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Abstract

Backgrounds Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by motor symptoms and
non-motor symptoms. It has been found that intestinal issues usually precede motor symptoms. Microorganisms in the
gastrointestinal tract can affect central nervous system through the microbiota-gut-brain axis. Accumulating evidence has
shown that disturbances in the microbiota-gut-brain axis are linked with PD. Thus, this pathway appears to be a promising
therapeutic target for treatment of PD.

Objectives In this review, we mainly described gut dysbiosis in PD and their underlying mechanisms for mediating neuroin-
flammation and peripheral immune response in PD pathology and futher discussed the potential small-molecule compounds
and genic therapeutic strategies targeting the microbiota-gut-brain axis and their applications in PD.

Conclusions Studies have found that some small molecule compounds and alterations of inflammation-related genes can
improve the motor and non-motor symptoms of PD by improving the microbiota-gut-brain axis, which may provide poten-
tially beneficial drugs and molecular targets for the therapies of PD.

Keywords Parkinson’s disease - Gut microbiota - Neuroinflammation - Immune response - Small-molecule compounds -
Therapies

Introduction genetic factors are thought to be involved in 5-10% of the

PD cases [3]. The etiology of PD remains unclear, but is

Parkinson’s disease (PD) is the second most common neuro-
degenerative disease characterized by the motor symptoms
bradykinesia, rigidity and tremor, and many non-motor
characteristics, accounting for 1% of the world’s population
over 60 years of age [1]. The neuropathological features of
PD are the loss of dopaminergic neurons and the presence
of a-synuclein (a-Syn)-containing Lewy bodies (LBs) in
the substantia nigra pars compacta (SNpc) [2]. Generally,
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usually due to a combination of genetics, age, and environ-
mental risks [4]. Moreover, there is growing evidence that
viral or bacterial exposures, pesticides, and alterations in the
gut microbiota play an important role in the pathogenesis of
PD [5]. Additionally, it is now understood that patients with
PD develop significant neuroinflammation and immune
dysfunction at an early age, which is closely associated with
a variety of non-motor symptoms such as sleep and gastro-
intestinal dysfunction [5—7]. The immune dysfunction com-
bined with complex gene-environment interactions may be
the major factor that enables the development and progres-
sion of PD.

Microbiota can maintain human health by regulating
host immunity and promoting intestinal barrier function
[8, 9]. Furthermore, growing evidence has shown that the
gut microbiota may be the important contributor to central
nervous system (CNS) dysfunction [10, 11]. Gut microbiota
alterations can increase both intestinal and blood-brain-
barrier (BBB) permeabilities, which leads to a continuous
accumulation of gut microbiota-derived molecules and
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metabolites in the brain, thereby promoting neuroinflam-
mation in CNS [12]. Gut dysbiosis has been found to be
strongly associated with the pathology of PD in both clinical
and preclinical studies [13—16]. The neurotoxin 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) used for PD
animal model can lead to a change in gut microbial compo-
sition [14]. Similarly, alterations in the microbiome induced
microglial activation and neuroinflammation in mice over-
expressing a-Syn, which in turn promote motor dysfunction
of the mice [15]. In addition, gastrointestinal dysfunction
and gut dysbiosis in PD patients can also interfere with
absorption and utilization of many drugs [17-20], suggest-
ing that improving gut dysbiosis in PD may be an important
role in treating and preventing the progression of PD. Sev-
eral therapeutic strategies targeting gut microbiota includ-
ing fecal microbiota transplantation (FTM), prebiotics and
probiotics, and dietary interventions have been validated in
animal models and PD patients with the aim of improving
symptoms and/or slowing progression of PD [21-28]. It is
worth noting that a number of preclinical studies in recent
years have identified some small molecule compounds and
genetic alterations that can ameliorate the neurodegen-
eration of dopamine neurons and motor deficits in PD by
improving the composition of the gut microbiota and neu-
roinflammation [29-32], indicating that they may plays pro-
tective effects on PD by improving the microbiota-gut-brain
axis. In this review, we first introduce the machinery of the
microbiota-gut-brain axis. Then, we provide a description
of gut dysbiosis in PD and their underlying mechanisms
for mediating neuroinflammation and peripheral immune
response in PD pathology. Finally, we highlight the poten-
tial small-molecule compounds and genic therapeutic
strategies targeting the microbiota-gut-brain axis and their
applications in PD.

