biomedical research (1,2), with rates as high as 65–89%
in pharmacological studies (3,4) and 64% in psychological
studies (5). This problem is especially prominent in high-
dimensional experiments such as gene expression analyses,
where thousands of hypotheses are being tested simultane-
ously (6,7). Even with strict multiple-hypothesis correction,
it was shown that 26 of 36 (72%) genomic associations ini-
tially reported as significant were found to be over-estimates
of the true effect when tested in additional datasets (8).

Irreproducibility in biomedical research is due to both
biological models and analytic methods. For instance, im-
mortalized cell lines and genetically identical inbred mouse
strains are important tools for preclinical research, but ex-
perimental homogeneity makes study results less general-
izable, and less likely to be reproduced in diverse patient
populations (9,10). In addition, there is an analytic focus on
significance (P) values rather than effect size or independent
verification (1,11). Rigorous experimental design should in-
stead focus on appropriately incorporating and accounting
for study heterogeneity, and then validating results in inde-
pendent cohorts.

Gene expression analysis

The most common purpose of a gene expression study is to
find statistically differentially expressed genes (DEGs) (12),
which are determined by comparing sample-level gene ex-
pression data between cases and controls. DEGs can then be
used to gain insight into disease pathophysiology, to serve as
clinical biomarkers, and as targets for pharmacologic ther-
apy, among other applications. Typically, gene expression
analyses reduce false positive DEGs by limiting P values
using multiple-hypothesis corrections (such as Benjamini–
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Hochberg (13)) and/or by imposing thresholds such as min-
imum effect size (7). Next, the DEGs are typically validated
in independent samples collected at the same center using
the same experimental protocol; rarely do studies validate
results in independent samples from another clinical cen-
ter, primarily because such studies are more time consum-
ing and expensive. However, samples collected at a single
center following a strict protocol are highly unlikely to rep-
resent the heterogeneity observed in the patient population,
which in turn increases the probability of non-reproducible
results.

One of the ways to improve reproducibility is integrat-
ing multiple microarray datasets via gene expression meta-
analysis, which has proven useful in practice because it pro-
duces results that validate in independent datasets (14–22).
Gene expression meta-analysis is often performed using
data from growing public repositories such as the National
Center for Biotechnology Information’s (NCBI) Gene Ex-
pression Omnibus (GEO) and the European Bioinformatics
Institute’s (EBI) ArrayExpress, which together house over
70 000 datasets composed of over 1.7 million assays. As gene
expression meta-analysis is becoming an increasingly main-
stream tool for integrating gene expression data (12), guide-
lines are needed to establish best practices to ensure robust,
reproducible results, and to maximize utilization of publicly
available data.

Here, we review the different types of meta-analysis mod-
els, focusing on random-effects models. We systematically
analyse their differences in gene expression meta-analyses
in six diseases drawn from a broad range of pathologies and
tissue types. Finally, in very large meta-analyses of three of
the six diseases, we use comprehensive subsets and silver-
standard true positive DEGs to test the effects on repro-
ducibility of using different random-effects models, thresh-
olds, and designs. We show that different random-effects
models have differing true- and false-positive rates, and
that relative reproducibility increases by adding effect size
thresholds and by increasing the number of datasets for any
fixed number of samples. We further provide guidelines for
how a researcher can design and carry out a gene expression
meta-analysis.

Types of meta-analysis

There are many methods of meta-analysis, including com-
bining significance (P) values, Z-scores, ranks, or effect sizes
(the latter using fixed-effects or random-effects models);
each of these results in formal overall P values for each effect
studied. One major advantage of the models that combine
effect sizes is that an overall estimate of effect size is given,
which can be a useful parameter in assessing the impor-
tance of a result. Other methods for combining information
between studies include simple ‘vote-counting’ (wherein re-
sults are ranked by the number of studies that call each re-
sult significant), and so-called ‘pooled analysis’ (where raw
data from multiple studies are concatenated into a single
matrix and treated as a single dataset); neither of these has
the rigorous statistical framework of formal meta-analysis.
These multiple types of meta-analysis have been reviewed
and compared elsewhere (12,23–26).

Random-effects models versus fixed-effects models

The random-effects and fixed-effects models differ in the
assumptions they make about the populations being stud-
ied. Random-effects models assume that each individual
study effect is an estimate of a theoretical overall popula-
tion effect, and thus the random-effects summary effect size
is an estimate of the true effect size in the overall popula-
tion. In contrast, fixed-effects models estimate a summary
effect size only of the studies present in the meta-analysis,
rather than from a theoretical overall population. For this
reason, random-effects models are generally a more desir-
able method to use in gene-expression meta-analysis, where
the real goal is to try to discover the background biologi-
cal ‘true’ effect, rather than simply to synthesize the avail-
able data. One drawback of random-effects meta-analysis is
that it is not appropriate for count-based data such as RNA-
seq (as the count data are not normally distributed), as dis-
cussed elsewhere (27,28). However, microarrays are still the
dominant genome-wide expression measurement assay: in
2015, 6569 new RNA assays were indexed by ArrayExpress
and GEO, of which 2024 were sequencing assays and 4615
were array assays (presumably a very small number of stud-
ies had both). Microarrays also have the distinct advantage
of providing an equivalent measure of relative expression at
a lower cost (29).

