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Mitochondria play a central role in multiple cellular functions, including energy production,
calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles
of mitochondria in triggering and maintaining inflammation. Chronic inflammation without
microbial infection — termed sterile inflammation — is strongly involved in the develop-
ment of heart failure. Sterile inflammation is triggered by the activation of pattern recogni-
tion receptors (PRRs) that sense endogenous ligands called damage-associated
molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochon-
drial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple
PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently high-
lighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like
receptor 9, Nod-like receptors, and cyclic GMP–AMP synthetase/stimulator of interferon
gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear
factor-κB and interferon regulatory factor, which enhances the transcriptional activity of
inflammatory cytokines and interferons, and induces the recruitment of inflammatory
cells. As the heart is an organ comprising abundant mitochondria for its ATP consump-
tion (needed to maintain constant cyclic contraction and relaxation), the generation of
massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are
predicted to occur and promote cardiac inflammation. Here, we will focus on the role of
mtDNA in cardiac inflammation and review the mechanism and pathological significance
of mtDNA-induced inflammatory responses in cardiac diseases.

Introduction
Mitochondria are intracellular double membrane-bound organelles that play central roles in many
essential cellular functions, including energy production, calcium homeostasis, and programmed cell
death. In the last decade, the additional role and molecular mechanism of mitochondria in antibacter-
ial and antiviral defence as well as inflammation have been revealed [1,2]. Indeed, mitochondria con-
tribute to the innate immune response through the activation of several pathways [3]. The innate
immune response provides rapid detection of and protection against microorganisms such as bacteria,
virus, and fungi, by sensing pathogen-associated molecular patterns (PAMPs). Pattern recognition
receptors (PRRs), including Toll-like receptors (TLRs) and Nod-like receptors (NLRs), sense these
PAMPs as well as a wide range of damage-associated molecular patterns (DAMPs). Among them,
sensing of pathogen-derived nucleic acids is one of the major mechanisms for innate immune cell
activation.
Mitochondria generate and release multiple DAMPs to stimulate the innate immune system

through multiple routes and are implicated in a growing list of inflammation-related diseases and
pathogeneses. Owing to their bacterial ancestry, mitochondrial DAMPs can bind and activate multiple
PRRs similar to those recognized by PAMPs [4]. Among the molecules listed as mitochondrial
DAMPs, N-formyl peptides, cardiolipin, and mitochondrial DNA (mtDNA) are liberated from
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mitochondria into the cytosol or the extracellular space in response to cellular stress or after cell death and can
activate sterile inflammation [5,6]. Inflammatory responses induced by sterile stimuli are similar to responses
during infection, including the recruitment of neutrophils and macrophages (MΦs), production of inflamma-
tory cytokines and chemokines, and induction of T-cell-mediated adaptive immune responses [7]. Of note,
mtDNA has recently been established as an important DAMP and a possible trigger of various inflammatory
or degenerative diseases [8,9].
Growing evidence indicates that inflammation without microorganisms is strongly involved in the pathogen-

esis of cardiac diseases [10–13]. As a consequence, cardiac inflammation is proposed to be an important thera-
peutic target for the treatment of cardiovascular diseases, including ischaemic heart diseases, heart failure, and
atherosclerosis [14,15]. For this purpose, the role of mitochondrial DAMPs in cardiac inflammation needs to
be clarified, as cardiomyocytes maintain abundant mitochondria. Here, we review the current knowledge and
evidence about the pathological roles of mtDNA in cardiac inflammation.

What is cardiac inflammation?
Inflammation consists of several processes. The first step is the detection of exogenous or endogenous ligands,
which trigger the inflammatory response, by PRRs. In general, exogenous ligands often arise from microorgan-
isms such as bacteria, viruses, or chemical substances carrying PAMPs. Endogenous ligands involve intracellu-
lar molecules such as nucleotides, proteins, and lipids, which are released after necrotic cell death or stress. The
second step is the activation of the signalling of downstream PRRs, which leads to up-regulation of the tran-
scription of genes of inflammatory cytokines, chemokines, and vasoactive amines followed by the extracellular
release of those molecules. The third step is the recruitment of professional immune cells including neutrophils,
which injure microorganisms through the accumulation of molecules including proteases and reactive oxygen
species (ROS) or radical nitrogen species. Recruited macrophages also play a central role in the clearance of
ligands or damaged tissues.
In general, inflammation of the heart is divided into two pathologic conditions: inflammatory cardiomyop-