Gut microbiota and the microbiota-gut-
brain axis

Gut microbiota is a complex ecological community that live
in the digestive tract of humans and animals, consisting of
thousands of microorganisms such as bacteria, viruses and
eukaryotes [33]. The composition of the gut microbiota
varies in different digestive tracts. There are relatively few
bacterial species in the stomach and small digestive tract
[34]. However, there is a dense ecosystem of microorgan-
isms containing multiple species in the colon [35]. The colo-
nization of gut microbiota is established at birth, but their
composition can be altered by internal and external factors
such as diet, antibiotics, bacterial infections, host genetics,
and age [36, 37]. Most gut microbiota are beneficial to the
human body, including protecting the body from pathogens
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by production of different antimicrobial substances, enhanc-
ing an individual’s immune system, playing an important
role in digestion and metabolism [38—40]. Recently, grow-
ing evidence has shown that gut microbiota modulates CNS
immune responses and functions. Microglia are the tissue
macrophages of the brain that are essential for maintaining
tissue homeostasis and clearing the pathogens from tissues
[41]. Emy et al. reported that global defects in microglia
with phenotypic immaturity were observed in germ-free
(GF) mice, whereas the microglia impairment can be recti-
fied to the recolonization with a complex microbiota [42].
They also determined that short-chain fatty acids (SCFAs),
a bacterial fermentation product, played a critical role in
microglia maturation and function [42]. Additionally, it has
been found that cyclic SCFAs produced by gut microbiota
also enhance the integrity of the BBB by increasing the pro-
duction of tight junction proteins, further limiting the entry
of undesirable substances into the brain [43]. Furthermore,
lipoproteins and lipopolysaccharides produced by the gut
microbiota can stimulate immune cells to release cyto-
kines, which cross the BBB and activate neurons, leading
to changes in mood and behavior of the host [44]. Increased
BBB permeability was also observed in GF mice beginning
with intrauterine life, which was associated with decreased
expression of the tight junction proteins occludin and clau-
din-5, which regulate barrier function of the endothelial
tissue [45]. Taken together, gut microbiota and their metab-
olites play important roles in maintaining CNS homeostasis
and immune responses.

The microbiome-gut-brain axis is a bidirectional com-
munication system between gut microbiota and the nerves
system, which can influence brain activity, behavior, devel-
opment, as well as levels of neurotransmitter receptors
through neuroimmune and neuroendocrine mechanisms
[46-50]. Gastrointestinal (GI) motility and secretion are
regulated primarily by reflexes within enteric nervous sys-
tem (ENS) in the physiological state, but they are mainly
modulated by the autonomic nervous system (ANS) from
the brain when the homeostasis of the organism is threatened
[51]. The ANS widely innervates most organ systems in the
body, which includes the parasympathetic nervous system,
the sympathetic nervous system, and the ENS [52]. In the
vertebrate gut, the ENS consists of neurons and glial cells
arranged in ganglia forming two distinct enteric plexuses
and their interconnecting neural pathways [53]. The enteric
plexus mainly consists of two neural networks embedded
in the intestinal wall: the myenteric plexus located between
the longitudinal and circular muscle layers, and the submu-
cosal plexus located in the connective tissues of the submu-
cosa [53]. The ganglionated plexus can provide local neural
regulation on tissues and cells adjacent to the ganglia. Since
ENS neurons do not extend into the intestinal lumen, they
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sense the gut microbiota primarily through microbial mol-
ecules that penetrate the epithelial barrier and the epithe-
lial cells themselves [54]. Certain microbial components,
microbiota-regulated hormones, and microbiota-dependent
immune mediators can directly interact with the enteric neu-
rons as well as vagal and spinal afferents innervating the
gut. The local signals can be transmitted through sensory
neural circuits to brain regions involved in cognition, emo-
tion, fear/anxiety, somatic sensations, and/or feeding behav-
ior [55-57]. In turn, the vagal and spinal efferents nerves
transmit signals to the intestinal mucosa and affect gastro-
intestinal homeostasis through indirect interactions with the
ENS, ultimately influencing local immune function and the
composition of the gut microbiota [58].