Inter-study heterogeneity

Different patient cohorts studied using different types of
microarrays at different laboratories often show different
findings even for the same question. Inter-study heterogene-
ity is a measure of the degree to which an effect differs
among studies. Although increased inter-study heterogene-
ity reduces statistical power, some sources of heterogeneity
may actually increase the generalizability of the result. For
instance, if one were to remove technical heterogeneity by
using only datasets from a single popular microarray plat-
form (e.g. Affymetrix Human Genome), the result would
likely be more significant genes, but at a cost of less general-
izability (e.g. lower discriminatory power on a different mi-
croarray platform such as Illumina BeadChip). As another
example, including only adults in a meta-analysis may re-
sult in more significant genes, but may make the results less
likely to also validate in children. One objective method for
determining study inclusion/exclusion criteria is ‘MetaQC’,
which provides a systematic framework to assess study qual-
ity (30). One must weigh these factors in selecting studies for
inclusion, as an overly heterogeneous study population may
yield few significant results, whereas a highly homogenous
study population may not yield generalizable results.

Options in meta-analysis

There are numerous random-effects meta-analysis mod-
els, including Sidik-Jonkman (31), empiric Bayes (32,33),
Hedges-Olkin (34), DerSimonian-Laird (35) (the most com-
monly used method (24)), restricted maximum likelihood
(36), and Hunter-Schmidt (37). In addition, there are many
popular programs and platforms that can be used for
random-effects meta-analysis of gene expression microar-
rays (for example, GeneMeta (38), MAMA (39), MetaDE
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(40), ExAtlas (41), rmeta (42), metafor (43), etc.). Sev-
eral offer the ability to choose among multiple differ-
ent random-effects models (as described above) for meta-
analysis. However, there is little guidance on how gene ex-
pression meta-analyses should be designed, what random-
effects models should be used, and how to test the results
for significance. Here, we addressed the impact of vari-
ous random-effects models, thresholds for significance, and
study designs through systematic analysis of large meta-
analyses across a diverse range of tissue types and diseases.

METHODS

Construction of meta-analysis cohorts

In order to study the effects of meta-analysis models, sam-
ple size, and number of datasets on the accuracy of gene
expression meta-analysis, we studied meta-analyses of six
diseases using public data. Three (influenza infection, bac-
terial sepsis and pulmonary tuberculosis) were used as pre-
viously described (18–21), and three new analyses were con-
structed according to criteria below (cardiomyopathy (44–
55), kidney transplant rejection (14,56–67) and lung ade-
nocarcinoma (68–81), Supplementary Tables S1–S3). The
three new analyses were arrived at by repeatedly perform-
ing systematic searches of NIH GEO and ArrayExpress for
clinical (in vivo) studies that (i) yielded an aggregate sam-
ple size of >1000 samples from >10 datasets, (ii) measured
the same disease state and had the same type of controls in
each dataset and (iii) had appropriate study design (exclud-
ing studies where, for instance, healthy controls came from
one batch and diseased samples were processed separately).
We further imposed a constraint that a pathology type (i.e.
neoplasm, autoimmunity, fibrotic remodeling) only be rep-
resented once in the three large meta-analyses to prevent
confounding. Studies done on two-color arrays or on plat-
forms with fewer than 10 000 genes were excluded. Each
dataset was downloaded from the public domain and log2
transformed if not already in log scale. Each dataset in each
of the six analyses (‘diseases’) was then limited to only the
genes present in all studies in the disease.

Comparison of meta-analysis method results

The effect size for each probe was measured as corrected
Hedges’ g. Within each dataset, probes were summarized to
genes with a fixed-effects model because there is reasonable
homogeneity within any given study (23). Meta-analyses for
each gene were performed between datasets using the R
package ‘metafor’ (43). In all cases, P-values were corrected
to q-values using the Benjamini-Hochberg method. Inter-
study residual heterogeneity was measured with Cochran’s
Q, which was tested for significance using Chi-square dis-
tribution.

For each disease, for each of the six methods, the num-
ber of genes surviving at q <0.01 was determined, and the
methods were ranked based on these findings (Table 2). For
each disease, we constructed six-way Venn diagrams using
the R package Vennerable to study the overlap in signifi-
cance between the different methods (Figure 2). Based on
the overall ranks and the degree of method overlap, we

chose three methods for further study: Sidik–Jonkman (SJ),
DerSimonian-Laird (DL), and Hunter–Schmidt (HS).

Silver standard true positives

Our goal was to test different methods and parameters of
gene expression analysis to improve reproducibility. Usu-
ally this is done with simulated data (82), but results from
simulated data may differ from those obtained on real data.
We thus constructed ‘silver standard’ lists of differentially
expressed genes for several very large meta-analyses (the
three new analyses listed above: cardiomyopathy, kidney
transplant rejection, and lung adenocarcinoma, each with
at least 13 datasets). For each disease, meta-analysis of the
entire cohort of datasets was performed by all three meth-
ods (SJ, DL, HS). The silver standard true-positive lists were
made of the intersection of genes that were found to be sig-
nificant at q <0.01 by SJ, DL and HS. Genes that were mea-
sured across all datasets for a given disease but were not part
of the silver standard true positives were considered to be
true negatives.

