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Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the
pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in
extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally
categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However,
macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction
of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of
macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing
macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving
macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis
that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders
(M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic
inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for
prevention/therapy.

1. Introduction

Macrophages belong to the mononuclear phagocyte system
(MPS), a family of professional phagocytes that includes
monocyte and dendritic cells (DCs). Over the past few
decades, classification of the cells within the MPS system has
generated considerable controversy given the different, often
confusing, nomenclature to identify macrophages in different
physio/pathological conditions as a consequence of their
plasticity, resulting in very different phenotype/functions.

The first open debate arises already in the definition of
macrophage cell of origin. The classic scenario of the MPS
stated that monocytes recruited from the periphery, under
the influence of specific tissue-local growth factors, developed
into macrophages. According to this scenario, macrophages

derive from hematopoietic progenitors of bone marrow that
differentiate under the influence of specific growth factors
within the hosting tissues [1]. These cells primarily enter the
blood as monocytes and further infiltrate tissues as macro-
phages, where they adapt to the local microenvironment to
play out specific functions, such Kupffer cells in the liver,
microglial cells in the brain [2], and mesangial cells in
the kidney [3].

This view has been completely reconsidered over the last
decade, and the ontogeny of macrophages has been totally
rewritten, based on genetic approaches of cell fate mapping.
New evidence demonstrated that macrophages can originate
from embryonic precursor cells that colonized developing
tissues before birth (foetal tissue macrophages) and that
tissue-resident macrophages have self-maintaining abilities
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in the adulthood. Murine models allow the definition of three
main sources for tissue-resident macrophages: (i) the yolk sac
in the embryo as a source for progenitor cells by primitive
hematopoiesis; (ii) the foetal liver, where the hematopoiesis
takes places, shifting form the yolk sac, and (iii) the bone
marrow that becomes the elicit hematopoietic centre in late
embryos and adult organisms [4–6]. Another intriguing sce-
nario, concerning the origin and persistence of macrophages,
has been proposed by Gomez et al. [7]. The model proposed
that resident macrophages, developing in the embryo inde-
pendently of the hematopoietic stem cell (HSC) compart-
ment [2, 8–11], still persist in adults and can coexist with
the so termed “passenger” leucocytes that include monocytes
and DCs, which originated from bone marrow HSCs and
myeloid progenitors [1, 12, 13].

The abundance of macrophages within tissues is finely
controlled through the axis colony-stimulating factor-1 or
macrophage-colony-stimulating factor (CSF-1 or M-CSF),
IL-34, and colony-stimulating factor-1 receptor (CSF-1R) [14].

It has been reported that recruited macrophages differ
from the resident tissues in terms of transcriptional profiling.
Even if the term “macrophage activation” has been com-
monly used to describe macrophage activity in response to
diverse stimuli, several studies pointed out that the results
of cell activation deeply depend on the macrophage location
and on the stimulus that triggers their activation.

In vitro and in vivo studies have shown that the pheno-
typic heterogeneity of macrophages correlates with peculiar
functions specific to their local microenvironment [15] and
this plasticity enables the appropriate response to pathogen
or injury challenge.

Macrophage activation can be obtained in response to a
plethora of diverse stimuli, including microbial products,
damaged cells, activated lymphocytes, and inflammatory
cells, and can result in the acquisition of distinct functional
subsets undergoing different phenotypic polarizations.

Macrophage plasticity and heterogeneity give rise to a
still opened debate, concerning the nomenclature to identify
cell subsets/subtypes undergoing in such different pheno-
typic, functional (cytokine release), metabolic, regulatory
(versus other arms of innate and adaptive immunity)
rearrangements.

On the basis of the type-1/type-2 helper- T(h-) cell polar-
ization concept [16, 17], phenotypically polarized macro-
phages have been defined according to two primary
activation states, termed classically activated M1 and alterna-
tively activated M2 (Figure 1(a)). M1 and M2 nomenclature
has been long and lastly employed to define the “supposed”
main subsets of macrophages, which originates in 2000 by
Mills et al. [18]. Basically, M1 and M2 responses exemplify
the opposing activities of killing (proinflammatory, “killer
M1”) and repairing (anti-inflammatory, “builder M2”) [19].

However, macrophage polarization in many physiologic
and pathologic conditions represents a continuum, involving
high plasticity and heterogeneity of these effector cells, and
resemble mainly to a spectrum of distinct polarization states
that do not fit to the oversimplified M1/M2 classification.
Hence, in line with a consensus recommendation, we decide
to use “M1” to indicate only IFN-γ and LPS-driven

macrophage phenotypes and “M2” to refer to macrophage
phenotypes triggered only by IL 4 or IL 13. Furthermore,
we use “M1-like” to illustrate diverse signal-induced polari-
zation states that leads to cell cytotoxic function (killer) and
antitumour activities and “M2-like” in relation to distinct
phenotypes that share the functional capacity of repair,
inducing new vessels and remodelling (builder) in parallel
with tumour promotion and immunosuppressive ability
toward T-cell responses [20] (Figure 1(b)).

In a normal tissue, the ratio of M1-like/M2-like macro-
phages is highly regulated and increases during the inflam-
mation process [21]. Gene expression profile analysis
showed that M1 macrophages can release high levels of pro-
inflammatory cytokines, including tumour necrosis factor-α
(TNF-α), CCL2 also known as monocyte chemoattractant
protein-1 (MCP-1), IL-6, inducible nitric oxide synthase
(iNOS), IL-1, IL-12, type I IFNs, CXCL1–3, CXCL5, and
CXCL8–10 [22]. On the contrary, M2 macrophages have
been demonstrated to express high levels of dectin-1, DC-
SIGN (CD209), mannose receptor (CD206), scavenger
receptor A, scavenger receptor B-1, CD163, CCR2, CXCR1,
and CXCR2 [23] and to produce a large amount of IL-10,
YM1, macrophage and granulocyte inducer-form 1 (MgI1),
and arginase-1, highlighting their relevance during tissue
remodelling and repair [24].

Macrophage polarization and functions are tightly reg-
ulated through the activation of several interconnected
pathways. Among all, the balance between activation of
STAT1 and STAT3/STAT6 has been demonstrated to play
a crucial role; indeed, the predominance of STAT1 activa-
tion promotes M1 macrophage polarization, resulting in
cytotoxic and proinflammatory functions. In contrast,
STAT3 and STAT6 activation by IL-4/IL-13 and IL-10 sig-
naling increases M2 macrophage polarization, associated
with active tolerance and tissue repairing [22]. Moreover,
the downstream effector of STAT6 and KLF-4 promotes
M2 macrophage functions by suppressing the NF-κB/HIF-
1α-dependent transcription. IL-10 promotes M2 polarization
inducing p50 NF-κB homodimer, c-Maf, and STAT3 activi-
ties. In addition, IL-4 induces c-Myc that activates the IRF4
axis that inhibits IRF5-mediated M1 polarization, resulting
in the M2 promotion [22]. Bouhlel et al. also demonstrated
the relevance of PPAR-γ (peroxisome proliferator-activated
receptor gamma) in skewing human monocytes toward an
anti-inflammatory M2 phenotype. Indeed, the authors
showed that PPAR-γ is highly upregulated in M2 macro-
phages and PPAR-γ agonists have been demonstrated to
induce directly M2-like differentiation of monocytes in vivo
and in vitro [25].