In addition to ENS sensing of microbial molecules,
enteroendocrine cells (EECs) and enterochromaffin cells
(ECCs) also form an important intermediate in microbi-
ota-ENS signaling. Microbial products and metabolites
(e.g., secondary bile acids, indole derivatives, and SCFAs)
can signal through EECs and ECCs to regulate the secre-
tion of several neuropeptides and neuromodulators such
as the appetite-regulating hormone GLP1, hormones, and
neurotransmitters. If these secretions cross the BBB, they
can directly affect the activity of central neurons [59]. Fur-
thermore, it has been reported that the gut microbiota has
bidirectional interactions with the neuroendocrine signaling
pathway mediated by the hypothalamic-pituitary-adrenal
(HPA) axis [60]. Stress factors can increase the release of
corticotropin-releasing hormone (CRH) from the hypo-
thalamus, which subsequently stimulates the secretion of
adrenocorticotropic hormone (ACTH) from the anterior
pituitary gland. Under the influence of ACTH, the adre-
nal glands begin to secrete cortisol, which can impact the
microbiota-gut-brain axis through multiple pathways [61].
Studies have found that cortisol receptors are expressed
in a variety of intestinal cells, including epithelial cells,
EECs, and immune cells, which suggest that cortisol may
have direct effects on intestinal function [62—65]. In addi-
tion, cortisol can also change the composition and diversity
of the gut microbial genome by altering intestinal tran-
sit time, intestinal permeability, and nutrient supply [65].
Conversely, gut dysbiosis can also alter HPA axis function.
Mechanistically, gut dysbiosis may lead to increased release
of cytokines including interleukin (IL)-1f, IL-6, and tumor
necrosis factor-a (TNF-a), which may cross the BBB and
activate the HPA axis [66, 67]. Lipopolysaccharide (LPS)
and peptidoglycan (a component of the cell wall of most
bacteria) released by gut microbes can also activate the HPA
axis [68, 69]. Abnormalities in the control or integration of
interoceptive signals can lead to perturbations throughout
the entire microbiota-gut-brain axis system [70]. A grow-
ing body of studies have shown that abnormalities in the

microbiota-gut-brain axis are associated with intestinal dis-
orders such as irritable bowel syndrome (IBS), functional
dyspepsia, chronic abdominal pain, as well as psychiatric
and neurodegenerative disorders [71-76].