As previously defined (2,8), our silver standard measures
results reproducibility as defined by replication validity.
This is analogous to a ‘real-world’ scenario in which the best
guess for the overall truth for a given hypothesis is the total
sum of all available evidence. An overall finding in a meta-
analysis may not be absolutely ‘true’, but it is relatively more
accurate than the evidence in each individual study. Thus,
the silver standard we have created here is always relatively
more accurate than the findings in each tested subset. This
setup thus allows methodological testing for relative accu-
racy among different meta-analysis models.

Effects of methods and thresholds on true positives and false
positives

In the first analysis, for each disease, all possible combina-
tions of five dataset subsets were separately meta-analyzed
using each of three methods (SJ, DL, HS), and then com-
pared to the silver standard true positives for that disease
(Figure 3). For each subset, we first began at a standard
level of significance (q < 0.01), and then increased either
the significance threshold (q < 1e-2 – q < 1e-10), the effect
size threshold (effect size of 1–2-fold in non-log space), or
the residual heterogeneity threshold (P > 0–P > 0.5, such
that genes with high inter-study residual heterogeneity are
removed). We then chose a single method (DL) and varied
the significance and effect size thresholds simultaneously. In
all plots, the points shown are the mean number of true pos-
itives and false positives across all 5-dataset subsets at the
given parameters.

Effects of K and sample size on accuracy

In the second analysis, we studied the effects of both sam-
ple size and number of datasets (K) in a meta-analysis on its
relative accuracy (using the silver standard true positives es-
tablished above). For each disease, we assembled all dataset
subsets that had an aggregate sample size less than N/2
(where N is the aggregate sample size of all datasets for the
disease) and contained no more than K/2 datasets (Figure
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Figure 1. Effects of heterogeneity in meta-analysis. One key way that meta-analysis models differ is how they treat inter-study heterogeneity. These effects
lead to different assessments of significance between models, and can sometimes be counter-intuitive. Using simulated data of a single effect in five studies,
we explore the effects of changing the effect size and variance of a single study on the overall heterogeneity (τ 2) and significance (P) derived by each model.
In part (A), the five studies have been chosen to show a borderline case, where some models call the effect significant (P < 0.05, EB, REML, DL, HS),
while others do not (SJ, HE). Other things being equal, a higher τ 2 is associated with a less significant P-value. In part (B), increasing the variance of Study
5 leads to lower �2 (since the data are less clearly from a heterogeneous population), but this effect is offset by our decreased confidence in the magnitude
of the effect, leading to smaller estimates of effect size, and decreasing significance. In part (C), if we increase the effect size of study 5, the surprising result
is that random-effects models lose significance, even though the effect size estimate rises, because the estimates of heterogeneity (τ 2) nearly double. Note
that the FE model does not incorporate heterogeneity, and so it produces a more-significant P-value in (C) than in (A). Finally, in part (d), we incorporate
both effects (increased effect size and increased variance) in Study 5. Here, we begin to see complicated effects between the different models. Compared to
(B) and (C), two are largely unchanged (DL, HS), three are less significant (SJ, EB, HE), and REML has varied effects. These effects must be weighed in
selecting a model for a given research question. SJ = Sidik–Jonkman, HE = Hedges–Olkin, EB = empiric Bayes, REML = restricted maximum likelihood,
DL = DerSimonian–Laird, HS = Hunter–Schmidt, FE = fixed effect.

4). All sub-datasets underwent DerSimonian–Laird meta-
analysis, with significance threshold at q < 0.01 and effect
size >1.3-fold. Accuracy (true positives + true negatives /
total genes present) was calculated for each subset and plot-
ted against the sum of geometric mean of cases and controls
for included datasets:

K∑

i = 1

√
Ni controls ∗ Ni cases

Since many gene expression studies are highly unbalanced
between cases and controls, this is a better estimator of sam-

ple power than total N. Each graph shows the regressions
of accuracy on sample size for all subsets with a given num-
ber of datasets (K). Finally, we performed multivariate lin-
ear regression on accuracy as a function of both the sum of
geometric means and K for each disease (Table 3).