In the past decade, a novel class of small noncoding
RNAs, termed microRNAs (miRs), has emerged as impor-
tant regulators in biological processes. Accumulating evi-
dence suggest a relevant role for several miRs in the
polarization process (Figure 1(a)). In particular, miR-155
and miR-223 are involved in modulating macrophage activa-
tion state by targeting SOCS1, C/EBP (a hallmark ofM2mac-
rophages), and Pknox1 [26]. Overexpression or silencing of
miR-155 has been demonstrated to drive macrophages to
M1 or M2 phenotype, respectively, confirming that miR-155
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Figure 1: Continued.
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Figure 1: Past and new concept in macrophage polarization. (a) Schematic overview of the different stimuli that can induce the diverse
macrophage polarization state. M1: classically activated phenotype; M2: alternatively activated macrophages; ATM: adipose tissue-derived
macrophages; Mox: atherosclerosis-associated macrophages; TAMs: tumour-associated macrophages. (b) The polarization landscape of
macrophages. According to the different stimulation conditions, macrophages can acquire peculiar M1 or M2 phenotype, governed by the
different surface antigen expressions, including scavenger receptors, chemokine, matrix-associated protein and cytokine release, and
different patterns of transcription factors and metabolic pathway activated. The driver stimuli include IL-4, IL-10, glucocorticoids (GC)
with TGF-β, glucocorticoids alone, LPS, LPS and IFN-γ, and IFN-γ alone.
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plays a central role in regulating Akt-dependent M1/M2
polarization of macrophages. It has been also shown that
miR-155 downregulates the expression of IL-13Rα1, sup-
pressing the polarization toward M2 phenotype [27, 28].
Some studies have observed that let-7c was expressed at a
higher level in M2 macrophages than in M1 macrophages.
Accordingly, the upregulation of let-7c in macrophages
diminishedM1phenotype and promotesM2polarization tar-
geting C/EBP-d [29, 30]. miR-146, miR-125b, miR-155, and
miR-9 can inhibit TLR4/IL-1R signaling by regulating
IRAK-1, TRAF6, IKKe, p50 NF-κB, and TNF-α [29]. Further,
miR-17, miR-20a, and miR-106a reduce the expression level
of the signal regulatory protein (SIRPa), an important mac-
rophage differentiation-related marker. miR-98 and miR-21
downregulate the expression of inflammatory genes in
monocytes and macrophages via controlling IL-10 level [31].

Emerging data have demonstrated that epigenetic mech-
anisms, including chromatin remodelling, DNA methylation
(DNAm), histone modifications, and regulation of target
gene expression, are also involved in the orchestration of
macrophage polarization in response to local environmental
signals [22, 32, 33]. M1 and M2 macrophages have been
shown to express different levels of DNA methyltransferase
(DNMT) 1, 3a, and b that are associated with gene silencing
[34]. DNMT1 drives the M1 polarization in atherosclerosis
by directly targeting the promoter of PPAR-γ in macro-
phages [35]. The DNMT3b binding of the promoter of
PPAR-γ contributes to the M1 phenotype in adipose tissue
during inflammatory process [33].

Lund et al. demonstrated that atherogenic lipoproteins
can promote global DNA hypermethylation in monocyte
[36]. Thus, DNMT inhibition or knockdown could decrease
theM1 polarization, providing novel strategies for atheroscle-
rosis prevention and therapy. Accordingly, the treatment
with 5-aza-2-deoxycytidine (decitabine), a recognized inhib-
itor of DNMTs, results in an increased M2 polarization
induced by the inhibition of the PPAR-γ promoter, which
in turn prevents obesity-induced inflammation, atherosclero-
sis, and insulin resistance [37, 38]. DNMT3a and DNMT3al
expression levels have been shown to be increased signifi-
cantly in M2 compared to M1 macrophages, and this is asso-
ciated with AMPK signaling [33]. On the contrary, DNMT3b
was significantly lower in M2 compared with M1 adipose
macrophages [39]. Histone H3 and H4 acetylations were
found to be toughly associated with the maturation of human
monocytes [40]. M1 polarization induced by IFN-γ increases
histone H4 acetylation at the TNF-α promoter throughout
the ERK and p38 mitogen-activated protein kinase (MAPK)
signaling pathways [41]. STAT3 and MAPK activation and
the simultaneous acetylation of histones H3 and H4 on the
SOCS-3 promoter suppress the inflammatory responses in
microglial cells and promote M2 polarization [42]. Histone
deacetylase 3- (HDAC3-) deficient macrophages showed a
decreased expression of IFN-β and Cox-1 showing an M2-
like phenotype and thereby ameliorate many inflammatory
diseases, such as pulmonary inflammation [43–45].

Such heterogeneity in macrophage phenotypes and func-
tions generated the still open questions of whether they act as
killers or builders. During inflammation, macrophages drive

in the autoregulatory loop characterizing this process, as they
release a wide range of biologically active molecules which
participated in both detrimental (killers) and beneficial
(builders) in inflammation [46–48]. Therefore, inflammation
stands as the typical environmental setting where macro-
phages show their “Janus” behaviour [46–48]. During the
first events occurring during inflammation, macrophages are
endowed to kill/remove pathogens and damaged cells, while
at the end of the inflammatory process, termed resolution of
inflammation, macrophages act as builders that promote
damaged tissue regeneration and return to homeostasis
[49–51]. Since inflammation represents a shared hallmark
from diverse chronic diseases and direct involvement in
insurgence and progression of these conditions, here, we
discuss whether macrophages can act as killers or builders
within the inflammatory landscape of selected and appar-
ently “distant” pathologic conditions.

2. Macrophages in Cancer: Killers or Builders?

Macrophages represent the most abundant tumour infil-
trating inflammatory cells [52, 53]. Reflecting their extreme
plasticity within healthy tissues, macrophages infiltrating
tumours can acquire distinct phenotype and functions result-
ing in the attenuation of antitumour activity and induction of
tumour-supporting functions and have been defined as
tumour-associated macrophages (TAMs) with M2-like fea-
tures (Figure 2). However, in the initial phases of carcino-
genesis, macrophages can act as protective killer cells,
cooperating with T lymphocytes in the control of early
proliferating cancer cells in the immunoediting process
[54]. Instead, in developing tumours, compelling evidence
indicate that subverted macrophages or TAMs exert a major
role in driving tumour progression by different mechanisms
and pathways, depending on the types of tumour, tissues,
and inflammatory mediators. The builder option of macro-
phages in the tumour microenvironment (TME) can lie to
conditions in which a chronic nonresolving inflammation is
established, a feature that has been defined a hallmark of can-
cer [55] and that points out TAMs as key inflammatory
mediators able to link chronic inflammation with cancer
development and progression [56, 57].