Gut microbiota and inflammation in PD
pathology

Gut dysbiosis in PD

Gut dysbiosis, which is defined as alterations in the structure
and/or function of the gut microbiota, have been reported in
patients diagnosed with neurological disorders [62, 77]. GI
dysfunction, especially constipation, is an important nonmo-
tor symptom of PD that usually precedes the motor symp-
toms by several years [78]. Many studies have confirmed
the correlation between GI dysfunction of PD and composi-
tion of gut microbiota, which have discovered that there was
a diversity of microbiota in the feces of patients with PD
[79-82] (Table 1). Results from a clinical study showed the
abundance of Prevotellaceae in the feces of patients with
PD reduced by 77.6% compared to healthy controls, which
also was significantly correlated with the Unified Parkin-
son’s Disease Rating Scale (UPDRS)-III total score [83].
Furthermore, they also found that the relative abundance of
Enterobacteriaceae were significantly increase in patients
with a postural instability and gait difficulty (PIGD) phe-
notype and was positively associated with the severity of
postural instability and gait disturbance [83]. Gut microbial
analysis of 89 PD patients in Siberia showed changes in
the content of 9 genera and 15 species of microorganisms
in the intestines of patients compared to healthy controls.
There was a decrease in Dorea, Bacteroides, Prevotella,
and Faecalibacterium and an increase in Christensenella,
Catabacter and Lactobacillus. This gut microbial pattern
may trigger the localized inflammation, which in turn leads
to aggregation of a-Syn and the production of LBs [84].
A study by Liu and his colleagues has shown a significant
difference in the fecal microbiota between tremor and non-
tremor subtypes in 80 PD patients in Taiwan, China. The
relative abundance of Clostridium, Verrucomicrobia, and
Akkermansia in the feces of PD patients with the tremor
subtype was higher than that of the non-tremor subtype,
whereas Propionibacterium, Bacteroidia, Flavobacterium,
Mogibacterium, Sutterella, Alcaligenacea Cupriavidus, and
Desulfovibrio were more abundant in the non-tremor sub-
types. Moreover, Lactobacillus abundance was correlated
with the severity of motor symptoms in patients [85]. In
another clinical study included 24 patients with PD and 14
healthy volunteers, it was reported that putative cellulose
degraders from the genera Blautia, Faecalibacterium and
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Table 1 The clinical correlations between altered gut microbiota and PD

Type of  Study subjects Gene Altered microbiota Clinical Ref.
study amplification correlations
A case- 72 PD patients The V1-V3 Prevotellaceae); The severity of [83]
control  and 72 controls regions of the Enterobacteriaceae?; postural instabil-
study bacterial 16 S ity and gait
ribosomal RNA disturbance
gene
Across- 197 PD patients  The bacterial Christensenellaceae?; Desulfovibrionaceae?; Bifidobacterium?; Firmer stool [79]
sec- and 103 controls 16 S TDNA V4 Collinsellat; consistency and
tional region Bilophilat; constipation
cohort Akkermansia?; severity
study Lachnospiraceae|; Roseburia;
Lachnospiraceae;
Faecalibacterium),
Apro- 193 idiopathic PD The V3-V4 Lachnospiraceae|;Lactobacillaceae? | Cognitive [80]
spective patients, region of the 16 S Christensenellaceae? impairment;
obser- 22 progressive ribosomal RNA Gait;
vational supranuclear gene Disturbances;
case- palsy (PSP), and postural
control 22 multiple instability
study system atrophy
(MSA),
and 103 controls
A case- 51 PD patients The V4 region Akkermansia?; Prevotellat| Clinical scores, [81]
control  and 48 controls of the 16 S ribo-  Prevotella coprit,; Lactobacillales/Lactobacillaceae/Lactobacill||  such as UPDRS,
study somal RNA gene Lactobacillus NMSQ and
SCOPA
Acase- 45 patients and 45 The V3-V4 Clostridium IV1; Aquabacterium?; Holdemania?,; Sphingomo- Disease dura- [82]
control  healthy spouses  region of 16 S nas?,; Clostridium XVIII1,; Butyricicoccus?,; Anaerotruncus?;Lact tion; levodopa
study ribosomal RNA  obacillus|; equivalent doses
gene Sediminibacterium (LED)| Cognitive
impairment
A case- 24 PD patients The V3-V5 Blautia|, Faecalibacterium|, Disease severity  [86]
control  and 14 healthy region of 16 S Ruminococcus |; and PD duration
study volunteers ribosomal RNA  Escherichia-Shigella?,
gene Streptococcus?,; Proteus?; Enterococcus?l
Acase- 89 patients and 66 The V3-V4 Dorea); Bacteroides|, Prevotella|; Faecalibacterium|; Bac- Aggregation of [84]
control  patients without  region of 16 S teroides massiliensis|; Stoquefichus massiliensis|,; Bacteroides a-synuclein and
study severe somatic ribosomal RNA  coprocolal,; Blautia glucerasea|, Dorea longicatena),; Bacteroi-  generation of
pathology and gene des dorei|; Bacteroides plebeus|; Prevotella copri|; Coprococcus Lewy bodies
manifestations eutactus|,; Ruminococcus callidus|,
of parkinsonism Christensenella?; Catabactert; Lactobacillus?; Oscillospira?,
(control group) Bifidobacterium?, Christensenella minuta?,; Catabacter hongkon-