Analysis methods

Results are shown as mean ± standard deviation. All analy-
ses were performed in the R programming language, version
3.1.1.
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RESULTS

Types of random-effects models

There are numerous random-effects meta-analysis models.
The primary difference among them is how they incor-
porate inter-study heterogeneity. We have here focused on
six common random-effects models: Sidik-Jonkman (31),
empiric Bayes (32,33), Hedges–Olkin (34), DerSimonian–
Laird (35) (the most commonly used method (24)), re-
stricted maximum likelihood (36), and Hunter-Schmidt (37)
(Table 1). In general, each of these methods uses a different
estimate of inter-study heterogeneity, referred to as τ 2, and
then weights τ 2 differently in the final calculation of signifi-
cance. For instance, Sidik–Jonkman strongly penalizes high
inter-study heterogeneity (83), whereas Hunter-Schmidt is
known to be highly permissive in terms of allowed inter-
study heterogeneity (36). The fundamental concept is that
the more confident we are that the effect sizes from differ-
ent studies have a large spread (i.e. the higher the τ 2), the
less confident we should be in synthesizing their overall ef-
fect. An in-depth example of the effects of heterogeneity on
fixed-effects and random-effects models is shown in Figure
1. To the best of our knowledge, no study has directly com-
pared all six of the models studied here using non-simulated
data.

Systematic analysis of random-effects models

We systematically examined six gene expression meta-
analyses synthesized from 58 public datasets composed of
5888 patient samples covering a range of diseases and tis-
sue types: influenza (whole blood) (19), bacterial sepsis
(whole blood) (18), active tuberculosis (whole blood) (20),
cardiomyopathy (heart biopsy), kidney transplant rejection
(kidney biopsy), and lung adenocarcinoma (lung biopsy)
(see Methods and Table 2). For each disease, we limited
datasets to genes that were measured in all datasets; thus,
diseases with more datasets (and hence more types of mi-
croarrays) had fewer genes in common. We summarized ef-
fect sizes of genes using Hedges’ g, and performed meta-
analyses with six random-effects models (Sidik–Jonkman
(31), Hedges–Olkin (34), empiric Bayes (32), restricted
maximum likelihood (36), DerSimonian–Laird (35) and
Hunter–Schmidt (37); see Methods for details). For each
disease, we ranked the methods by the number of genes
found to be significant at q < 0.01 (Table 2). The ranks
for each method were fairly stable across datasets: Sidik–
Jonkman (SJ) was always most conservative (least number
of significant genes), and Hunter–Schmidt (HS) was always
least conservative (greatest number of significant genes).
Furthermore, the genes identified by the more-conservative
methods were largely subsets of those identified by the less-
conservative methods. For example, 98% of the genes iden-
tified as significant by Sidik–Jonkman were also significant
by the other five methods (Figure 2). We selected three
methods for further study: the most conservative (SJ), least
conservative (HS) and least concordant with most conser-
vative (DerSimonian–Laird (DL), also the most commonly
used; Figure 2).

Silver standards

In any analysis, one wants to maximize true positives while
minimizing false positives to increase accuracy. In order to
study accuracy, a gold standard is needed to define which
findings are true. However, no gold standard exists for bi-
ological true positives, so prior studies of meta-analysis in
genetics and genomics have relied on simulated data (82).
However, simulated data do not capture the biological and
technical complexity of real-world gene expression data. Bi-
ological research typically relies on results reproducibility
(2), wherein a researcher will trust a positive result that re-
mains significant as more datasets are available, but not if
more data show a null effect (i.e. reproducibility as mea-
sured by replication validity).

We here constructed ‘silver standard’ lists of DEGs us-
ing large meta-analyses of three diseases (cardiomyopa-
thy, kidney transplant rejection, and lung adenocarcinoma)
that met criteria of having enough samples (N >1000) and
enough studies (K > 10) for inclusion (Table 2). We included
a gene in the silver standard if it was significant at q < 0.01
by all three different methods (SJ, DL and HS). We then sep-
arately applied SJ, DL and HS to small sub-combinations
of studies and compared the results to the respective silver
standard for each disease. We studied the effect of differ-
ent methods and parameters on the reproducibility of the
DEG sets they produce. Our standard is not perfect as there
could always be more studies that change the ultimate sig-
nificance. However, this silver standard can provide reliable
estimates of relative differences between methods for the
given data subsets.

Significance thresholds

First, we analysed the effects of using different meta-
analysis methods and different thresholds on the true-
positive and false-positive rates (TPR and FPR). For each
of the three diseases, we formed all possible combinations
of five dataset-subsets (Figure 3A). We chose K = 5 be-
cause it was small enough for computational tractability,
but large enough to simulate typical sample size. For car-
diomyopathy there were 2002 (14 choose 5) subsets, with
mean sample size of 371 ± 160; kidney transplant rejec-
tion had 1287 subsets with mean sample size of 675 ± 215;
and lung adenocarcinoma had 2002 subsets with mean sam-
ple size of 485 ± 113. We analysed each subset using SJ,
DL and HS, and calculated the average number of true and
false positives by comparing the results to the standard for
a given disease (Figure 3B-D). Starting at q < 0.01, we var-
ied the threshold for significance, effect size or residual het-
erogeneity for each method. There were several interesting
findings. First, in agreement with Figure 2, the more con-
servative methods formed subspaces of the less conserva-
tive methods at equivalent significant levels. Second, dif-
ferent diseases had very different FPRs at a standard cut-
off of q < 0.01 (cardiomyopathy SJ FPR 33%, lung adeno-
carcinoma SJ FPR 7%). Third, more-stringent significance
thresholds reduced both true and false positives, but more-
stringent effect size thresholds reduced more false positives
than true positives. Fourth, surprisingly, increasing strin-
gency for residual heterogeneity decreased more true pos-
itives than false positives, an undesirable effect. Finally, in
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Table 1. Random-effects models. For all formulae: k is the number of studies; Yi are the effect measurements in study i; Ȳ =
k∑