athies such as myocarditis and cardiac inflammation. Myocarditis triggered by microorganisms such as viruses
(adenovirus and enteroviruses) and protozoa (Chagas disease) is associated with massive inflammatory
responses and often causes cardiac dysfunction. Autoimmunity is also involved in diseases such as sarcoidosis
and autoimmune myocarditis. These diseases are categorized as inflammatory cardiomyopathies and were
recently highlighted in an excellent review by Trachtenberg and Hare [16]; thus, we will not describe them
here. Cardiac inflammation, which is the main focus of this review, indicates non-infectious inflammation or
what is called ‘sterile inflammation’, which frequently occurs as a secondary response associated with myocar-
dial damage from ischaemia or other causes of heart failure.
Multiple reports have indicated that inflammation plays a significant role in the development of heart failure

[17]. The levels of inflammatory cytokines (tumour necrosis factor-α [TNF-α], interleukin (IL)-1β, and IL-6)
are increased in patients with heart failure [18]. Increased levels of these cytokines and their receptors are inde-
pendent risk factors of mortality in patients with advanced heart failure [19], or of poor prognosis in patients
with idiopathic dilated cardiomyopathy [20]. Moreover, a significant correlation between the serum levels of
TNF-α and the severity of heart failure has been reported [18].
Mechanistically, cytokines such as TNF-α and IL-1β mediate the down-regulation of Ca2+-cycling-associated

genes such as sarcoplasmic reticulum Ca2+ ATPase (SERCA2) via activation of nuclear factor kappa B (NF-κB)
[21], which leads to reduction in contractility through alterations in intracellular Ca2+ homeostasis in adult
cardiac myocytes [22–24]. This inflammation-triggered disturbance of Ca2+ homeostasis in cardiomyocytes is
possibly involved in the process of cardiac remodelling, generating a vicious circle [25]. In addition, TNF-α
and IL-1β induce cardiomyocyte hypertrophy [26], which is another independent risk factor of heart failure
[27]. TNF-α also triggers cardiomyocyte apoptosis [28], which eventually results in considerable myocyte loss
leading to the development of heart failure. Alternatively, IL-6 has been reported to increase cardiomyocyte
stiffness through the reduction of titin phosphorylation [29].
There are a variety of sources of cytokine production in the heart, including almost all cardiac cells such as

cardiomyocytes, endothelial cells, cardiac fibroblasts, and resident macrophages [30–33]. Moreover, the secreted
cytokines induce the infiltration of extra-cardiac immune cells such as neutrophils and macrophages, which
produce cytokines/chemokines during pathological conditions. A vicious circle is generated, resulting in
chronic inflammation in the heart [34]; however, the precise mechanisms of the initial trigger and of the main-
tenance of chronic inflammation are still elusive.
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Transforming growth factor (TGF)-β mediates the trans-differentiation of fibroblasts to active myofibroblasts.
Myofibroblasts exhibit enhanced production of collagens and inflammatory cytokines compared with quiescent
fibroblasts [35]. In addition, activated myofibroblasts elicit cardiomyocyte hypertrophy and dysfunction through
the secretion of pro-hypertrophic inducers, including Ang II (angiotensin II), TGF-β1, and fibroblast growth
factor [36,37]. Myofibroblasts also stimulate monocytes to express gelatinases, which enhance the permeability of
the microvasculature; induce subsequent infiltration of immune cells in the heart [34,35]; and modulate the
polarity of macrophages [38]. On the other hand, cardiac endothelial cells [31] are important sources of IL-1β,
one of the end products of NLRP3 (NLR family pyrin domain containing 3) inflammasome activation.
Besides endogenous cardiac cells, infiltrated immune cells are responsible for the regulation of inflammation.

Activated neutrophils produce large amounts of ROS, which are critical in host defence and cause tissue
damage [39]. The M2 macrophage plays a significant role in resolving inflammation by removing dead cells
through phagocytosis.
To date, despite extensive evidence from clinical and basic research, no therapeutic approaches with anti-

inflammatory drugs have demonstrated beneficial effects in clinical trials. Indeed, disappointing results of anti-
inflammatory strategies have been shown in double-blind clinical trials targeting TNF-α in patients with heart
failure [40]. These results indicate that optimized anti-inflammatory strategies are required to establish novel
therapeutics, as inflammation itself is diverse and complex.