gensis?t,; Lactobacillus mucosae?; Ruminococcus bromiit; Papil-
libacter cinnamivorans?

A case- 80 PD patients The V3-V4 Bacteroide?; Tremor; [85]
control  and 77 controls region of the 16 S Prevotella), Motor symptom;
study ribosomal RNA  Parabacteroides?, Verrucomicrobia®l, Akkermansia?l, Butyricimo-  Severity
gene nas?t, Veillonellat, Odoribacter?, Mucispirillum?, Bilophila?,
Enterococcus?, and Lactobacillus?
A case- 34 PD patients The V4 and Faecalibacterium)|; Medication with ~ [88]
control  and 25 controls V5 hypervari- Fusicatenibacter|; L-dopa and
study able region of Clostridiales family XIt entacapone
bacterial 16 S
ribosomal RNA
gene
Acase- 59 patients suffer- The 16 S ribo- Rikenellaceae?; PD duration and  [94]
control ing from PD for  somal RNA gene Turicibacteraceae?, disease severity
study > 1 year (OPD), Butyricimonas?!,; Parabacteroides?,; Christensenellaceae R-7
13 new PD group?; Ruminococcaceae UCG?, Alistipes?t
(NPD) patients,

68 controls
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Table 1 (continued)

Type of  Study subjects Gene Altered microbiota Clinical Ref.
study amplification correlations

Acase- 147 PD patients  The V3-V4 Akkermansia muciniphila?; Lactobacillus?, Host metabo- [95]
control  and 162 controls  regions of the Turicibacter) lism and disease

study 16 S ribosomal phenotype

RNA gene

Ruminococcus were reduced in the feces of patients with
PD, while putative pathobionts from the genera Esche-
richia-Shigella, Streptococcus, Proteus, and Enterococcus
were increased, which may lead to decreased production of
SCFAs and increased production of endotoxins and neuro-
toxins [86]. A meta-analysis of 10 case-control studies with
a total of 1,703 subjects showed that the composition of the
microbiome of PD patients was significantly different from
that of controls, including an increase in the rare taxa Mega-
sphaera and Akkermansia and a decrease in the abundant of
Roseburia genus [87]. They also found that many bacterial
genera are associated with PD motor severity and cogni-
tive function [87]. Weis et al. observed that several bacte-
rial taxa linked to health-promoting, anti-inflammatory and
neuroprotective, such as Faecalibacterium and Fusicateni-
bacter, reduced in 34 PD patients [88]. Additionally, the
Clostridiales family XI and their affiliated members which
were capable of peptone and amino acid fermentation,
including Peptoniphilus and Finegoldia, also increased in
PD patients [88-90]. However, they didn’t find any differ-
ence of the beta diversity between PD and control samples.
By analyzing the shotgun metagenome sequencing data
obtained from the Sequence Read Archive (SRA) database,
Yu et al. found significant differences in the diversity, abun-
dance and composition of the gut microbiota of PD patients
compared to healthy individuals [91]. Notably, their study
in a 6-hydroxydopamine (6-OHDA)-induced rat model of
PD also observed that gut microbiota dysbiosis exacerbated
behavioral deficits and oxidative stress through inhibition
of the expression of nicotinamide mononucleotide adeny-
lyl transferase 2 (NMNAT?2), a key enzyme that catalyzes
the synthesis of nicotinamide adenine dinucleotide (NAD")
from NMN [91, 92]. Previous studies have reported that
a-Syn pathologically overexpressed in intestinal tissues of
PD mouse model [93]. Thus, we speculated that the over-
expression of a-Syn in the gut may be responsible for the
increase in these genera, but further studies are needed to
explore the metabolic activity of these genera with respect
to a-Syn and their interaction with ENS. Additionally, the
administration of drugs such as levodopa and entacapone
to PD patients also significantly affects the relative abun-
dance of the genera Peptoniphilus, Finegoldia, Faecalibac-
terium Fusicatenibacter, Anaerococcus, Bifidobacterium,
Enterococcus and Ruminococcus. Whether these altera-
tions in bacterial taxa affect the metabolism and absorption