i=1
Yi /k and σ̂ 2

i is the

within-study variance for study i.
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Figure 2. Venn diagrams showing genes significant (q < 0.01) for each method for each disease. The dark red inner upper left quadrant shows the overlap
for all six methods.
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Figure 3. Effects of method and threshold on true positives and false positives. (A) Schematic of the analysis. (B–D) Comparison of methods (Sidik–
Jonkman, DerSimonian–Laird, Hunter–Schmidt) for each disease. Each point represents the mean of all subsets for the given method/threshold. Starting
from q < 0.01 (large dot), the results of each analysis were subjected to thresholds of increasing stringency for effect size (1–2-fold change), significance
(q < 0.01–q < 1e-10), and residual heterogeneity (P > 0–P > 0.5). (E–G) Effects of varying both significance and effect size on DerSimonian–Laird true
positives and false positives for each of the three diseases.
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Figure 4. Effects of number of datasets, K, and sample size (sum of geometric mean of cases and controls), on relative accuracy. (A) Schematic of the
analysis. (B–D) Plots of accuracy versus sum of geometric mean of cases and controls for each of the subsets of each disease. Color indicates number of
datasets in an analysis. Lines show regressions of accuracy on sample size for all subsets at each given K.

Table 2. Summaries of the six meta-analyses. Shown are the number of genes found to be significantly differentially expressed at q<0.01 for each of the
six meta-analysis methods.

Total
samples
(N)

Total
datasets
(K)

Genes present in all
datasets

Sidik–
Jonkman
q < 0.01

Empiric
Bayes
q < 0.01

Hedges–
Olkin
q < 0.01

Restricted
maximum
likelihood
q < 0.01

DerSimonian–
Laird
q < 0.01

Hunter–
Schmidt
q < 0.01

Influenza whole blood 292 5 12185 216 307 336 314 311 500
bacterial sepsis whole blood 663 9 16426 627 1362 1345 1515 1516 1894
active tuberculosis whole blood 1023 3 15372 1620 1880 1892 1909 1938 2844
cardiomyopathy biopsies 1039 14 5712 961 1253 1318 1297 1351 1633
lung adenocarcinoma biopsies 1359 14 6302 3908 4019 3979 4120 4199 4343
kidney transplant rejection biopsies 1512 13 7399 1807 2582 2477 3028 3071 3296

Mean significant genes 1523 1901 1891 2031 2064 2418
Mean rank 1.0 ± 0 2.5 ± 0.5 3.0 ± 1.3 3.8 ± 0.4 4.7 ± 0.8 6.0 ± 0

all cases, true positives were maximized at a fixed number
of false positives by using a less-conservative method with a
high effect size threshold. These findings were qualitatively
unchanged even when we tested a modified silver standard
in which we simply removed all genes for which the three
methods (SJ, DL, HS) disagreed (otherwise counted as true
negatives, Supplementary Figure S1).

Effect sizes and significance

Next, we varied both significance and effect size simulta-
neously for a single method (arbitrarily DL) for each dis-
ease (Figure 3E–G). Again, we observed several interest-
ing trends. First, an effect size threshold of 1.2–1.3-fold de-
creased false positives with minimal impact on true posi-
tives at virtually all significance levels. Second, true posi-
tives are maximized for a fixed number of false positives
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by setting a less-conservative significance threshold with a
higher effect size rather than the other way around (i.e. q <
0.05 and ES > 1.4-fold returns more true positives than q <
0.01 and ES > 1.2-fold, Figure 3E). Third, the estimated
Benjamini–Hochberg false discovery rate (FDR, q-value)
is often a substantial underestimate of the actual FPR (al-
though this analysis is better suited for analysis of relative,
not absolute, false-positive rates, due to the use of a relative
silver standard). Finally, a stringent significance threshold
coupled with a stringent effect size threshold (i.e. q < 0.001
and effect size >1.5-fold) reliably decreased FPR to the 1–
5% range, though with the tradeoff that the number of true
positives also decreases substantially.