Mitochondrial DAMPs and sterile inflammation
mtDNA and inflammation
mtDNA is a small, double-stranded circular molecule, encoding 13 respiratory chain polypeptides, together with
transfer and ribosomal RNAs that are needed for their translation in the mitochondrial matrix [41]. In humans,
mtDNA exists as a 16 569-bp loop, and polymerase gamma is the mtDNA polymerase uniquely responsible for
replicating the mitochondrial genome [42]. There are ∼1200 mitochondrial proteins that are encoded in the
nuclear genome and imported into the organelles, and they function in the expression and maintenance of
mtDNA [43,44]. Transcriptional co-activators, including the peroxisome proliferator-activated receptor gamma
co-activator-1 family, nuclear respiratory factors 1 and 2, and oestrogen-related receptor α, orchestrate the
expression of those mitochondrial proteins [45]. There are specific mitochondrial proteins that bind to mtDNA
and form a complex called nucleoids [44]. The nucleoid is an area in the mitochondrion that contains DNA
associated with proteins necessary for the maintenance of mtDNA integrity. The mtDNA-binding protein tran-
scription factors A (TFAM), B1 (TFB1M), and B2 (TFB2M) are encoded in the nuclear genome, and once
expressed are then transported into mitochondria by a protein import machinery. TFAMs belong to the high-
mobility group proteins and associate with the inner mitochondrial membrane. TFAMs can form nucleoids by
binding mtDNA without sequence specificity, and participate in mtDNA transcription and replication [46,47].
mtDNA has unique features that are different from those of the nuclear genome. First, similar to the bacter-

ial genome, mtDNA contains a predominantly unmethylated CpG motif, although the precise degree of CpG
methylation has yet to be determined [47,48]. Second, it has been considered that mtDNA is prone to damage
owing to its lack of packaging by protective histones and its proximity to the sources of mitochondrial ROS
(mtROS). Currently, mtDNA is known to be more resistant to damage than expected, owing to its binding to
TFAM proteins [49]. Third, mtDNA exhibits inefficient DNA repair mechanisms compared with nuclear
DNA, as mitochondria lack nucleotide excision repair, which functions in the nucleus [50–52].
Collins et al. [4] first reported the immunostimulatory potential of mtDNA in 2004. They found that

intra-articular injection of mtDNA, but not nuclear DNA, triggered inflammatory arthritis in mice by inducing
the secretion of TNF-α in splenocytes. Consistently, depletion of mtDNA attenuated IL-1β production in
macrophages through the inhibition of inflammasome activation following treatment with lipopolysaccharide
(LPS) and ATP [53]. It is considered that mtDNA mediates inflammation in a similar manner by which bacter-
ial unmethylated CpG exerts inflammation through PRR activation. Noticeably, the pro-inflammatory effects of
mtDNA are dependent on its oxidization [54,55]. TFAM binding of mtDNA confers nucleotide stability and,
when unbound, mtDNA becomes more fragile and prone to degradation. Oxidative modifications occurring at
the level of TFAM or mtDNA are indicated as major elements affecting TFAM binding and resulting in
nucleoid instability [56]. However, whether defective TFAM binding to mtDNA is responsible for the activation
of inflammatory responses remains unclear. Both cell-free mtDNA and TFAM-bound mtDNA are reported to
induce a systemic inflammatory response [56].
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Sensors for detecting mtDNA
Specific characteristics of mtDNA, such as its relative hypomethylation, unique structural features, and suscepti-
bility to oxidative damage owing to its close proximity to massive ROS sources, make it a potential potent
DAMP that activates innate immunity to trigger pro-inflammatory processes and type I interferon (IFN)
responses. Current evidence indicates that mtDNA-mediated inflammation is caused by the activation of the
TLR9, NLRP3 inflammasome, and cyclic GMP–AMP synthetase (cGAS)–STING (stimulator of interferon
gene) DNA-sensing pathways (Figure 1) [4,57].