Among soluble factors that mediate their displacement,
there are CCL2, CCL5, CSF-1, VEGF, and complement ele-
ments, which are often produced by the cancer cells and stro-
mal cells in the TME. Moreover, some TAMs can derive from
differentiation of monocytic myeloid-derived suppressor
cells (M-MDSCs) via upregulation of CD45 tyrosine phos-
phatase activity in response to tumour hypoxia and following
downregulation of STAT3 [58].

Tumour promoting or builder activities exerted by
TAMs have been demonstrated by several studies. Elevated
TAM infiltration has been correlated with worse clinical
outcome in most malignant tumours, such as breast, cervi-
cal, ovarian, prostate, and thyroid cancers; Hodgkin’s lym-
phoma; hepatocellular carcinoma; lung carcinoma; and
cutaneous melanoma [56, 59–65]. In contrast to these find-
ings, some reports have instead highlighted that tumour infil-
trating macrophages correlated to increased survival in
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colorectal, prostatic, and lung cancer patients [66–70]. The
main builder features of TAM include the ability to support
tumour angiogenesis as well as lymphangiogenesis, to
increase the breakdown of extracellular matrix, to promote
tumour cell invasion and migration, and to suppress the anti-
tumour immune responses [56, 62, 71, 72]. These functions
are shared with M2-like macrophages that, in a physiological
context, are induced during vascular and matrix remodelling,
necessary for damage resolution [73–77].

TAM infiltrate is also associated with the onset of resis-
tance to different chemotherapeutic agents through the
activation of diverse pathways. In breast cancers, TAMs can

induce IL-10/STAT3/Bcl-2 signaling, leading to an inhibition
of apoptosis upon paclitaxel treatment [78]. In advanced
lung adenocarcinomas, TAMs are also reported to decrease
the responsiveness to target therapy based on the epidermal
growth factor receptor tyrosine kinase inhibitors [79].

M2-like TAMs support tumour growth directly by pro-
ducing cytokines able to stimulate the proliferation of
tumour cells or indirectly, by fostering endothelial cell (EC)
proliferation and angiogenesis (Figure 2). It has been
reported that the growth of subcutaneous Lewis lung tumour
is impaired in the CSF-1-deficient and macrophage-deficient
mice [80]. Furthermore, the treatment of tumour-bearing
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Figure 2: Macrophage polarization in tumour progression. Macrophage recruitment in tumours and their polarization are regulated by
several factors. Among all, hypoxia can induce the differentiation of monocytic myeloid-derived suppressor cells (M-MDSCs) via
upregulation of CD45 tyrosine phosphatase activity (1). Further, soluble factors, such as CCL2 and CCL5 that are produced by the cancer
cells and stroma cells, can increase macrophage infiltrate (2). In the TME, infiltrating associated to tumours (TAM/M2-like macrophages)
can orchestrate tumour progression by several mechanisms including the release of cytokine, chemokines, and tissue remodelling proteins.
Hypoxia increases the expression of CXCRs in TAMs and promotes tumour angiogenesis by enhancing the production of VEGF, TNF-α,
bFGF, IL-8, TP, and Sema4D that can induce endothelial cell proliferation, sprouting and migration, tube formation, and maturation of
new vessel, followed by its stabilization by attaching mural cells (A). TAMs can regulate the extracellular matrix degradation by producing
different types of enzymes and proteases, such as matrix metalloproteinases (MMPs), in particular MMP2, MMP9, plasmin, urokinase
plasminogen activator (uPA) and cathepsins acting on connective tissue surrounding the tumour, and allow tumour cells to detach from
the mass of origin and to disseminate, leading to the formation of distant metastases (B).
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mice with recombinant CSF-1 reestablished the tumour
growth, indicating a role for macrophages in tumour growth.
TAMs can produce IL-6, whose release impacts on cell prolif-
eration by a STAT3-dependent mechanism. Inhibition of
STAT3 signaling blocks the antiapoptotic activity of IL-6 in
human liver cancer cells [81]. TAMs are lower producers of
TNF-α, resulting in enhanced tumour growth. Hypoxia sig-
nificantly impacts on the TAM tumour cell interaction that
induces the expression of CXCR4 and its ligand, CXCL12
(SDF-1), further supporting tumour cell dissemination and
angiogenesis [82]. The number of TAMs within a tumour
has been positively correlated with its metastatic potential,
suggesting a role for TAMs in the distant dispersion of
tumour cells [52, 83, 84]. By producing different types of
enzymes and proteases, such as matrix metalloproteinases
(MMPs), in particular MMP2 and MMP9, plasmin, uroki-
nase plasminogen activator (uPA), and cathepsins [85–87]
(Figure 2), TAMs can regulate the degradation of the extra-
cellular matrix (ECM) and dictate tumour invasion and the
metastatic process [19]. These factors act by relaxing the con-
nective tissue surrounding the tumour, allowing tumour cells
to detach from the mass of origin and to disseminate, leading
to the formation of distant metastases.

TAMs sustain tumour angiogenesis by producing
VEGFA (VEGF), the master growth factor involved in the
angiogenic process. Besides VEGF, TAMs release a panel of
proangiogenic factors which include TNF-α, basic fibroblast
growth factor (bFGF), CXCL8/IL-8, thymidine phosphory-
lase (TP), adrenomedullin (ADM), and semaphorin 4D
(Sema4D) [88–91] (Figure 2). These factors released by
TAMs act by inducing endothelial cell proliferation, sprout-
ing and migration of ECs into the tumour, tube formation,
and maturation of new vessel, followed by its stabilization
by attaching mural cells [92].

It has been recently reported that the expression of
Sema3A from tumour cells is able to promote TAM accumu-
lation inside the tumour, particularly in the avascular areas
and required neuropilin-1 (NRP-1)-signaling cascade [93].
Macrophages are not only critical regulators of angiogenesis,
but also crucial participants in lymphangiogenesis via VEGFC
and VEGFD release, both in inflammatory settings and in
tumour progression [94]. Thus, TAM-derived factors can link
tumour angiogenesis and lymphangiogenesis [95–97].

Among TAMs, a relevant proangiogenic monocyte/
macrophage subset, characterized by some distinctive fea-
tures, has been further identified. These macrophages can
express the angiopoietin receptor Tie2, termed TEMs
(Tie2-expressing macrophages), and are closely associated
with the vasculature [98, 99]. These cells have been impli-
cated in the interference and in the resistance of action of
antiangiogenic therapeutics, in particular vascular disrupt-
ing agents, and experimental data support the notion that
inhibition of TEMs can foster antiangiogenic treatments
with higher inhibition of angiogenesis and tumour spread-
ing [100, 101].

Apart from their extreme plasticity, TAMs also sustain an
immunosuppressive milieu aiding tumours to escape from
immune surveillance [102]. TAM contribution to tumour
progression acts also through synergistic interaction with

other arms of the innate and adaptive immunity [46–48,
103] within the immunosuppressive TME. TAMs can inter-
act with MDSCs, neutrophils, and DCs [104, 105]. TAMs
also orchestrate the recruitment of T regulatory cells, by
secreting CCL20 [106, 107] and CCL22 [108], and their acti-
vation through a bidirectional interaction by the release of
IL-10 and TGF-β [107, 109–111].