Number of datasets and size of datasets

Finally, we studied the effects of the number of datasets (K)
and the aggregate sample size included in a meta-analysis.
Although including more samples will increase the statis-
tical power of an analysis, it is not well-studied whether
a smaller number of larger studies or a larger number of
smaller studies will generally lead to more reproducible re-
sults. Here we used the same standards as above, but used
all possible subsets of datasets for which the aggregate sam-
ple size was less than N/2 (where N is the total number
of samples available for a given disease across all datasets)
and which contained no more than K/2 datasets. For ex-
ample, the 13 kidney transplant datasets were composed
of 1512 samples; hence, we included all combinations of
datasets that totaled less than 706 samples and no more
than 6 datasets. By limiting both K and N for each data sub-
set, we limited the bias that each test set could exert on the
final silver standard. There were 7231, 2938 and 7875 sub-
set combinations for cardiomyopathy, kidney transplant,
and lung cancer, respectively, which satisfied this criterion
(Figure 4A). Following our results in Figure 3, we chose
DerSimonian–Laird at q < 0.01 and effect size >1.3-fold
for in-depth study, as it showed a high number of true posi-
tives with a low FPR. For each disease, for each subset run
at the above criteria, we calculated accuracy compared to
the silver standard and plotted against the sum of the ge-
ometric mean of cases and controls for each dataset (Fig-
ure 4B–D). For any fixed sample size, accuracy monotoni-
cally increased with the number of datasets present (for K >
1). These results were qualitatively confirmed using Sidik–
Jonkman and Hunter–Schmidt models at the same thresh-
olds (Supplementary Figure S2)

Measures of sample size

Here, the sum of the geometric mean of class sizes is used
instead of the sum of N because the power to detect a differ-
ence of means for a fixed N decreases when sample sizes are
unequal (84). Thus, the geometric mean will give less weight
to unbalanced datasets. Comparing the plots using the sum
of geometric means (Figure 4) to those made instead using
total N (Supplementary Figure S3) shows that large, highly
unbalanced datasets (as extreme as 10% controls and 90%
cases in the lung cancer meta-analysis) make highly confi-
dent predictions that are not reproducible by other datasets.
However, a plot of accuracy versus the ratio of total N to

the sum of the geometric mean (such that a higher ratio in-
dicates a greater overall class imbalance) confirms that the
most important effect on accuracy is the number of included
datasets (Supplementary Figure S4).

Accuracy as a function of sample size and K

Next, we performed multivariate linear regressions of the
sum of geometric mean sample size and K on accuracy for
all three diseases (Table 3). In each case, for a given ag-
gregate sample size, there is a significant increase in accu-
racy when dividing those samples into a greater number
of datasets K. On the other hand, for a given number of
datasets, there is a much smaller impact for increasing sam-
ple size. Notably, for lung cancer, the effect is slightly nega-
tive, suggesting that some large datasets were highly confi-
dent (due to their large size) but identified different genes
than most other studies, which reduced apparent repro-
ducibility. This negative impact may be due to the fact that
the two largest lung cancer studies are also the most unbal-
anced (<10% controls), and shows the importance of meta-
analysis in overcoming inter-study technical differences to
find a true effect. In general, adding more datasets tends
to decrease the number of false positives returned and has
a relatively greater effect in increasing the number of true
positives (Supplementary Figures S5–S7). These beneficial
effects of a higher K are apparent at all sample sizes. Fi-
nally, we repeated these analyses with a slightly different
outcome measure; instead of checking for the accuracy of
calls of significance in the data subset meta-analyses, we
simply checked whether the estimated effect size in the data
subset meta-analyses were within the 95% CI estimated ef-
fect size in the silver standard (Supplementary Figure S8).
The effects of K and N on this measure were substantially
similar to the main analysis.

DISCUSSION

Here, we performed large-scale meta-analyses to create a
silver standard of true positives, and then compared meta-
analysis methods on dataset subsets to determine the rel-
ative reproducibility of the results. This mimics the real-
world situation: the results of a meta-analysis would be con-
sidered confirmed if they were replicated in a larger cohort
of datasets, but would be considered false positives if the
results were refuted in the larger cohort. We are thus able
to show that improved methods in design and analysis can
result in relatively more true positives and relatively higher
overall accuracy (relative because we compared to a silver
standard). In particular, designing analyses with more stud-
ies (K), and using thresholds of both significance (q-value)
and effect size (fold-change) leads to relatively more accu-
rate and reproducible results.

One of our main questions was the impact of different
random-effects models on analysis. First, we showed that
more conservative models are largely identifying subsets of
the DEGs from less conservative models instead of wholly
different, but smaller, gene lists. Second, as observed before
(85), the Sidik–Jonkman model has the lowest actual FPR
at any given significance threshold, but often with the trade-
off of losing a substantial number of true positives. There
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Table 3. Regression of accuracy on K and N. Linear regression models of accuracy as a function of the number of datasets and the sum of the geometric
mean of class size for included datasets for all subsets shown in Figure 2.

Estimate Std. error t value P value

Cardiomyopathy

(Intercept) 7.99E-01 6.37E-04 1254.771 <2e-16
K datasets 1.07E-02 1.18E-04 90.756 <2e-16
N samples 1.47E-05 2.56E-06 5.746 9.51E-09
Adjusted R-squared: 0.58

Kidney transplant rejection

(Intercept) 7.52E-01 1.19E-03 632.59 <2e-16
K datasets 9.55E-03 2.66E-04 35.9 <2e-16
N samples 1.99E-04 3.84E-06 51.89 <2e-16
Adjusted R-squared: 0.71