of dugs further needs to be investigated [88]. A study has
also reported that significantly high levels of Rikenellaceae
and Turicibacteraceae were found in the gut microbiota of
59 patients suffering from PD for > 1 year and 13 new PD
patients compared to the corresponding healthy controls,
respectively. Moreover, the genera Turicibacter and Pre-
votella were correlated with the PD severity [94]. Baldini
et al. discovered that PD-associated microbial patterns were
associated with gender, age, body mass index, and con-
stipation in PD patients. And the relative abundances of
Bilophila and Paraprevotella were significantly associated
with the Hoehn and Yahr staging [95]. Desulfovibrio bacte-
ria (DSV) belongs to sulfate-reducing bacteria (SRB) which
can cause infections in humans. Hydrogen sulfide (H2S)
produced by DSV can induce a-Syn aggregate formations
[96, 97]. Results from the detection of faces from 20 PD
patients, Murros et al. found that all PD patients had higher
levels of Desulfovibrio in their gut microbiota than healthy
controls. And the concentration of Desulfovibrio was signif-
icantly correlated with the severity of PD [98]. In a Chinese
case-control study with 45 PD patients, genera Clostridium
IV and XVIII, Butyricoccus, Aquabacterium, Holdema-
nia, Sphingomonas and Anaerotruncus were enriched in
the PD patients gut compared to healthy controls. Among
those flora, genera Butyricicoccus and Clostridium XIVb
are related to cognitive impairment in PD patients. Further-
more, genera Escherichia/Shigella were negatively associ-
ated with PD duration [82]. Taken together, those studies
indicate that gut dysbiosis is closely related to PD clinical
symptoms, and altering the gut microbiota may be a poten-
tially therapeutic option of PD. However, the relationship
between the relative abundance of the microbiota and dis-
ease progression in patients with PD is not consistent, pos-
sibly due to differences in methodology, race, region, age,
and other factors. For example, local diets vary between
different countries and regions, and different diets can lead
to significantly different compositions of the gut microbiota
[99, 100].

In addition, gut dysbiosis has also been found in animal
models of PD. For example, in a mouse model of PD treated
with rotenone, 16 S rRNA sequencing of fecal microbiome
showed an overall decrease in bacterial diversity and sig-
nificant changes in microbial composition. Moreover, the
changes of fecal microbiota composition induced by rote-
none were strongly associated with gastrointestinal and
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motor dysfunction in mice [101]. Likewise, gut microbial
alpha diversity was altered in rotenone-treated Sprague-
Dawley rats. The genera Actinobacteria and Proteobacteria
were increased, while genera Bacteroidetes, Cyanobacte-
ria and Firmicutes were decreased in rotenone-treated rats,
which is relatively consistent with alternations reported
in patients with PD [102]. Gut microbiota could also pro-
mote a-Syn pathology, motor and GI dysfunction of the
thy1-aSyn-overexpressing (ASO) mouse [15]. Additionally,
transplanting the gut microbiota derived from PD patients
into ASO mouse further aggravated the motor dysfunc-
tion. This result further indicates that changes in the human
microbiome may be a risk factor for PD duration. Recently,
a study showed that the abundance of Escherichia coli (E.
coli) was significantly increased in LRRK2 R1628P and
G2385R mice. The LRRK2 variant (R1628P) increased
phosphorylation of a-Syn caused by curli in E. coli-derived
extracellular vesicles. Moreover, E. coli administration
triggered pathologic a-Syn aggregation in the colon and