Moreover, TAMs represent an important factor for the
establishment of the premetastatic niche [112–116].

Different therapeutic strategies have been developed to
target TAM physiology with encouraging preclinical and
clinical results, either by blocking their tumour recruitment
and functions or by redirecting their features to antitumour
effector activities [57, 81, 117–121]. In several preclinical
experimental models, including prostate, breast, and lung
cancer and melanoma, the specific inhibition by antibodies
of CCL2 has proven its promising effects, and when they
are delivered in combination with chemotherapy shown
enhancement of the effectiveness of treatment [122, 123].
However, though in a mouse model of breast cancer, it has
been reported that a rebound effect following inhibition of
CCL2 pathway resulted in the recruitment of monocytes/
macrophages into the tumour and enhancement of lung
metastasis [124]; different antibodies targeting CCL2 have
been entered phase I and II clinical trials. Regarding the
CCL5-CCR5 axis blocking strategies, a CCR5 antagonist
has been approved as a treatment for patients with liver
metastases of advanced refractory colorectal cancers and pre-
liminary results indicated that this approach can lead to clin-
ical responses [125]. Another interesting TAM-specific
therapeutic treatment involves interferences with the CSF-
1-CSF-1R axis, and in particular the receptor tyrosine kinase
CSF-1R. Several compound and antibody inhibitors have
been developed and evaluated in preclinical models and in
patients with different types of cancer [120]. Important clin-
ical regressions were obtained from patients with diffuse-type
tenosynovial giant-cell tumour, which experienced CSF-1R
tumour overexpression [120]. Interestingly, in a mouse glio-
blastoma multiforme model, CSF-1R blockade did not affect
the TAM numbers but instead the M2-like TAM polariza-
tion, which is associated with the block of glioma progression
and improvement of survival [119]. Also, bisphosphonates,
usually used to treat osteoporosis and to prevent bone
metastases-related complications, can be used to target mac-
rophages in the tumour context, although their cytotoxic
effects have been illustrated initially toward osteoclasts
[126]. Combination chemotherapy or hormonal therapy
with bisphosphonates in different types of tumour has shown
clinical synergistic effects, in particular in postmenopausal
women with breast cancer [127]. Another encouraging
therapeutic strategy is related to agonistic anti-CD40 anti-
body and gemcitabine in pancreatic ductal adenocarcinoma
patients. This approach revealed clinical responses and
importantly demonstrated that in treated mice the CD40
agonist approach is responsible for reeducation of M2-like
TAM toward an M1-like phenotype and of effective anti-
tumour responses [128, 129]. Finally, a recently identified
compound that found application in soft tissue sarcomas
and ovarian cancer patients is trabectedin, which induces
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selective TRAIL-dependent apoptosis of monocytes, macro-
phages, and M-MDSCs in the blood, spleens, and tumours
with reduction of TAMnumbers and angiogenesis [130, 131].

3. Macrophages in Type 2 Diabetes:
Killers or Builders?

Type 2 diabetes (T2D) is a metabolic disorder, and its inci-
dence has increased significantly in recent years. T2D is char-
acterized by a peripheral resistance to the action of insulin
and a failure of beta cells to compensate, leading to hypergly-
caemia. It is now widely accepted that obesity increases the
risk of T2D by inducing a chronic low-grade inflammation
[132] and progression in local adipose tissue.

Accumulating evidence supports a role for tissue macro-
phages in a broad spectrum of inflammatory conditions
[133], including obesity-associated metabolic diseases, such
as insulin resistance and T2D [68, 134].

Macrophages together with other immune cells account
almost 10% of the normal adipose tissue and play a key role
in maintaining homeostasis. However, diet-induced obesity
compromises homeostasis, resulting in an increased infiltra-
tion of macrophages representing up to 50% of the cells in
adipose tissue [135, 136].

Several studies have established the crucial role of
macrophage polarization in the development of T2D. The
M1/M2-like polarization of tissue-destructive (killers) versus
tissue-reparative (builders) macrophages is of great interest
in clinical strategies because of their role in β-cell prolifera-
tion [137]. Recent evidence demonstrate that the high plas-
ticity and phenotypic diversity of macrophages promote the
cross-talk between β-cells, non-β endocrine cells, endothelial
cells, mesenchymal cells, and other circulation-derived blood
cells [138–140]. Builder-M2-like macrophages regulate β-cell
proliferation through the release of a variety of trophic
factors such as TGF-β1, which directly induce upregula-
tion of SMAD7 in β-cells. SMAD7 in turn promotes β-cell
proliferation by increasing CyclinD1 and CyclinD2 and by
inducing nuclear exclusion of p27 [141] (Figure 3). In
addition, M2-like macrophages also secrete Wnt ligands,
thus activating the Wnt signaling pathway, and β-catenin,
supporting β-cell replication [138] (Figure 3). Conversely,
only a few studies investigating the polarization state of
macrophages in pancreatic microenvironment have been
described in literature [16–19], where an overall increase
of macrophages/islets has been detected by immunohisto-
chemistry. Eguchi et al. [142, 143] showed that Ly6c+

M1 macrophage was expanded in the diabetic mouse islet.
Ly6c+-killer-M1 macrophage has been shown to secrete
IL-1β, resulting in potent inhibition of insulin secretion,
followed by islet destruction (Figure 3). The use of IL-1R
antagonists and anti-IL-1β-neutralizing antibodies was
able to abolish these effects on pancreatic islets [21–24].

Several studies in T2D have shown that M1-like macro-
phages resulted in increased inflammation, obesity, and insu-
lin resistance, while M2-like macrophages are associated with
a reduction in both obesity and insulin resistance [144]. M2-
like macrophages are reported to not only suppress inflam-
matory cytokine IL-10 [145] but also provide a niche for

preadipocytes to keep the number and quality of them, thus
maintaining insulin sensitivity [146].

These data clearly suggest that macrophages play a
nonredundant role in the pathogenesis of T2D [147]. An
important aspect of diabetes prevention is a better under-
standing of the underlying mechanisms behind obesity-
induced visceral adipose tissue inflammation, crucial for
the development of T2D.

Obesity is associated with the accumulation of proinflam-
matory cells in visceral adipose tissue, which is an important
underlying cause of insulin resistance and progression to
T2D [148–150]. Establishing the initiating events leading to
the switch from an anti-inflammatory M2-like state to M1-
like phenotype remains elusive.

Recent studies show that obesity-induced adipocyte
hypertrophy results in upregulated surface expression of
stress markers. Adipose stress is detected by local sentinels,
such as NK cells and CD8+ T cells, which produce IFN-γ,
driving M1-like adipose tissue macrophage (ATM) polariza-
tion [148–150]. Adipocyte hypertrophy has been reported to
create hypoxic area and activates hypoxia-inducible factor-1,
which induces inflammatory cytokines and suppresses
preadipocyte-related angiogenesis and causes insulin resis-
tance [151].