Lung adenocarcinoma

(Intercept) 5.64E-01 3.44E-03 163.803 <2e-16
K datasets 4.49E-02 1.08E-03 41.555 <2e-16
N samples -2.22E-04 2.69E-05 -8.259 <2e-16
Adjusted R-squared: 0.34

is thus likely no ‘best’ model for meta-analyses. Rather, we
encourage researchers to use more conservative models in
cases where minimizing the FPR is paramount (e.g. identi-
fying a diagnostic signature) and less conservative models in
cases where maximizing the number of true positives is the
goal (e.g. exploring underlying biology of a given disease).
Overall, though, the tradeoff between absolute number of
true positives and the FPR is unknown for any new meta-
analysis (i.e. one for which there is no silver or gold standard
to which to compare). Thus, our major takeaway from Fig-
ure 3 is actually that all three methods appear to broadly
cover the same space (i.e. they can largely obtain the same
true-positive/true-positive-rate tradeoffs by varying signif-
icance and effect size thresholds). Finally, we show that the
actual FPR is often substantially higher than the estimate as
given by Benjamini-Hochberg FDR. This finding suggests
that a simple q-value threshold offers insufficient protection
against false positives (1,7).

As previously defined (8), our silver standard measures
reproducibility as defined by replication validity, rather
than an estimate of a model’s reproducibility in independent
data (such as cross-validation). Although cross-validation
may make sense in the relatively balanced case suggested (K
= 6 versus K = 8), since we are testing a very broad range
of K here, the silver standard would become a moving tar-
get (i.e. it would change for each subset), and the relative
effects of different models could not be judged. In addition,
if six datasets measure a gene as significantly differentially
expressed, and six show only borderline significance, which
set is ‘right’? In the real world, the 12 datasets would be sum-
marized to synthesize an overall value, and this is what our
silver standard attempts. In addition, our silver standard
is explicitly not a gold standard––that is, we do not know
the true state of nature of which genes are in fact differen-
tially expressed. However, the findings in the silver standard
are relatively more accurate than the findings in each tested
subset; this allows us to study the methodology of meta-

analysis, and derive recommendations for which methods
are relatively more accurate than others.

For the actual practitioner of gene-expression meta-
analysis, there are still more outstanding questions, such as
the best way to divide data into discovery and validation co-
horts, and how to increase the impact of results. We have in-
tegrated our findings here along with the guidelines our lab
uses into a schematic for meta-analysis in Supplementary
Figure S9. These guidelines are not firm rules, but rather
‘tricks of the trade’ we have learned from our experience
that others may appreciate and find helpful.

Most importantly, we show that for a given aggregate
sample size in gene expression meta-analysis, higher accu-
racy with fewer false positives is attained when those sam-
ples are divided among more independent datasets. A simi-
lar pattern has been seen in simulated data mimicking clini-
cal trials (86–88) and genetics (82), provided that the studies
are not extremely small (a lower estimate on size might be an
expected power <30%, but this has not been systematically
tested). Thus, these findings may be more broadly applicable
to other types of two-class comparisons in continuous, nor-
mally distributed data, though further work will be needed
for confirmation. For the researcher, this is further evidence
of the importance of a systematic search in preparing for
a meta-analysis; all studies are important to include. It is
also a reminder not to place too much confidence in high
significance levels obtained from a single large study; effect
sizes are more trustworthy if gauged by replication valid-
ity. More importantly, there are significant implications for
science policy. Our results strongly suggest that there may
be a benefit to funding a larger number of smaller, yet mod-
estly powered studies for a given disease, rather than a single
large study (while taking account that a greater number of
smaller studies may cost more to fund). The prerequisite for
such a policy to be successful is that all the modestly pow-
ered studies eventually make their data available and can be
meta-analysed together with consistent methods.



e1 Nucleic Acids Research, 2017, Vol. 45, No. 1 PAGE 12 OF 14

AVAILABILITY

The code and data to re-create the core analyses per-
formed here are at the authors’ website http://khatrilab.
stanford.edu/metacomparison and at https://bitbucket.org/
khatrilab/meta-analysis-comparison-code/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank the dedicated researchers who contributed the
public datasets used herein, without whom this work would
not have been possible.

FUNDING

Stanford Child Health Research Institute Young Investi-
gator Award (through the Institute for Immunity, Trans-
plantation and Infection to T.E.S.); Society for Univer-
sity Surgeons; Bill and Melinda Gates Foundation (to
P.K.); NIAID grants [1U19AI109662, U19AI057229, and
U54I117925] to P.K. Funding for open access charge: Na-
tional Institutes of Health.
Conflict of interest statement. None declared.

REFERENCES
1. Ioannidis,J.P. (2005) Why most published research findings are false.

PLoS Med., 2, e124.
2. Goodman,S.N., Fanelli,D. and Ioannidis,J.P. (2016) What does

research reproducibility mean? Sci. Transl. Med., 8, 341ps312.
3. Prinz,F., Schlange,T. and Asadullah,K. (2011) Believe it or not: how

much can we rely on published data on potential drug targets? Nat.
Rev. Drug Discov., 10, 712.

4. Begley,C.G. and Ellis,L.M. (2012) Drug development: raise standards
for preclinical cancer research. Nature, 483, 531–533.

