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Abstract 

We propose a relational graph to incorporate clinical similarity between patients while building personalized clinical 

event predictors with a focus on hospitalized COVID-19 patients. Our graph formation process fuses heterogeneous 

data, i.e., chest X-rays as node features and non-imaging EHR for edge formation. While node represents a snap-shot 

in time for a single patient, weighted edge structure encodes complex clinical patterns among patients. While age and 

gender have been used in the past for patient graph formation, our method incorporates complex clinical history while 

avoiding manual feature selection. The model learns from the patient's own data as well as patterns among clinically-

similar patients. Our visualization study investigates the effects of ‘neighborhood’ of a node on its predictiveness and 

showcases the model's tendency to focus on edge-connected patients with highly suggestive clinical features common 

with the node. The proposed model generalizes well by allowing edge formation process to adapt to an external cohort. 

Introduction 

Ability to automatically leverage patient similarity via a network architecture can improve efficiency in the healthcare 

system and contribute to the broader goal of precision medicine. Clinical event prediction is one of the key applications 

of big data and artificial intelligence, and instead of one-size-fits-all approaches, outcome prediction and decision 

making based on personalized models could be more accurate when patient similarity analysis has been taken into 

account. Existing literature depends on static similarity formulation based on pre-defined knowledge for predictive 

analysis without considering learned representation1.   

Recent developments in graph convolutional neural networks (GCNN) have opened up the opportunity to learn 

effective representations for similarities between cases in addition to multi-modal data fusion by representing various 

modalities as edges and nodes of graphs. Availability of comprehensive public databases such as TADPOLE2, 

Alzheimer’s Disease Neuroimaging Initiative (ADNI)1 and ABIDE2 containing imaging and non-imaging information 

for patients with Alzheimer and autism spectrum disorder (ASD), respectively,  has facilitated the use of GCN for 

disease prediction3-7 with innovations in GCN architecture involving kernel size selection and use of recurrence. We 

build on this research trend and build graphs with imaging data, i.e., X-rays as nodes, and weighted edges based on 

similarity in patients’ medical history recorded in EMR. We propose a novel framework for fine-grained clinical event 

prediction for COVID-19 patients by processing our patient-similarity graph through a graph convolutional neural 

network (GCN).  

Much of the literature regarding predictive modeling for COVID-19 patients has been largely focused on either 

diagnosis by processing imaging data (chest X-rays) through deep convolutional neural networks (CNN)8-13, or 

mortality prediction using clinical risk factors14-18. In contrast, we propose a comprehensive relational graph approach 

to fuse information from imaging and non-imaging modalities. Furthermore, we propose a framework for multi-stage 

predictive modeling of disease trajectory of patients hospitalized with positive diagnosis of COVID-19, in terms of 

clinical events of discharge from hospital and mortality (Figure 01).  While a pre-trained model was used for chest X-

ray featurization, we developed innovative feature engineering schemes to model sparse information regarding past 

medical procedures and diagnosed illnesses of patients.  Our relational graph-based modeling allows prediction 

processes to gather cues from similar cases, i.e., patients with similar demographic features and medical history. Our 

 
1 adni.loni.usc.edu 
2 https://fcon_1000.projects.nitrc.org/indi/abide/ 
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experiments indicate that our model that fuses imaging and non-imaging data through graph based modeling 

outperforms models using only imaging or only non-imaging EMR data. Graph based models do not require 

consistency in the graph formation process to ensure compatibility of the new graph with the trained model. This 

allowed us to update the clinical characteristics of patients used for formation of edges while validating our model on 

external data. Models trained on internal data were still compatible and performed reasonably well.  

As deep learning models are generally opaque and it is a challenge to explain their decisions, we particularly focused 

on visualization of our models’ results. We designed a dashboard interface for exploration of model decision in clinical 

setting by drawing panels showing node features of the targeted case (chest X-ray image and relevant demographic 

features) as well as highlight the characteristics of ‘learned’ similar cases which is the ‘neighborhood’ of the target 

node, i.e., edge-connected nodes. We performed these visualization experiments for both internal and external sets. 