Normal adipose tissue macrophages phenotypically
resemble the alternatively activated M2-like phenotype,
expressing the mannose receptor, the CD206 surface antigen,
and releasing Arg-1 and IL-10. In contrast, diet-induced obe-
sity leads to a shift toward an M1 classically activated macro-
phage, characterized by the F4/80, CD11b, and CD11c
expression [152] (Figure 3).

Low-grade inflammation in this setting is mediated by
the polarization of recruited and resident macrophages to
the M1-like phenotype in tissues, such as liver and adipose
tissues [153, 154]. In contrast, M2 macrophage activation
appears to protect against obesity-associated inflammation
and insulin resistance [155, 156]. Several cytokines and che-
mokines, such as CCL2, interleukin IL-6 and IL-1β, macro-
phage migration inhibitory factor (MIF), and TNF-α, can
be released by both adipocytes and macrophages [157, 158].
Macrophages within adipose tissue are recruited from the
bone marrow and are characterized by a wide panel of factors
that track with the degree of obesity [136, 159, 160]. Indeed,
the paracrine as far as the endocrine activity was exerted by
the proinflammatory cytokines, including TNF-α, IL-6, and
IL-1β released by ATMs can induce decreased insulin sensi-
tivity through the activation of Jun N-terminal kinase (JNK),
inhibitor of IKκB (IKK-β), and other serine kinases in insulin
target cells [161, 162].

The unbalance in the ratio between M1-like and M2-like
adipose macrophages has been considered to be directly
related to the development of insulin resistance [21, 149].
Insulin resistance resulted from a transition in macrophage
polarization from the M2-like activation state, induced by
STAT6 activation and PPAR, to a classic M1-like activation
state, further driven by NF-κB, AP1, and other related fac-
tors [163–165].

The network of molecular mediators that regulate M2
polarization in response to hypermetabolism is not fully
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understood, but peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α) and PPAR-γ target
genes, such as arginase-1 and CD36, are implicated in this
process. PPAR-γ has been proven to be essential for mac-
rophage M2 polarization with the function of anti-
inflammation and associated with metabolic dysfunction
[145, 156, 166]. PPAR-γ was found to be a miR-130b tar-
get gene in regulating macrophage polarization insulin

tolerance via repression of PPAR-γ [167]. Several studies
have shown that PPAR-γ interacts with NF-κB, in the
modulation of macrophage polarization. PPAR-γ blocked
the proinflammatory pathway of NF-κB and inhibited the
expression of relative factors, such as TNF-α [168].

Further, it was shown that IL-6 acts as a Th2-builder
cytokine in obesity by stimulating M2-like polarization and
local ATM proliferation, presumably due to upregulation of
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Figure 3: Macrophage polarization in type 2 diabetes. Macrophage within pancreatic tissues can be switched toward different functionalities
according to the environment stimuli. M2-like macrophage supports B-cell proliferation by several trophic factors like TGF-β1 which directly
induce upregulation of SMAD7 and increases of cyclinD1, cyclinD2, and p27 (A). Moreover, M2-like macrophages release Wnt ligands, thus
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the IL-4 receptor α [169]. Recently, it has been reported that
adenosine monophosphate kinase (AMPK) β1 plays an
important role in protecting macrophages from inflamma-
tion under high lipid exposure resulting in a modulation of
obesity-induced insulin resistance (Figure 3). Genetic dele-
tion of the AMPK β1 subunit in mice reduced macrophage
AMPK activity, acetyl-CoA carboxylase phosphorylation,
and mitochondrial content, resulting in reduced rates of fatty
acid oxidation [170].

Inhibition of proinflammatory cytokines and chemo-
kines, such as TNF-α, IL-1β, IL-6, and CCL2, may reduce adi-
pose tissue inflammation and insulin resistance [147, 171,
172]. For instance, several studies have demonstrated that
treatment with neutralizing IL-1β antibody or blockage of
IL-1β signaling improved glycaemic control in diet-induced
obese mice and insulin sensitivity in patients with T2D
[173–176]. Other findings suggest that the CCL2-CCR2 sig-
naling pathway disruption reduces adipose tissue macro-
phage content ameliorating insulin resistance and improves
insulin sensitivity [160, 177]. CCL2 knockout mice receiving
intact monocytes or mice receiving CCR2-deficient mono-
cytes were both protected from the accumulation of macro-
phages in adipose tissue and the liver. [178] So far, targeting
the CCL2-CCR2 signaling pathway may provide the basis
for the development of novel therapies against T2D. In vivo
studies have shown that circulating levels of free fatty acid
(FFA) promote the generation of M1 macrophages via TLR4
signaling in adipocytes andmacrophages in the setting of obe-
sity [179–181]. In this context, adipose tissue inflammation is
aggravated by the secretion of TNF-α, which in turn increases
lipolysis leading to further production of FFAs establishing a
vicious circle. Resistin is another potential target to combat
insulin resistance or T2D. In fact, resistin induction which
in turn stimulates secretion of several proinflammatory cyto-
kines by increased infiltration of macrophages causes
inflammation-induced insulin resistance [182–184].

Several phase II and III clinical trials have been initiated
to inhibit key immunological processes of adipose tissue
inflammation in T2D patients, such as NF-κB signaling, IL-
1β function, or arachidonic acid metabolism, with promising
results [148].

A shift in the polarization of adipose tissue macrophages
from an M2-like state to an M-like proinflammatory state
resulting in insulin resistance favours inflammation and
insulin resistance [145]. Thus, targeting of inflammatory
M1/M2-like polarization process of obese patients appears
to be a promising future strategy for prophylaxis against dia-
betes development. For instance, adipose tissue macrophages
from CCR2 knockout mice are polarized to the M2-like mac-
rophages, even after obesity and CCR2 knockout mice were
found to be protected from diet-induced insulin resistance
[145, 160]. Furthermore, it has been shown that inhibition
of IL-10 secreted by M2-like macrophages enhances the
impairment of insulin signaling confirming its protective role
in T2D [185].

Insulin-sensitizing thiazolidinediones (TZDs), clinically
used for T2D patients [186], target the PPAR-γ that plays a
key role in the maturation of M2-like macrophage and insu-
lin sensitivity. PPAR-γ deletion prevents polarization of the

monocyte/macrophage to the M2-like phenotype, and
PPAR-γ-deficient mice exhibit glucose intolerance and insu-
lin resistance [187]. Therefore, existing and future drug
mechanisms may be involved in modulating the phenotypi-
cal and functional features of macrophages. For instance,
metformin is a drug widely used to treat T2D, to decrease
insulin resistance; it has been proposed that the benefit may
result, at least in part, from modulating macrophage dif-
ferentiation and polarization [188, 189]. How metformin
can modulate the differentiation of Ly6C monocytes into
M2-like macrophages remains the subject of ongoing inter-
esting studies. In addition to glucose-lowering drugs, T2D
patients are typically treated with low-dose aspirin (acetylsa-
licylic acid) that has off-target anti-inflammatory properties.
Aspirin exerts its anti-inflammatory effects via inhibition of
cyclooxygenase and a subsequent decrease in the proinflam-
matory prostaglandins [190]. Recently, it has been demon-
strated that aspirin-triggered resolvin D1 into a degradable
biomaterial after injury was able to significantly increase
the accumulation of anti-inflammatory monocytes and
M2-like macrophages while limiting the infiltration of
neutrophils and increase proregenerative immune subpop-
ulations [191].