Toll-like receptor 9
TLR9 is the endosomal TLR that senses bacterial and viral DNAs, and its ligands can preferentially activate
downstream pathways in a Myd88-dependent manner. This pathway finally culminates in the activation of
NF-κB, which leads to transcriptional up-regulation of pro-inflammatory cytokines such as IL-6 and pro-IL-1β,
as well as NLRP3 and IFN regulatory factor (IRF)-dependent type 1 IFN [58,59]. Currently, TLR9 activation is
considered a priming step for NLRP3 inflammasome activation through NF-κB activation and subsequent
downstream signalling [60].

NLRP3 and inflammasomes
NLRP3 is the second sensor to link redox state and mtDNA with inflammation. NLRP3 senses multiple danger
stimuli, including viruses, bacterial toxins, and crystallized cholesterol [61]. The involvement of mtROS in
NLRP3 activation has been reported and may be explained by its oxidizing effects on mtDNA [53,54,62,63].
mtROS enhance the cytosolic translocation of oxidized mtDNA, which binds NLRP3 and activates the NLRP3
inflammasome, a multi-protein complex composed of NLRP3, an apoptosis-associated speck-like protein con-
taining a caspase activation and recruitment domain (ASC), and caspase-1 [54]. Once activated, NLRP3 and
ASC co-localize at endoplasmic reticulum–mitochondrial clusters in the perinuclear space to induce cleavage
and activation of caspase-1 [64]. The activation of caspase-1 leads to cleavage and transduction of pro-IL-1β
and pro-IL-18 to their bioactive form, and these may be involved in redox-sensitive inflammatory responses
[65]. In addition, genetic deletion of NLRP3 and caspase-1 leads to reduced mtDNA release [53,63]. On the
other hand, non-oxidized mtDNA is reported to stimulate IL-1β production through the activation of other
inflammasomes such as AIM2 (absent from melanoma 2) [66].

Cyclic GMP–AMP synthetase
The cGAS–STING DNA-sensing pathway is an additional component of the innate immune system [67].
STING is an endoplasmic reticulum-anchored cytosolic protein and can be activated to induce an IFN response
through a direct association with dsDNA or through cyclic dinucleotides, which can be derived from microbes
such as bacteria or viruses [68]. The STING-mediated IFN response can also be induced by intracellular
mtDNA [69,70]. cGAS functions as a DNA sensor. Upon binding to mtDNA, cGAS promotes the recruitment
of STING protein, which triggers the phosphorylation of the transcription factor IRF-3 through the TANK
(TRAF family member-associated NF-κB activator)-binding kinase and activation of NF-κB signalling [71].
Activated IRF-3 mediates the transcription of type I and III IFNs and IFN-stimulated nuclear gene products,
which results in mtDNA-induced inflammatory responses. In the physiological setting, systemic injection of
oxidized mtDNA increases IFN-stimulated gene expression in the spleen of wild-type but not STING-deficient
mice. In addition, STING also plays a vital role in enhanced type I IFN response caused by increased cytosolic
mtDNA in TFAM-deficient cells [72]. When TFAM is heterozygously deleted in mouse embryonic fibroblasts,
mtDNA is released to the cytosol, and the DNA-sensing cGAS–STING signalling pathway is activated to
enhance the expression of type 1 IFNs and other IFN-related genes.
Recently, it was reported that mtDNA-induced inflammatory pathways are closely related to mitochondrial

intrinsic apoptotic pathways. The mitochondrial pro-apoptotic proteins Bak and Bax regulate mitochondrial
outer membrane permeability transition, which causes the release of both cytochrome c and mtDNA. When
apoptosis-processing caspases (3, 7, and 9) are inhibited, cytosolic mtDNA elicits type I IFN responses via the
activation of cGAS–STING signalling [69,70]. This evidence suggests that apoptotic caspases contribute not
only to cell death processing but also to the silent inflammogenic feature of apoptosis, through the inhibition
of mtDNA-induced cGAS–STING signalling.
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Dynamics of mtDNA
It was proposed that circulating cell-free mtDNA is a functional link between mitochondrial damage and sys-
temic inflammation [4,56]. Indeed, mtDNA, which is released after cell death, functions as a DAMP and can
induce an inflammatory response through hypomethylated CpG motifs resembling those of bacterial DNA [4].

Figure 1. Mitochondrial DNA and cardiac inflammation.

mtDNA binds to TFAM and is stabilized in cardiac cells, including cardiomyocytes, cardiac fibroblasts, and endothelial cells.