Varying neighborhood characteristics for the two sets corresponding to prediction of the same labels also highlight 

the unique adaptability of the graph-based modeling.   

Materials and Methods 

We developed a graph-based fusion model to predict COVID-19 disease trajectory by using multi-modal patient data 

including chest X-ray imaging data, demographic information, and patient's clinical history. 

 

 

(a)                                                                          (b) 

Figure 1. (a) CONSORT style diagram for internal cohort selection for training; (b) Proposed formation of graph with 

weighted edges for disease trajectory prediction 

 

Cohort description: Following approval of the Emory Institutional Review Board (IRB), we collected all chest X-

rays of patients with at least one positive RT-PCR test for COVID-19, performed in 12 centers of the Emory Healthcare 

network from January 2020 to December 2020. As shown in Figure 1, the data consisted of 47,555 chest X-rays 

belonging to 23,831 unique patients. We only considered posteroanterior (PA) and anteroposterior (A) view of chest 

radiographs during the period of hospitalization. We also collected hospital admission, mortality and discharge data 

from the hospital billing system. Patients who were never admitted, or those who were admitted but did not receive 
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x-rays at regular intervals (at maximum every three days) were discarded. This left 2,201 unique patients 

corresponding to 2,983 hospitalizations for which chest-x rays were obtained at least every 3 days (7,813 total chest-

x rays). In order to avoid data leakage, we applied a patient-wise split of the 80% train and 20% test sets. Some patients 

were hospitalized multiple times during the year 2020. We considered the chest X-ray study date as a time point for 

predicting future clinical events and stratified these events based on severity – discharged from hospital within 3 days, 

or death. There were 929 patients and 4,850 chest X-rays after which the patient remained in the hospital for more 

than three days. There were 1,754 patients corresponding to 2,963 chest X-rays who were discharged from hospital 

within 3 days. 220 patients corresponding to 502 chest X-rays died within 3 days. Outcome data for this cohort was 

collected from warehouse EHR data sources. Our goal was to predict adverse events as early as possible to provide 

enough decision making time for clinicians. In our preliminary experiments, we evaluated 3 days up to 7 days, however 

given the unbalanced dataset, we found 3 days to be the most prevalent in terms of different prediction labels. This 

cut-off provided a rather balanced distribution of discharged vs. not discharged labels.  

External test –With the approval of Mayo Institutional Review Board, we shipped our Emory trained model to Mayo 

and evaluated externally on a small set of 50 unique patients admitted to the Mayo Clinic hospital between Jan 2020 

– Dec, 2020 with a positive RT-PCR test. The patients have 293 chest X-rays during the period of hospitalization. 

Demographic and comorbidities statistics of both cohorts are provided in Table 1.  

Table 1. Study cohort characteristics - demographics, clinical history and insurance status. The numbers have been 

represented in terms of complete dataset (total cohort) as well as train and test split 

Characterization 

 

Total cohort 

(2201) 

Train (1762) Test 

(439) 

External 

test (50) 

Gender Male  

Mean Age (std. deviation) 

1111  

59.7(16.2)  

887 

59.2 (16.1) 

224 

61.5(16.3) 

34 

64.5 (16.3) 

Female 

Mean Age (std. deviation) 

1090  

59.0 (18.8) 

875  

58.7(18.9) 

215  

60.2(18.4) 

16 

59.8 (15.9) 

Race African American 1405(63.8%) 1135(64.4%) 270(61.5%) 6 (12%) 

Caucasian 554(25.2%) 427(24.2%) 127(28.9%) 43 (86%) 

Asian 51(2.3%) 42(2.4%) 9(2.1%) 1(2%) 