Incretin-based treatments and the cannabinoid 1 recep-
tor (CB1) blocker rimonabant have anti-inflammatory effects
and may protect the pancreatic islets from IL-1β-driven.
However, this anorectic antiobesity and glucose-lowering
drug had also psychiatric side effects [164, 192, 193].

Several studies highlight the role of miRs as key regula-
tors of cell fate determination and significant contributors
to the pathogenesis of complex diseases, such as inflamma-
tory responses and T2D [194]. It was found that miR-223
inhibits Pknox1, suppressing proinflammatory activation of
macrophages, and protects against diet-induced adipose tis-
sue inflammatory response and systemic insulin resistance
[195]; miR-130b was found to be a novel regulator of macro-
phage polarization via repression of PPAR-γ and a promising
target for T2D therapy [167]; miR-27a was also proposed as a
target of intervention for inflammation and insulin resistance
in obesity [196].

In summary, M1/M2-like macrophage polarization and
switching hold the key to the regulation of insulin sensitivity
and T2D. Macrophage polarization toward the alternative
M2-like phenotype may play a preventive role and also be a
novel and useful strategy for the treatment of insulin resis-
tance and T2D.

Novel macrophage-targeted strategies that are both
tissue-specific and disease-specific hold a promise for the
future management of the chronic inflammatory disorders
that were covered in this review.

4. Macrophages in Atherosclerosis:
Killers or Builders?

Atherosclerosis is a chronic inflammatory disease driven by
an imbalance in lipid metabolism and a maladaptive immune
response [197]. This disease is characterized by the accumu-
lation of lipids in large- and medium-sized arteries forming
plaque deposits that block the flow of the blood. Several
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factors have been correlated with the development of athero-
sclerotic diseases, among which the elevated low-density
lipoprotein (LDL) cholesterol, hypertension, obesity, and
both T2D and T1D. The accumulation of LDL promotes
the recruitment of monocytes that lead to the formation of
the atherosclerotic plaques [198]. Further, the exposure to
CSF-1 and the uptake of oxidized LDL (ox-LDL) induce
monocyte differentiation into macrophage and results in

foam cell formation with the proliferation of smooth muscle
cells [199]. The scavenger receptors lead the ox-LDL recogni-
tion, and the intracellular cholesterol is metabolized and
transported to exogenous acceptors, such as high-density
lipoprotein, through efflux proteins, such as ATP-binding
cassette transporters [200] (Figure 4).

Macrophage apoptosis has been observed in patients with
defects in the Acyl-CoA:cholesterol acyltransferase (ACAT),
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Figure 4: Macrophage polarization in atherosclerosis. Macrophages are crucial players involved in the atherosclerosis development due to
their ability to regulate cholesterol efflux. In this context, the upregulation of LXRs in M2 macrophages has been found to exert a
protective role. Indeed, LRXs reduce peripheral tissue excess cholesterol that is returned to the liver by releasing HDL in the plasma (A).
Apart from M1 and M2 polarization, a third macrophage state has been described in the atherosclerosis context that is termed Mox.
Macrophages exposed to oxidized phospholipids display reduced phagocytic and chemotactic abilities compared with M1- and M2-like
macrophages and are characterized by the expression of the transcription factor NFE2L2 as far as Hmox1, Srxn1, Txnrd1, and Gsr genes.
Mox macrophages also activate TLR2dependent mechanisms in response to oxidized lipids leading to an increase of IL1β and COX-2 (B).
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the enzyme that re-esterificates free cholesterol in cholesteryl
fatty acid esters [198]. Seimon et al. showed that oxidized
phospholipids, oxidized LDL, saturated fatty acids (SFAs),
and lipoprotein(a) can induce apoptosis in ER-stressed mac-
rophages through a CD36- and TLR2-dependent mechanism
[201] (Figure 4).

Several in vivo studies have demonstrated macrophage
heterogeneity within the atherosclerotic plaque in response
to the exposition of lipids and their oxidized derivatives
[202]. Indeed, within atherosclerotic microenvironment,
macrophages adapt their phenotype activating specific tran-
scriptional programs. Cholesterol crystals that accumulate
during the early stages of the atherosclerotic process might
be involved in the activation of macrophages [202]. Choles-
terol crystals can promote the caspase1-activating NLRP3
inflammasome, which results in the cleavage and secretion
of IL-1 and may act as a M1-polarizing stimulus [203]. The
proinflammatory M1-like phenotype can also be promoted
by a mechanism that involves inhibition of the transcription
Kruppel-like factor 2 [204, 205] or the activation of the
TLR4-mediated pathway that in turn leads to the activation
of NFκB [206]. Conversely, the anti-inflammatory M2-like
phenotype is induced by 9-oxononanoyl cholesterol, a major
cholesteryl ester oxidation product that can enhance TGFβ
secretion [207]. Moreover, sphingolipid metabolites, such
sphingosine1phosphate (S1P), promote the switching pheno-
type of mouse macrophages from M1- to M2-like state, by
activating S1P1 receptor [208].

Recently, a third macrophage phenotype has been
described in the atherosclerosis context that has been termed
Mox (Figure 4) and represents macrophages exposed to oxi-
dized phospholipids [209–211]. In advanced atherosclerotic
lesions of mice, Mox macrophages comprise approximately
30% of the total number of macrophages [212]. Mox pheno-
type can be triggered by the activation of transcription factor
NFE2L2 [212, 213]. Mox macrophages display reduced
phagocytic and chemotactic abilities compared with M1-
and M2-like macrophages. In mice, Mox macrophages typi-
cally express NFE2L2-mediated redox regulatory genes,
including Hmox1, Srxn1, Txnrd1, and Gsr [212]. Neverthe-
less, in response to oxidized phospholipids, Mox macro-
phages activate TLR2-dependent mechanisms that lead to
an increase of IL-1β and COX-2 expression [214].

Circulatingmonocytes inmurinemodels have been classi-
fied into two major subsets, described as Ly6Chi and Ly6Clow

monocytes. In apolipoprotein E-deficient (ApoE−/−), mice
the increase of Ly6Chi subset (corresponding to human
M1-like subset) has been observed within atherosclerotic
plaques [215].

Several studies have also correlated macrophage polar-
ization with the clinical course of atherosclerosis. Among
all, de Gaetano et al. [216] observed a marked difference
in a macrophage subset between symptomatic and asymp-
tomatic plaques. Indeed, M1 macrophages were found to
be abundant in the developed lipid core of the symptom-
atic plaque and were rarely found in the intimal regions
of the plaque, while M2-like macrophage number was
higher in asymptomatic atherosclerotic plaques, suggesting
a potential protective role of M2-like macrophages.

Moreover, in mouse models, it has been demonstrated that
in the regressing plaque a decrease in the number of mac-
rophages occurs and, in some, a switch of their phenotypic
characteristics has been observed, with an enrichment in
M2-like phenotype, suggesting that this is a common sig-
nature of regressing plaques [217].