Increase of mtROS during stress stimulation leads to oxidation of mtDNA and dissociation of TFAM. Oxidized mtDNA is

released via the mitochondrial permeability transition pore (MPTP), whose opening is regulated by cyclophilin D. Damaged

mitochondria are degraded by the autophagic process, mitophagy, and detoxified. When this process is impaired, mtDNA

inside the autolysosome escape degradation and stimulate TLR9 to induce NF-κB activation, which causes transcriptional

activation of multiple inflammatory cytokines (IL-6, TNF-α, pro-IL-1β, and pro-IL-18). NF-κB activation also enhances

transcription of NLRP3 to prime inflammasome activation. Increased NLRP3 senses mtDNA and forms a protein complex

called inflammasome with ASC and pro-caspase 1, which finally activates caspase 1 to cleave to pro-IL-1β and pro-IL-18 to

transform these molecules into bioactive cytokines. Secreted inflammatory cytokines from cardiac cells mediate recruitment of

inflammatory cells and cardiac sterile inflammation. cGAS senses mtDNA and activates interferon-related factors to increase

transcriptional activities of type I interferons, which cause cardiac inflammation. On the other hand, extracellular mtDNA is

released and circulates inside vessels as cell-free mtDNA when the plasma membrane is disrupted by tissue damage, and

necrotic cell death is induced. In the serum, mtDNA is observed within exosomes, TFAM-bound forms (nucleoids), or inside

neutrophil extracellular traps (NETs). mtDNA enters the endocytic pathway by endocytosis and stimulates endosomal TLR9,

which leads to NF-κB activations and inflammasome formation. These processes can be involved in the development of

cardiac sterile inflammation.
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However, there are considerable uncertainties in the process of the activation of the above-mentioned sensors.
There are two routes of mtDNA liberation from mitochondria: intracellular and extracellular release. In the
extracellular release, cellular stress and necrosis are primary factors in the non-discriminant liberation of mito-
chondrial components such as mtDNA, N-formyl peptides, and cardiolipins, all of which could be mitochon-
drial DAMPs. Although it is easy to imagine the extracellular release of mitochondrial components in case of
necrosis, it is unclear how extracellular mtDNA will activate intracellular PRR signalling factors such as TLR9,
NLRP3, and the cGAS–STING DNA-sensing pathway. It is possible that internalization of mtDNA via endo-
cytosis, transmembrane diffusion, phagocytosis, and receptor-mediated endocytosis contributes to the activation
mechanism [73]; however, the precise mechanism remains to be determined. It is likely that mtDNA interna-
lized through endocytosis can be detected by TLR9 on the membrane of the endosome in the endolysosomal
compartment during autophagy. On the other hand, TLR9 has been detected on the surface of some types of
cells, including resting B lymphocytes and peripheral blood monocytes, by using flow cytometry analysis, sug-
gesting that direct activation of signalling could occur in those cell types [74–77].
While the accumulation of mitochondrial DAMPs including mtDNA has been shown to activate

tissue-resident macrophages and favour tissue leukocyte infiltration [78], the actual mechanism of releasing
mtDNA from non-necrotic cells remains unclear to date. As cell-free mtDNA is detected among the molecules
released within exosomes [79], the exosomal release is proposed to be involved in the mechanism. In addition,
it was reported that treatment of human neutrophils with ribonucleoprotein immune complexes induces
mtROS, mtDNA oxidation, and translocation of mitochondria to the plasma membrane [80]. It was also
shown that oxidized mtDNA is liberated to the extracellular space as a component of neutrophil extracellular
traps [80].
Concerning the mechanism of intracellular release of mtDNA from mitochondria, the opening of mitochon-

drial permeability transition (MPT) pores plays an important role in mtDNA liberation through the mitochon-
drial membrane [81]. Inhibition of pore opening with cyclosporine A was reported to result in reduced
mtDNA in the cytosol after stimulation with LPS and ATP [53]. Several reports suggested that mtDNA release
is controlled by other MPT-associated regulatory proteins such as the voltage-dependent anion channel, hexo-
kinase, Bax, and Bak [53,69,70,82]. The accumulated cytosolic mtDNA preferentially activates cGAS–STING
signalling and type I IFN responses, without inflammasome activation, IL-1β production, or pro-inflammatory
cytokine expression [69,70,72].
The degradation of extracellular mtDNA is important in inhibiting unnecessary inflammatory responses. In

general, non-host DNA in the circulation is digested in part by circulating nucleases [83], and mtDNA may
degrade in a similar mechanism. However, it is unclear whether nucleases actually digest mtDNA in the
physiological condition, specifically in case of mtDNA existing in microvesicles such as exosomes, which can
be protected from DNases. Intracellularly, DNaseII in autolysosomes has a central role in mtDNA degradation
and mtDNA that escapes from the autophagic process stimulates inflammation [84].