Activated
astrocyte

1o o e e O

(‘1
Activated
microglia

diffusion to the brain via the microbiota-gut-brain axis in
LRRK?2 mutant mice [103].

Gut microbiota and inflammation in PD

The research community proposes that the development of
PD is accompanied by the activation of the innate immune
and adaptive immune systems, which changes dynamically
with disease progression, contributing to neuronal degen-
eration in the brain [5]. Growing evidence suggests that gut
dysbiosis plays a key role in the development of neuroin-
flammatory and immune responses in PD (Fig. 1).

Gut microbiota, CNS inflammation and PD

Microglia, tissue-resident macrophages in the brain, are
densely distributed in the SNpc and striatum of the brain
involved in PD. It has been showed that overactivation of
microglia can lead to CNS inflammation and dopamine
neuron damage [104]. McGeer et al. first found human
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Fig. 1 A potential inflammatory mechanism of gut microbiota in PD.
Gut dysbiosis in PD can lead to accumulation of o-Syn in the gut,
which can enter the brain via the vagus nerve. Gut microbiota and
their metabolites modulate intestinal inflammation and activate astro-
cytes and microglia, which in turn release pro-inflammatory factors
leading to dopaminergic neuronal damage. Cyclic SCFAs produced by
gut microbiota can enhance the integrity of the BBB. Furthermore,
SCFAs and butyrate may inhibit intestinal inflammation and neuroin-
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flammation by inducing FoxP3'- Treg cell differentiation. Adhesion
of the symbiotic mucosa-associated segmented filamentous bacterium
(SFB) ‘Candidatus Arthromitus’ to intestinal epithelial cells acts on
CDlIc"cells in the lamina propria to stimulate the production and
release of interleukin (IL)-6 and IL-23, and thereby stimulate the dif-
ferentiation and activation of Th17 cells, which play an important role
in the protection of intestinal barrier integrity and the maintenance of
intestinal homeostasis
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leukocyte antigen (HLA)-DR" (a major histocompatibility
complex class II (MHC-II) cell surface receptor) respon-
sive microglia in postmortem tissues of PD patients [105],
and the number of the HLA-DR" microglia increased as
the neuronal degeneration of the SNpc proceeded [106]. In
addition, o-Syn can activate microglia through the Toll-like
receptor 4 (TLR4) or the TLR2 pathway and promote the
production of pro-inflammatory factors such as nitric oxide
(NO), and TNF and interferons(IF), which in turn produce
toxic effects on dopaminergic neurons [107—109]. Similarly,
studies of patients with PD have also found elevated levels
of the proinflammatory cytokines related to the risk of PD
in the brain tissue and cerebrospinal fluid (CSF), includ-
ing TNFa, transforming growth factor (TGF)-p1, IL-6, and
IL-1P [85, 110, 111]. These findings suggest that microglia
overactivation plays an important role in neuroinflammation
and neurodegeneration in PD.