Despite several current standard therapies for athero-
sclerosis that may influence general immune responses,
including angiotensin-converting enzyme (ACE) inhibitors,
β-blockers, aspirin, and corticosteroids, these drugs lack
specific macrophage targeting and may only be recognized
as mild modifiers of macrophage activity [218]. Several com-
mon pharmacological agents have already been proposed to
modulate macrophage activity for the prevention as well as
the treatment of inflammatory-related diseases, including
atherosclerosis. PPAR-γ is a crucial factor involved in the
regulation of macrophage lipid metabolism and inflamma-
tory responses and, as already discussed above, is upregulated
in M2-like macrophages [25]. PPAR-γ activators might have
therapeutic potential, and studies conducted by Bai et al.
[219] suggest that mediator 1 (MED1) is required for the
PPAR-γ-induced M2 phenotype switch and showed that
MED1 in macrophages has an antiatherosclerotic activity
via PPAR-γ-regulated transactivation, suggesting MED1 as
a promising target for atherosclerosis therapy.

Natural ligands such prostaglandins and some pharma-
cological agents including anti-TZD that have been demon-
strated to activate PPAR-γ have also been shown to
decrease atherosclerosis progression. Choi et al. demon-
strated that 5-(4-hydroxy-2,3,5-trimethylbenzylidene) thia-
zolidine-2,4-dione (HMB-TZD) reduced leukotriene B4
(LTB4) production and cytokine production by RAW264.7
macrophages and attenuates atherosclerosis possibly by
reducing monocyte recruitment to the lesion [220]. In
in vivo studies, selective inactivation of macrophage PPAR-
γ impairs M2-like activation exacerbating diet-induced obe-
sity [154], suggesting that PPAR-γ inducer might have a
therapeutic potential. Likewise, liver X receptors (LXRs) have
been found to be upregulated in M2-like macrophages and
exert atheroprotective effects by modulating cholesterol
metabolism and M1 macrophage-induced inflammatory
genes, including iNOS, COX-2, and IL-6 [221] (Figure 4).
Tangirala et al. have observed that in experimental models
of atherosclerosis, LXR agonists induced a reduction of pre-
existing plaque size and this was associated with LXR macro-
phage activity. Indeed, macrophage-specific loss of LXRs
resulted in a statistically significant increase in lesion size
[222]. Moreover, the immunomodulatory drug fingolimod
(FTY720) that has been described as a S1P1 receptor mod-
ulator has been shown to increase the proportion of M2-like
macrophages in atherosclerotic lesions and reduce lesion
progression in mice [223]. Statins, effective cholesterol-
lowering agents, have also been reported to dampen immune
responses through inhibition of macrophage inflammatory
activity by increasing efferocytosis in vitro in a 3-hydroxyl-
3-methylglutaryl coenzyme A (HMG-CoA) reductase-
dependent manner, decreasing membrane localization of
RhoA and preventing impaired efferocytosis by lysophospha-
tidic acid, a potent inducer of RhoA [224].

12 Journal of Immunology Research



Stimulation of the macrophage autophagy-lysosomal sys-
tem by the natural sugar trehalose has been reported to reduce
the formation of the atherosclerotic plaque by limitingmacro-
phage apoptosis and necrosis in the plaque cores [225].

Finally, some Lactobacillus has been observed to regu-
late M1/M2-like macrophage ratio by suppressing ox-LDL
phagocytosis, thus blocking foam cell formation [226].
These data supported the employment of prebiotic or pro-
biotic in atherosclerosis.

5. Macrophages in Periodontitis: Killers
or Builders?

Gingivitis and periodontitis are two common diseases affect-
ing the oral tissues and the health of the supporting struc-
tures of a tooth that share inflammation as a common
feature. While in gingivitis the inflammatory process is lim-
ited to the soft tissues, epithelium, and connective tissue, in
periodontitis, the inflammation is extended to the supporting
tissues, including the alveolar bone [227].

Chronic periodontitis (CPD) occurs in response to spe-
cific bacteria within the oral biofilm and involves the destruc-
tion of tooth-supporting tissues. Major features for CPD are
accumulation of immune cells in gingival connective tissue,
resorption of alveolar bone, and the degradation of periodon-
tal connective tissues, which lead to increased tooth mobility
and eventual tooth loss [228, 229].

Chronic periodontitis is strongly associated with the
presence of Gram-negative anaerobic bacteria in subgingival
plaque, in particular, Porphyromonas gingivalis, Tannerella
forsythia, and Treponema denticola. Although initiated by
bacteria, the bone pathology in CPD is mediated almost
entirely by the host response that is thought to be responsible
for the local tissue destruction observed in periodontitis
[230]. In addition, the response to oral pathogens has sys-
temic consequences. For example, infection and chronic
inflammatory conditions, such as periodontitis, may influ-
ence the atherogenic process [231, 232].

It has been reported that monocyte/macrophages act as
relevant killers in periodontal diseases by contributing to tis-
sue breakdown. Elevated numbers of macrophages/mono-
cytes associated with greater collagen breakdown and
higher level of MMPs have been observed in samples from
periodontitis [233]. Studies have shown that IL-1 was
expressed predominantly by macrophages in the tissue iso-
lated from periodontal patients [234]. In addition, higher
levels of Receptor activator of nuclear factor kappa-B ligand
(RANKL) protein, associated with macrophages, have been
observed in the periodontitis tissues [235].

Activated macrophages have been found in the gingival
epithelium, lamina propria, and perivascular tissues and in
the blood vessels in human CPD. As lesions are associated
with chronic periodontitis progress, increasing numbers of
macrophages infiltrate into the gingival tissues [236]. There-
fore, the gingival tissue and crevicular fluid of patients with
chronic periodontitis have been reported to contain signifi-
cantly increased amounts of CCL3, also known as macro-
phage inflammatory protein- (MIP-) 1α and CXCL-8/IL-8,
as compared to healthy subjects [237, 238].

Porphyromonas gingivalis (Pg) is a key periodontal path-
ogen that promotes dysbiosis between host-and plaque-
associated bacteria, thus resulting in both periodontal disease
onset and progression [239, 240]. LPS from Pg activates mac-
rophages through both TLR2 and TRL4 [241], and specifi-
cally, TLR2 activation by Pg LPS triggers the downstream
stimulation of NF-κB, leading to the production of proin-
flammatory cytokines [242–244] (Figure 5).

Macrophages are frequently used as the in vitro model
cells to define immune cell function in CPD studies. Transfer
of TLR2 expressing macrophages to TLR2-deficient mice
restored host sensitivity to Pg oral challenge [245] (Figure 5).

Pg LPS, in the presence of IL-1 and TNF-α, has been
shown to induce cultured human fibroblasts and epithelial
cells to release PGE2, a factor associated with periodontal
bone resorption that promotes the proinflammatory M1-
like macrophage polarization [229, 246–250] (Figure 5).
IL-1 and TNF-α not only enhance inflammation but also
promote bone resorption, a major concern in periodontitis
[251–253]. Oral infection with Pg in BALB/c and C57BL/6
mice resulted in the influx of M1 macrophages into the
submandibular lymph node (SMLN) and gingival tissue,
together with an increase in alveolar bone resorption, as
compared with untreated mice in a murine model of peri-
odontitis [254, 255]. Selective SMLN macrophage in vivo
depletion, using liposomes containing the proapoptotic
agent clodronate, resulted in decreased Pg-induced alveolar
bone in vivo resorption.