American Indian or 

Alaskan  

11(0.5%) 7(0.4%) 4(0.9%) -- 

Multiple                                         6(0.3%) 6(0.3%) 0(0%) -- 

Native Hawaiian or Other 6 (0.3%) 4(0.2%) 2(0.4%) -- 

Unknown 168(7.6%) 141(8.0%) 27(6.2%) -- 

Ethnicity Hispanic 163(7.4%) 133(7.5%) 30 (6.8%) -- 

Non-Hispanic 1894(86.1%) 1517(86.1%) 377(85.9%) 50 (100%) 

Unknown 144(6.5%) 112(6.4%) 32(7.3%) -- 

Comorbidities Diabetes 1187(53.9%) 937 (53.2%) 250(56.9%) 7(14%) 

Renal Disease 1330(60.4%) 1050(59.6%) 280(63.8%) 10(20%) 

Hypertension 1711(77.7%) 1356(77.0%) 355(80.9%) 19 (38%) 

Respiratory Disease 1948(88.5%) 1556(88.3%) 392(89.3%) 27 (54%) 

Insurance 

Status 

Medicare 1034(47.0%) 806(45.7%) 228(51.9%) Not 

available Commercial 784(35.6%) 651 (36.9%) 133(30.1%) 

Medicaid 125(5.7%) 100(5.7%) 25(5.7%) 

Others 258 (11.7%) 205(11.6%) 53(12.1%) 

Alcohol Use No 1464(66.5%) 1178(66.9%) 286(65.2%) 

Yes 245(11.1%) 213(12.1%) 32(7.3%) 

Not Reported 492(22.4%) 371 (21.1%) 121(27.6%) 
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Graph-based Fusion model - Image and EHR:  GCN model learns vector embeddings of nodes optimized for a 

down-stream prediction task. Difference between convolutional neural networks and GCN comes from the definition 

of neighborhood. CNN allows only spatial proximity to define the neighborhood that may have influence over the 

representation learning for an instance. GCN leaves the definition of neighborhood upto the designer and receives this 

information in the form of edges of a graph. Edge-connected nodes may influence the representation learning for a 

node. Such flexibility is particularly suited to model complex clinical scenarios. In our graph design, we used the chest 

X-ray embeddings as nodes and edges are decided by similarity in patients’ demographic information or medical 

history (see Figure 2b). Therefore, our GCN supports the notion of ‘neighborhoods’ based on clinical and/or 

demographic similarity between patients and makes predictions for future clinical events by considering trends among 

similar patients.  

Graph node formation: We used a DenseNet-12119 pre-trained on the open-source CheXpert chest X-ray dataset20, 

and fine-tuned on 199,029  non-COVID chest X-rays from EUH acquired in 2019, for processing normalized images. 

We dropped the final softmax classification layer of the DenseNet-121 model and extracted 1024-dimensional feature 

vectors from each image to construct a dense representation of the images for the graph node formulation.  

Similarity based edge formation: We encoded EMR features of the patient corresponding to a node in a binary vector 

using only clinical data collected before the study datetime of the chest X-ray to avoid any data leakage. We applied 

three edge design styles based on different clinical factors -   demographic, procedure and comorbidities. Cosine 

similarity between EMR feature vectors corresponding to two nodes is used to decide the edge between two nodes, 

while edge weight encodes the strength of the similarity between those nodes. 

● Demographic information:  We used one-hot encoding for the following demographic features; gender 

(male/female), self-reported race (African American, Caucasian, Native Hawaiian or Other Pacific Islander, 

Asian, American Indian or Alaska Native, Multiple, Unknown), ethnic group (Hispanic or Latino, Non-

Hispanic or Latino, Unknown), age at the time of admission (binned in 10-year intervals).  

● Current Procedural Terminology codes (CPT):  CPT is a five-digit procedure code that reports medical, 

surgical, and diagnostic procedures and services to entities such as physicians, health insurance companies 

and accreditation organizations. CPT codes are maintained and grouped in a hierarchical structure by the 

American Medical Association (AMA). Each CPT code was reduced into a higher-order parent category 

based on the defined hierarchy 3. We selected 21 groups with more than 1000 occurrences. 