mtDNA and cardiac inflammation
While freely circulating mtDNA has been detected in plasma and serum in more than 60 studies on human
diseases, there are few direct evidence that definitely show the significance of mtDNA in cardiac inflammation
in the human heart. Circulating levels of mtDNA molecules increase along with aging and correlate with those
of pro-inflammatory cytokines, including IL-6, TNF-α, and IL-1 receptor antagonist [85]. In addition, the con-
centration of circulating mtDNA is sufficient to activate cytokine production in monocytes, and
mtDNA-induced inflammatory response can be involved in age-related cardiovascular diseases such as ischae-
mic heart diseases, heart failure, and atherosclerosis.
Mechanistically, multiple lines of evidence based on genetically engineered mouse models indicate the role of

mtDNA-induced inflammation in cardiac pathology (Table 1). In addition to mtDNA sensors, the molecules
related to mtDNA regulatory mechanisms potentially contribute to cardiac inflammation; however, their
physiological roles have not been well defined. For instance, although overexpression of TFAM induces a pro-
tective effect in cardiac pathological models, the contributions of mtDNA regulation and cardiac inflammation
in those models are not clear [86,87]. Similarly, deletion of CypD (cyclophilin D) leads to MPT inhibition and
cardioprotection in an I/R (ischaemia/reperfusion) model [88,89]; however, mechanisms other than inhibition
of necrotic cell death remain elusive, specifically with regard to mtDNA release via MPT pores and resultant
inflammation. With regard to other mitochondrial DAMPs, the role of N-formyl peptides in the development
of CVD remains totally unknown. In addition, the physiological role of cardiolipin as a DAMP has not been
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investigated in CVD, although its significance in mitochondrial function and morphology in the heart has been
established [90].

Ischaemic heart diseases
Acute myocardial infarction is accompanied by massive cardiomyocyte necrosis and tissue inflammation. In
multiple studies, it was reported that this extensive cardiomyocyte necrosis is also associated with elevated

Table 1 Cardiac phenotypes in genetically engineered mouse model related to mtDNA-induced inflammation

Genes
Type of genetically
engineering

Experimental
model Cardiac phenotype

Cytokine or chemokine
induction in heart

mtDNA sensors

TLR9 KO TAC Increased cardiac
function and survival

Decreased in IL-6 [84]

KO MI No change No change [97]

Inflammasomes

NLRP3 KO I/R No change Decreased in TNF-α
[100]

KO I/R Worsening Decreased in TNF-α [99]

Caspase1 KO I/R Protection Not described [98]

TG (CA) LPS challenge Decreased cardiac
function and survival

Increased in IL-1β [104]

ASC KO I/R Protection Decreased in TNF-α,
IL-1β, IL-6 [98]

KO I/R Worsening Not significantly changed
[99]

cGAS/STING pathway

cGAS KO MI Improved function
and survival

Decreased in chemokine
CXCL10 [96]

STING KO MI No change Decreased in chemokine
CXCL10 [96]

IRF3 KO MI Improved function
and survival

Decreased [96]

KO TAC Exacerbation of
cardiac hypertrophy

Not described [105]

Cardio-specific TG Aortic banding Attenuation of cardiac
hypertrophy

Not described [105]

Genes potentially involved in mtDNA-induced inflammatory responses

TFAM TG MI Improved function
and heart failure

Not described [86]

TG Volume overload Improved function Not described [87]

CypD KO MI Protection Not described [119]

KO TAC Worsening function Not described [120]

KO I/R Protection Not described [88,89]

DNaseII Cardio-specific KO TAC Worsening function Increased in IL-6 [84]