Pg infection enhances the secretion of the cytokines IL-
1β, IL-6, IL-12, TNF-α, CSF-3 (G-CSF), and CSF-2 (GM-
CSF), in addition to the chemokines eotaxin and CCL2–4
from macrophages, reflecting a M1 proinflammatory
response (Figure 5). These cytokines and chemokines are
known to act as proinflammatory mediators, to induce
monocytes to migrate from the bloodstream into the gingival
tissue, and to act synergistically to further stimulate proin-
flammatory cytokine production [246, 248, 249, 256]. IL-
10, which is mainly produced by macrophages, was detected
among the wide array of cytokines released during Pg infec-
tion [257]. IL-10 strongly supports M2-like macrophage
and polarized functions including increased production of
arginase-1, higher collagen deposition, and induction of
fibrosis in gingival tissue, all common clinical features of
chronic periodontitis [258–260].

In a recent study, Lam et al. observed that Pg can persist
in naïve and M2-like, but not M1-like, macrophages for 24
hours. Phagocytosis of Pg also induced high levels of TNF-
α, IL-12, and iNOS in M1 macrophages, but not in naïve
macrophages (MØ) or M2 macrophages [254].

T. forsythia expresses a well-characterized TLR2 ligand,
the BspA protein, and N- and O-glycan-linked glycoproteins
that comprise its surface- (S-) layer, covering the outer mem-
brane [261]. This S-layer has been shown to be important in
delaying the cytokine responses of monocyte and macro-
phage cells in vitro [262, 263]. BspA and other ligands
of T. forsythia induce TLR2 signaling favoring the devel-
opment of Th2-type inflammatory responses detrimental
to the alveolar bone that has been shown to be limited
in TLR2−/− mice [242].
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T. forsythia whole cells induced significantly greater
amounts of IL-6 and IL-10 in wild-type (BALB/c) bone
marrow-derived dendritic cells (BM-DCs) and macrophages,
markers related to an M2-like polarization, as compared with
TLR2−/− cells. The macrophage-inducible C-type lectin recep-
tor (Mincle), a FcγR-coupled pathogen recognition receptor
(PRR) [263, 264], has been reported to contribute to

macrophage polarization [265]. THP-1 macrophages infected
with the purified S-layer on whole wild-type T. forsythia elicit
aM2-like polarization (IL-10, TNF-α) that is limited inMincle
knockdown macrophages or where infection is performed
with the S-layer TfΔtfsAB-mutated form [265] (Figure 5).

Treponema denticola is among the most frequently iso-
lated oral spirochetal species in patients with periodontitis
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Figure 5: Macrophage polarization in periodontitis. Macrophages that have been found in the gingival epithelium can be activated by several
microorganisms able to induce macrophage polarization toward M1- or M2-like phenotype. P. gingivalis releases LPS, IL-1, and TNF-α that
promote the proinflammatory M1 macrophage polarization (A). Moreover, Pg infection enhances the secretion of IL-1β, IL-6, IL-12, TNF-α,
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macrophage and increasing arginase-1 production and collagen deposition, leading to periodontitis (C). T. forsythia releases BspA and
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[266, 267]. Major surface protein complex (MSPc), which is
expressed on the envelope of this treponema, plays a key role
in the interaction between T. denticola and gingival cells and
the related cytopathic effects [268]. Treponema denticola
within the periodontium of the host has been reported to
be associated with localized inflammation. MSPc has been
showed to stimulate the release of the proinflammatory cyto-
kines NO, TNF-α, and IL-1β from murine macrophages,
both in LPS-responsive and LPS-nonresponsive murine mac-
rophages [269]. Furthermore, IL-1β, IL-6, and TNF-α secre-
tion by T. denticola-activated macrophages has been shown
to exhibit potent bone reabsorption effects due to their proos-
teoclastic properties [270].

T. denticola-mediated macrophage response is mainly
mediated by TLR2 and via MAP kinases [271]. One of the
most highly conserved signaling cascades activated in both
the innate and the adaptive immune systems involves a fam-
ily of MAPKs including ERK1/2, p38, and JNK1/2 [272].

T. denticola stimulates the prolonged activation of both
ERK1/2 and p38 in monocytes, and pharmacological inhibi-
tion of these pathways plays major roles in regulating both
pro- and anti-inflammatory cytokine productions by T. den-
ticola-stimulated monocytes [271] (Figure 5).

A study from Miyajima et al. reported a correlation
between periodontitis-activated monocytes/macrophages
and aortic inflammation in an in vivo ligature-induced exper-
imental model of periodontitis. Gene expression profiling in
circulating monocytes in this experimental model showed
that periodontitis induced a M1-like specific signature with
high levels of TNF-α and IL-6 as compared to controls, indi-
cating that a M1-like phenotype of macrophages is induced
by periodontitis [273]. This in turn supports the hypothesis
that periodontitis-induced M1-like macrophages are the
inflammatory orchestrators driving specific proinflammatory
messages to the systemic vasculature [273]. The work from
Miyajima et al. also showed that periodontitis-induced M1
macrophages can increase macrophage adhesion to aortic
endothelial cells through the NF-κB/VCAM-1 axis [273].
These results clearly suggest that local-tissue alterations of
macrophages during periodontitis can impact on circulating
monocyte polarization and are associated to vascular alter-
ations involved in apparently distant pathologies that shares
inflammatory cell polarization as common features.

6. Conclusion

It is now widely accepted that inflammation represents a
host hallmark of diverse chronic diseases, ranging from
cancer, diabetes, and metabolic, cardiovascular, and neuro-
logical/neurodegenerative disorders. In the sameway, inflam-
mation has been recognized as a relevant condition for
insurgence, maintenance, and progression of such disorders.
Cell plasticity is a key and shared feature of inflammatory
cells within the host organism that can potentially acquire
killer (M1-like) or builder (M2-like) properties, based on
the surrounding environment. Macrophages are the clearest
example of immune cells that can be switched from killers
to builders and vice versa, and this has been observed in all
the inflammatory-based/associated disorders. Here we

discussed the cellular and molecular mechanisms involved
in macrophage switching to killers or builders in differ-
ently and apparently distant disorders, pointing out the
attention on how the macrophages/microenvironment
reciprocal interaction shape their polarization and distinct
functional states.

Further, we discussed some approaches aimed at resolv-
ing this process, by interfering with aberrant macrophage
killer/builder reciprocal switch. With this knowledge, it is
clear that the identification of novel preventive and interven-
tion strategies, along with effective compounds able in
targeting/limiting/reverting proinflammatory macrophage
polarization, are urgently needed and may represent a rele-
vant tool to shape macrophage function action directly on
them or on the hosting/surrounding environment.
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