5. Collaboration,O.S. (2015) PSYCHOLOGY. Estimating the
reproducibility of psychological science. Science, 349, aac4716.

6. Draghici,S., Khatri,P., Eklund,A.C. and Szallasi,Z. (2006) Reliability
and reproducibility issues in DNA microarray measurements. Trends
Genet., 22, 101–109.

7. Shi,L., Jones,W.D., Jensen,R.V., Harris,S.C., Perkins,R.G.,
Goodsaid,F.M., Guo,L., Croner,L.J., Boysen,C., Fang,H. et al.
(2008) The balance of reproducibility, sensitivity, and specificity of
lists of differentially expressed genes in microarray studies. BMC
Bioinformatics, 9(Suppl 9), S10.

8. Ioannidis,J.P., Ntzani,E.E., Trikalinos,T.A. and
Contopoulos-Ioannidis,D.G. (2001) Replication validity of genetic
association studies. Nat. Genet., 29, 306–309.

9. Mestas,J. and Hughes,C.C. (2004) Of mice and not men: differences
between mouse and human immunology. J. Immunol., 172,
2731–2738.

10. Collins,F.S. and Tabak,L.A. (2014) Policy: NIH plans to enhance
reproducibility. Nature, 505, 612–613.

11. Nuzzo,R. (2014) Scientific method: statistical errors. Nature, 506,
150–152.

12. Tseng,G.C., Ghosh,D. and Feingold,E. (2012) Comprehensive
literature review and statistical considerations for microarray
meta-analysis. Nucleic Acids Res., 40, 3785–3799.

13. Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery
rate: a practical and powerful approach to multiple testing. J. R. Stat.
Soc. B, 57, 289–300.

14. Khatri,P., Roedder,S., Kimura,N., De Vusser,K., Morgan,A.A.,
Gong,Y., Fischbein,M.P., Robbins,R.C., Naesens,M., Butte,A.J. et al.
(2013) A common rejection module (CRM) for acute rejection across
multiple organs identifies novel therapeutics for organ
transplantation. J. Exp. Med., 210, 2205–2221.

15. Mazur,P.K., Reynoird,N., Khatri,P., Jansen,P.W., Wilkinson,A.W.,
Liu,S., Barbash,O., Van Aller,G.S., Huddleston,M., Dhanak,D. et al.
(2014) SMYD3 links lysine methylation of MAP3K2 to Ras-driven
cancer. Nature, 510, 283–287.

16. Chen,R., Khatri,P., Mazur,P.K., Polin,M., Zheng,Y., Vaka,D.,
Hoang,C.D., Shrager,J., Xu,Y., Vicent,S. et al. (2014) A meta-analysis
of lung cancer gene expression identifies PTK7 as a survival gene in
lung adenocarcinoma. Cancer Res., 74, 2892–2902.

17. Li,M.D., Burns,T.C., Morgan,A.A. and Khatri,P. (2014) Integrated
multi-cohort transcriptional meta-analysis of neurodegenerative
diseases. Acta Neuropathol. Commun., 2, 93.

18. Sweeney,T.E., Shidham,A., Wong,H.R. and Khatri,P. (2015) A
comprehensive time-course-based multicohort analysis of sepsis and
sterile inflammation reveals a robust diagnostic gene set. Sci. Transl.
Med., 7, 287ra271.

19. Andres-Terre,M., McGuire,H.M., Pouliot,Y., Bongen,E.,
Sweeney,T.E., Tato,C.M. and Khatri,P. (2015) Integrated,
multi-cohort analysis identifies conserved transcriptional signatures
across multiple respiratory viruses. Immunity, 43, 1199–1211.

20. Sweeney,T.E., Braviak,L., Tato,C.M. and Khatri,P. (2016)
Genome-wide expression for diagnosis of pulmonary tuberculosis: a
multicohort analysis. Lancet Respir. Med., 4, 213–224.

21. Sweeney,T.E., Wong,H.R. and Khatri,P. (2016) Robust classification
of bacterial and viral infections via integrated host gene expression
diagnostics. Sci. Transl. Med., 8, 346ra391.

22. Nguyen,T., Diaz,D., Tagett,R. and Draghici,S. (2016) Overcoming
the matched-sample bottleneck: an orthogonal approach to integrate
omic data. Sci. Rep., 6, 29251.

23. Ramasamy,A., Mondry,A., Holmes,C.C. and Altman,D.G. (2008)
Key issues in conducting a meta-analysis of gene expression
microarray datasets. PLoS Med., 5, e184.

24. Evangelou,E. and Ioannidis,J.P. (2013) Meta-analysis methods for
genome-wide association studies and beyond. Nat. Rev. Genet., 14,
379–389.

25. Chang,L.C., Lin,H.M., Sibille,E. and Tseng,G.C. (2013)
Meta-analysis methods for combining multiple expression profiles:
comparisons, statistical characterization and an application guideline.
BMC Bioinformatics, 14, 368.

26. Campain,A. and Yang,Y.H. (2010) Comparison study of microarray
meta-analysis methods. BMC Bioinformatics, 11, 408.
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