Cardiac phonotypes characterized in genetically engineered mouse models are listed. Abbreviations: ASC: apoptosis-associated speck-like protein
containing a caspase activation and recruitment domain; CA: constitutive active; cGAS: cyclic GMP–AMP synthetase; CXCL10: chemokine (C-X-C
motif ) ligand 10; CypD: cyclophilin D; IL: interleukin; I/R: ischemia/reperfusion; IRF3: interferon regulatory factor 3; KO: knockout mice; MI:
myocardial infarction; NLRP3: nucleotide oligomerization domain-like receptor family pyrin domain containing 3; STING: stimulator of interferon
genes; TAC: transverse aortic constriction; TFAM: transcription factor A, mitochondrial; TLR9: Toll-like receptor 9; TNF: tumour necrosis factor.
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circulating mtDNA levels [91–93]. In addition, the increased level of mtDNA is reduced after reperfusion of
the ischaemic myocardium, suggesting a close relation between myocardial damage and mtDNA [91,92]. In
patients with diabetes mellitus, the occurrence of coronary artery disease (CAD) is related to higher mtDNA
levels, suggesting the involvement of mtDNA-induced inflammatory responses in the development of CAD in
those patients [94,95].
Modulation of mtDNA sensors can affect the cardiac phenotype in experimental models of ischaemic heart

diseases. With regard to mtDNA sensors, King et al. [96] recently reported that mice genetically deficient in
cGAS or STING exhibited impaired expression of IFN-stimulated genes, including Cxcl10. They also showed
that interruption of IRF-3-dependent signalling leads to decreased expression of inflammatory cytokines and
chemokines, attenuation of ventricular dilation, and improvement of cardiac function after myocardial infarc-
tion. Thus, cGAS-dependent signalling may play a vital role in mtDNA-induced inflammatory responses after
myocardial infarction [96]. In contrast, TLR9 is not strongly involved in mtDNA-induced inflammation caused
by cardiac ischaemic injury, based on experiments using tlr9 null mice [97]. Multiple reports have investigated
the pathological role of the NLRP3 inflammasome after myocardial infarction or I/R injury using ASC,
caspase-1, or NLRP3 null mice [98–100]. However, conflicting results from those reports suggest the varied
and complicated roles of the inflammasome in cardiac ischaemic injury.

Heart failure
During heart failure, multiple endogenous DAMPs, including the intracellular S100 proteins, heat shock
protein, HMGB1 (high-mobility group box 1), and mtDNA, are released and recognized by TLRs to induce an
NF-κB-dependent inflammatory response [101]. Of note, extracellular mtDNA activates NF-κB through TLR9
in cardiomyocytes [102]. There are two types of heart failure based on systolic function: heart failure with pre-
served ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF). Patients with
HFpEF show symptoms of heart failure despite a lack of impaired cardiac systolic dysfunction. Currently, in
the pathogenesis of HFpEF, a systemic pro-inflammatory state induced by microvascular endothelial cell
inflammation is proposed to be a mechanism for HFpEF-specific phenotypes such as concentric cardiac remod-
elling and diastolic dysfunction [11].
Concerning HFrEF, direct cardiomyocyte damage or death leads to release of DAMPs, and it is considered

that mitochondrial DAMPs including mtDNA cause cardiac inflammation, which contributes to the develop-
ment of heart failure. However, there is no association between the severity of heart failure and the levels of
serum mtDNA in patients with heart failure, although those patients show significantly higher levels of
mtDNA than age- and sex-matched healthy controls [103].
Multiple studies have indicated the role of PRRs in heart failure by using genetically engineered mouse

models. Deletion of Tlr9 in mice results in the attenuation of inflammation and cardiac dysfunction in a
pressure-overload-induced heart failure model. The involvement of mtDNA in cardiac inflammation is clearly
demonstrated in this model, and a loss of sensing of mtDNA from damaged mitochondria in autolysosomes
during mitophagy by TLR9 leads to the inactivation of the innate immunity in heart failure [84]. In regard to
the role of inflammasomes in heart failure, targeted overexpression of a constitutively active form of NLRP3
failed to induce inflammasome formation in the heart [104]. However, after LPS stimulation, caspase-1 activa-
tion and cardiac dysfunction were observed in transgenic mice, whereas control mice showed no cardiac patho-
logical phenotype. Further investigation of the molecular mechanism by which inflammasome activation leads
to cardiac dysfunction is required. Finally, IRF3 is reported as a negative regulator of pathological hypertrophy
based on gain- and loss-of-function study in genetically engineered mouse models [105]; however, the involve-
ment of inflammation was not described.