● Comorbidities: Past and current diagnoses of patients are structured as International Classification of Disease, 

9th edition (ICD-9) codes which are grouped based on hierarchical structure21. We selected 29 groups 

occurring more than 5000 times in the data. 

Many GCN variations are designed for transductive learning such that they can only process graph structures used for 

training with limited ability to generalize to unseen nodes or new graph structures. To avoid this limitation, we used 

the SAGE (SAmple and aggreGatE) graph convolution network (GraphSAGE)22 that optimizes a sample aggregate 

function to collect ‘messages’ from neighboring nodes while generating vector embedding of a node. For inference, 

GraphSAGE employs an optimized aggregate function to generate embedding for unseen nodes in unseen graph 

structures. GraphSAGE based prediction models can inductively reason to assign predictive labels to unlabeled nodes 

by learning from labeled nodes in the graph.  

Branched Framework of Prediction: Our work is focused on forecasting the trajectory of disease, in terms of two 

clinical events, once the patient has been hospitalized. Given the challenge of collecting a balanced dataset for multi-

class classification, we modeled 2 sequential decision points and developed a pipeline for comprehensive prediction 

of possible clinical events. (Model1) - Prediction of discharge from the hospital: In the first decision point, Model-1 

predicts whether the patient will stay in the hospital for more than 3 days (positive label) or not. (Model-2) - Mortality 

prediction: For negatively labeled instances by Model-1, in the second decision point, Model-2 predicts whether the 

patient will expire within 3 days (positive label) or not. Distribution of positive and negative class labels is highly 

imbalanced, especially for Model-2 (Figure 2). We employed undersampling of majority labels and weighted loss to 

tackle this challenge. A patient is evaluated every time a chest radiograph is taken, while staying in the hospital. 

Disease trajectory can be indicated as improving (discharge in less than 3 days) or worsening (mortality in 3 days).  

Model comparison and statistical evaluation: Evaluation of the proposed modeling framework is focused on two 

aspects; 1) performance of the fusion graph-based model in comparison to traditional modeling using single modality 

(either imaging data or non-imaging data), 2) comparative effectiveness of different EMR data sources in terms of 

 
3 https://www.aapc.com/codes/cpt-codes-range/ 
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graph structure definition to identify optimal similarity metrics for the targeted prediction task. We designed a Random 

Forest classifier and used the Pulmonary X-ray severity (PXS) scores computed by a CNN23 to predict clinical events 

as well. As PXS scores are based on deep learning based processing of imaging data, we wanted to establish the 

benefits of our selection of imaging features in our relational graph by comparison. We report the model performance 

in terms of Area Under the Receiver Operating Characteristics curve (AUCROC), precision, recall and f1- score on 

held-out test-set from Emory University cohort, as well as on an external test-set composed of patients’ of Mayo 

Clinic. 

Visualization: The designed graph based neural networks need to be explained in terms of weights assigned to edges 

to understand the learnt similarity between cases. Ying el al. proposed - ‘GNN explainer’ that learns concise subgraph 

structures consisting of nodes that play an important role in assigning output labels to a node24. We use the GNN 

explainer framework to plot sample nodes predicted as true and false positives by the models on both external and 

internal datasets using optimized graph models. Edge weights indicate the relative importance of each connection in 

predicting the label for the center node. We designed a dashboard with Panel 1 showing the GNN explainer similarity 

analysis. Panel 2 shows chest X-ray forming node features. Panel 3 shows an ordered list of common CPT subgroups 

in the neighborhood. Panel 4 shows demographic features of the patient corresponding to the center node.  