Atherosclerosis
Inflammation plays a central role in the development of atherosclerosis. In atherogenesis, metabolic stressors,
such as fatty acids and cholesterol crystals, can activate the NLRP3 inflammasome, which is associated with
mtDNA damage and stimulates inflammation. The activation of the NLRP inflammasome and the subsequent
release of IL-1β in macrophages may promote atherosclerosis [61]. IL-1α also contributes to atherogenesis, as
transplantation of IL-1α-deficient bone marrow into mice lacking the LDL receptor leads to reduction of ath-
erosclerosis [106]. The stimulation of TLRs leads to up-regulation of type I IFNs including IFN-α and IFN-β.
IFN-α causes death of vascular smooth muscle cells and IFN-β induces macrophage-endothelial cell adhesion
and leukocyte recruitment to atherosclerotic lesions, which are essential steps in plaque formation [107].
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Furthermore, increased type 1 IFN signalling has been confirmed in ruptured human plaques, indicating that
mitochondrial DAMPs are important in the development of human atherosclerosis [108]. Indeed, mtDNA
damage precedes and correlates with plaque development in human atherosclerosis [109,110]. In addition,
mtDNA damage correlates with higher-risk lesions in patients [111]. Collectively, mitochondrial DAMPs are
strongly involved in pro-atherogenic inflammatory signalling through the production of multiple IFNs and
cytokines. Inflammasome activation is also involved in plaque formation [112]. Tumurkhuu et al. [112]
reported that 8-oxoguanine glycosylase repairs oxidative DNA damage, including oxidized mtDNA, and
prevents NLRP3 inflammasome activation in atherosclerotic plaques. Furthermore, Mao et al. [113] recently
reported an important role of mitochondrial damage–cGAS–STING-dependent IRF3 signalling in metabolic
stress-induced endothelial inflammation. Those evidence indicates that mtDNA and its sensors are strongly
involved in the development of atherosclerotic diseases.

Closing remarks
During sterile inflammation, a persistent inflammatory trigger raised in tissue-specific resident cells alarms cir-
culating immune cells, which, in turn, respond by inducing a systemic response through the activation of
mtDNA-induced inflammatory pathways. The release of cytokines, chemokines, nitric oxide, and ROS by
inflammatory cells can elicit further mitochondrial damage, thereby developing a vicious circle, which rein-
forces the whole process leading to sterile inflammation. Similarly, these processes are considered to be involved
in cardiac pathogenesis. Multiple reports have indicated that chronic inflammation plays a considerable role in
heart failure. For instance, the levels of serum cytokines such as TNF-α, IL-6, and IL-1β are related to the
severity of heart failure [18]. The increased levels of cytokines are attenuated, along with an improvement of
prognosis after treatment with β-adrenergic blockers [114,115]. However, clinical trials targeting TNF-α signal-
ling in patients with heart failure have demonstrated neutral results in terms of death and hospitalization [40],
suggesting that the involvement of chronic inflammation in heart failure is not as simple as expected. In regard
to acute inflammatory processes, a clinical trial using cyclosporine A, an MPT inhibitor that is expected to
prevent necrotic cell death and mtDNA release from mitochondria, initially showed promising results in a pilot
study [116]. However, subsequent multicentre trials demonstrated neutral results, possibly due to inappropriate
doses or timing of administration [117,118]. On the basis of these clinical outcomes and the currently growing
basic evidence on sterile inflammation, several remaining questions should be answered in order to develop
novel therapeutics targeting cardiac inflammation. First, it should be determined which cells are suitable
targets, among heart or systemic inflammatory cells, to improve outcome. There are too many potential sources
that release triggering cytokines in the heart, and the initial target for inhibition should be determined. Second,
the corresponding sensing system with mtDNA for suitable cell targeting needs to be defined. Third, tools for
inhibiting mtDNA-induced inflammatory response in specific cell types need to be established, and the lack of
a systemic inhibitory effect should be resolved by finding specific molecules or by developing drug delivery
systems that can selectively transfer the drugs to the targeted cells. For instance, cyclosporine A, which is clinic-
ally used as an immunosuppressant, is not suitable for chronic use, as it compromises the essential immune
reaction.
Finding precise answers to the above-mentioned issues will lead to the development of novel therapies target-

ing cardiac inflammation in patients with cardiovascular diseases, to improve prognosis.
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