Results:  

Quantitative performance: We report the performance of the two binary predictors (Model-1: Discharge from 

hospital, Model-2: Mortality) that are part of our framework, and comparative models in terms of class-wise and 

aggregated (weighted average) precision, recall, and F-score as well as confidence interval (95% confidence) on a 

randomly held-out set of test samples, in Table 2. Statistical significance of the difference in performance has been 

measured through p-values computed by statistical t-test with the best performing model as the reference. In Figure 3, 

we also represent the receiver operating characteristics (ROC) curves for these evaluations. Reported area under the 

ROC curve clearly indicates the superiority of the proposed graph-based models with edge structure based on ICD 

and CPT codes. 

 

(a)                                                                                (b) 

Figure 3. ROC curves; (a) Model-1: discharge prediction, (b) Model-2: Mortality Prediction. Each curve represents 

an individual model. Model names in the legends are formulated as - ‘Model Architecture-Input modality’. External 

performance only evaluated on the best model was included. 

Table 2 show the performance of  comparative predictive models - (1) EHR only: Random forest model using all EHR 

data sources as input (demographics, CPT groups, ICD-9 groups), (2) PXS only: Random forest model using only 

PXS score23 derived from the images as input, using a CNN model which was pretrained on ~160,000 images from 

CheXpert and fine tuned by transfer learning on 314 CXRs from patients with COVID-19, (3) Image only: softmax 

classification of the pretrained DensenET-121 using chest X-ray as input, (4) Late Fusion: fusion of label probability 

estimates from EHR only and Image only models, and (5) GraphSAGE with XX: GraphSAGE network with graph 

structure based on different EHR sources (XX) like demographics, CPT groups, and ICD-9 groups.   

For both prediction of discharge from hospital and mortality, GraphSAGE with CPT and ICD achieved the optimal 

performance (no statistical difference), surpassing baseline single modality models - Image-only and EHR only, while 

PXS-only model also achieved suboptimal performance. Hence, clinical history seems more important for prediction 
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of inpatient outcomes than demographic features. We experimented with combining ICD and CPT codes for graph 

formation. Such graph formation did not improve performance any further than what is achieved by these graphs based 

on ICD and CPT codes separately. 

External validation was performed on data here the common comorbidities (diabetics, renal disease) are rare (<20%) 

compared to our internal training data (>55%) and as a consequence the respective procedures are less common. In 

such a distribution shift, often the machine learning model failed to generalize. This scenario provides an excellent 

opportunity to test the generalizability of graph based models. GCN training on internal data requires node features of 

the external data to be in the same space as node features of the internal data. There is no such strict requirement for 

edge features. They can be defined by any suitable similarity assessment. We employed common characteristics of 

external data to build edges for the external set and applied our GCN model trained on the internal data. The AUROC 

plot is shown in Fig 3.. It is clear that graph-based models have higher and more consistent generalization capabilities 

than baseline models (image-only and EHR-only) achieving better performance for both tasks.  

Qualitative evaluation: Results of the Dashboard exploration are shown in Figures 4 (Model 1) and 5 (Model 2). In 

panel view, panel 1 shows the 'neighborhood’ of the central node with node colors indicating labels of nodes and edge 

thickness indicating importance of the connection/edge optimized by the predictive model for down-stream prediction 

tasks. Figures 4a-b show that the model is able to focus on a neighborhood with a large number of positive label nodes 

and assign appropriately high weights to their connecting edges while making true positive predictions. Figure 5a-b 

shows similar true positive predictions for Model-2 where the positive label indicates mortality within 3 days. 

Distribution of this label is highly imbalanced with positive labels as minority. In such a case, the model learns to 

predict a positive label even when only a few positively labeled nodes are present in the neighborhood. Given the 

scarcity of these positive data points, presence of even a few positively labeled nodes is considered as important 

evidence for graph-based learning.  

While predicting adverse outcomes like mortality and stay in the hospital for more than 3 days, the model optimized 

a ‘neighborhood’ of patients formed due to all patients in the neighborhood undergoing cardiovascular and pulmonary 

procedures (surgical or non-surgical) as shown in panels 3 of Figures 4a-b and 5a-b. This is true for both the internal 

and external dataset while the standard of procedure coding is different in two institutions and thus the CPT subgroup 

distribution is significantly different for the two sets.  

Patients corresponding to Figures 4a-b and 5a-b underwent mechanical ventilation categorized under the pulmonary 

procedures subgroup in the intensive care unit recorded in their history. Model optimized their representation in 

reference to a neighborhood of other patients undergoing pulmonary procedures (panels 3 of Figures 4a-b and 5a-b). 

This partially explains the model's adverse predictions for all of these patients. Figures 4e-f show cases where the 

model falsely predicts patients to be discharged. Corresponding patients did not undergo ventilation assistive 

procedures under the pulmonary procedures subgroup. Model’s falsely favorable prediction can be explained by the 

neighborhoods optimized for these patients where the pulmonary procedure subgroup is not common (panels 3 of 

Figures 4e-f).   
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Table 2. Performance of Model 1 – Prediction of discharge from hospital within 3 days and Model 2 – Mortality prediction on internal and external sets

Models Model – 1: Discharge from Hospital Prediction Model – 2: Mortality prediction 

Labels Precision Recall F1-score p-val Labels Precision Recall F1-score p-val 

Internal hold-out testset 

GraphSAGE with Demographics Discharged 69 54 60 < 0.1 Alive 87 96 91 <0.001 

Not Discharged 76 86 81 Dead 73 45 55  

Overall 73 70 71 Overall 80 70 73  

C.I. [71.0-74.3] [68.4-71.5] [69.1-72.3] C.I. [76.4-83.2] [67.2-73.3] [70.0-76.4]  

GraphSAGE with CPT Discharged 74 54 62 Ref. Alive 91 92 91 Ref. 

Not Discharged 77 89 83 Dead 68 65 67  

Overall 76 72 73 Overall 80 79 79  

C.I. [74.0-77.1] [70.0-73.0] [70.9-74.1] C.I. [76.6-82.6] [75.6-81.7] [76.2-81.8]  

GraphSAGE with ICD 9  Discharged 58 68 62 <0.001 Alive 91 90 90 >0.5 

Not Discharged 80 71 75 Dead 63 64 64  

Overall 69 70 69 Overall 77 77 77  

C.I. [67.2-70.1] [68.2-71.3] [67.3-70.4] C.I. [73.9-79.9] [74.3-80.7] [74.1-79.7]  

Image only  Discharged 68 51 59 <0.5 Alive 90 89 89 <0.5 

Not Discharged 76 86 80 Dead 60 63 61  

Overall 72 69 69 Overall 75 76 75  

C.I. [70.1-73.5] [67.2-70.4] [67.9-71.3] C.I. [72.3-78.2] [72.7-79.2] [72.5-78.4]  

EHR only  Discharged 57 58 58 <0.001 Alive 78 51 62 <0.001 

Not Discharged 76 75 75 Dead 88 96 92  

Overall 66 67 67 Overall 83 74 77  

C.I. [64.9-68.1] [65.1-68.1] [65.0-68.0] C.I. [79.8-86.3] [70.5-76.6] [73.6-80.0]  

Late Fusion – Image and EHR Discharged 47 62 53 <0.001 Alive 83 49 62 <0.001 

Not Discharged 73 59 66 Dead 88 97 92 

Overall 60 61 59 Overall 85 73 77 

C.I. [58.3-61.5] [59.0-62.3] [57.8-61.0] C.I. [82.4-88.6] [70.4-76.2] [74.2-80.0] 

PXS only Discharged 48 46 47 <0.001 Alive 85 87 86 <0.001 

Not Discharged 70 72 71 Dead 47 42 44  

Overall 59 59 59 Overall 66 64 65  

C.I. [57.2-60.8] [57.0-60.6] [57.1-60.7] C.I. [62.2-69.0] [61.3-67.7] [61.7-68.1]  

 External testset 

GraphSAGE with Demographics Overall 0.64 0.60 0.61 Ref Overall 0.55 0.59 0.54 <0.1 

GraphSAGE with CPT Overall 0.60 0.58 0.59 <0.001 Overall 0.77 0.59 0.61 <0.1 

GraphSAGE with ICD 9 Overall 0.58 0.55 0.56 <0.001 Overall 0.70 0.81 0.73 Ref 

Image only Overall 0.52 0.51 0.49 <0.001 Overall 0.62 0.74 0.57 >0.5 

EHR only Overall 0.59 0.62 0.69 <0.001 Overall 0.81 0.63 0.66 <0.001 
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   (a)      (b) 

  

   (c)      (d) 

  

   (e)      (f) 

Figure 4. Pavel view of Model-1 (+ve label: Not Discharged in 3 days) results for internal and external sets results; 

(a): True positive prediction in internal set, (b): True positive prediction in external set, (c): False positive prediction 

in internal set , (d): False positive prediction in external set, (e): False negative prediction in internal set, (c): False 

negative prediction in external set 
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   (a)      (b) 

  

(c)      (d) 

  

(e)      (f) 

Figure 5. Pavel view of Model-2 (+ve label: Dead in 3 days) results for internal and external sets results; (a): True 

positive prediction in internal set, (b): True positive prediction in external set, (c): False positive prediction in internal 

set , (d): False positive prediction in external set, (e): False negative prediction in internal set, (c): False negative 

prediction in external set  
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Error Analysis: Dashboard based visualization helps us understand the limitations of graph-based modeling. Some 

of the common procedures (such as Diagnostic radiology procedures) form an easy way of connecting several patients 

together while it may lack predictive power. Patients corresponding to Figure 4c experienced a long stay in the hospital 

(16 days) and underwent ventilation assistance (Pulmonary Procedure subgroup) and several cardiovascular 

procedures. Model seemed to have focused on these factors while missing out on prediction of discharge from the 

hospital at the end of the long stay.  Patient corresponding to Figure 5e was hospitalized for 4 weeks and went through 

several kidney disease related procedures. Due to the prevalence of cardiovascular and pulmonary procedures in the 

internal set, the model seems to have optimized a neighborhood where this patient shares cardiovascular and 

pulmonary procedures with other patients rather than kidney related procedures, thus mis-predicting the label for this 

patient. Such challenges can be addressed by including data temporality in the graph formation. 

Figures 4c-d show cases where the model optimized a neighborhood full of positively labeled nodes while the central 

nodes were negatively labeled. Label distribution in the neighborhood may have affected the model's judgment to 

falsely predict positive labels for central nodes. Figure 4e shows an interesting case where an optimized neighborhood 

has a large number of positively labeled nodes, and the model also learnt to put high emphasis on edges connecting 

such positively labeled nodes while the final prediction was still falsely negative. Corresponding normal chest X-ray 

in Panel 2 may explain the prediction of negative labels.  

 

Conclusion: 

We proposed a graph-based framework to preserve interdependencies in multi-modal data and similar cases  to predict 

future clinical events (e.g. discharge and mortality) for the in-patients population tested positive for COVID-19 within 

3 days of admission. During graph-based learning, in theory, two-fold information fusion of node features and graph 

structure ensure that relevant features (nodes and graph structure) for the targeted task are amplified while similar 

non-relevant attributes are suppressed. To our knowledge, this is the first attempt to encode and learn the patient-wise 

similarity within imaging data using a GCN model for predictive modeling for hospital resource optimization and 

interpretation using a dashboard. The proposed framework may face limitations in terms of application scope as it 

requires imaging data to be collected on a regular interval and was trained on data collected from highly integrated 

academic healthcare systems. Prediction interval is limited to 3 days which is still longer than most studies done in 

the past25-26.  
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