Growing studies have suggested that the inflammation
leading to neurodegeneration may be related to gut dys-
biosis [60, 112, 113]. Erny et al. found that a diverse gut
microbiota is necessary to maintain microglia maturation,
morphology and immune function. The absence of a host
microbiota can lead to defects in microglia maturation, acti-
vation and differentiation as well as compromised immune
response to bacterial or viral infections [42]. Within cau-
doputamen (CP) and substantia nigra (SN), microglia in
germ-free wild type (GF-WT) mice displays a maturation
arrest and/or a reduced activation state, suggesting that
gut microbiota affect immune cells in the brain [15]. Fur-
thermore, antibiotic-treated specific pathogen-free-alpha-
synuclein-overexpressing (SPF-ASO) mice display higher
maturation of microglia and significantly increased levels of
the pro-inflammatory cytokines TNF-o and IL-6 compared
with germ-free-o-Syn-overexpressing (GF-ASO) mice,
indicating that gut microbiota can promote a-Syn-dependent
activation of microglia [15]. In MPTP-induced PD mouse
models, sodium butyrate, a short-chain fatty acid, was found
to attenuate PD-associated BBB disruption by upregulation
of occludin and zonula occludens (ZO)-1 [114]. In addition,
an in vitro data showed that SCFAs protected the integrity of
the BBB through direct effects on endothelial cells and acti-
vation of anti-inflammatory pathways [115]. Huuskonen et
al. found that butyrate could induce an adaptative response
against microglial activation [116]. Interestingly, butyrate
performed a significant protective effect on LPS-induced
inflammatory response in rat primary microglia. However,
in the transformed N9 microglial cell line, sodium butyr-
ate enhanced the LPS-induced inflammatory response and
downregulateed the DNA binding capacity of NF-kB tran-
scription factor induced by LPS stimulation [116]. It has
been observed that SCFAs could promote the activation of
microglial cells and leaded to enhanced motor deficits in GF

mice overexpressed a-Syn [15]. Interestingly, a significant
reduction in the number of SCFA-producing bacteria and
fecal excretion of SCFA has also been detected in fecal sam-
ples from PD patients and animal models, which may be an
important mechanism for the abnormal neuroinflammation
in PD [13, 117].

The above studies have shown that microbial products
and metabolites could promote the maturation and activa-
tion of microglia, indicating that gut dysbiosis in PD patients
may be an important mechanism for causing excessive CNS
inflammation. Alteration of the microbial composition of
PD patients through diet or medication may be a potential
method to improve the DAergic neurodegeneration induced
by the abnormal inflammation.

Gut microbiota, peripheral inflammation and PD

Dysregulation of both cellular immune responses and
humoral immune responses in the periphery has been
observed in PD patients and animal models [118, 119]. Data
from several lines of preclinical and clinical studies has
shown that the pathological process of PD is associated with
alterations in the number and function of peripheral immune
cell populations. A study of samples from 41 patients with
PD showed that the phagocytic capacity of monocytes in
the peripheral blood of patients with early-moderate PD
was increased compared with controls [120]. In a mouse
model induced by overexpression of a-Syn, Harms et al.
observed that a-Syn induced microglia activation, antigen
presentation, IgG deposition and dopaminergic neuronal
degeneration by upregulating MHCII expression in microg-
lia. In the in vitro systems, they also found that aggregated
a-Syn activated the antigen processing and antigen presen-
tation capacity of microglia, which in turn drove CD4 T
cell proliferation and triggers the release of cytokines such
as IL-la, IFNy, IL-1B, TNF and IL-10 [121]. In addition,
they also found that a-Syn induced a robust infiltration of
CCR2" peripheral monocytes into the SN, whereas dele-
tion of CCR2 can prevent o-Syn-induced monocyte entry,
attenuate MHCII expression, and decrease degeneration
of dopaminergic neurons, suggesting that extravasation of
pro-inflammatory peripheral monocytes into the CNS play
an important role in neuroinflammation and neurodegenera-
tion in PD [122]. There is an increase in effector/memory T
cells (Tem) and an impaired abilities of regulatory T cells
(Treg) to suppress effector T cell function in the peripheral
blood of patients with PD, which linked to PD pathobiol-
ogy and disease severity [123]. A study in 2018 reported
that the number of T lymphocytes increased in postmortem
PD brain tissues. Furthermore, activated T lymphocytes
producing IL-17 were found to promote neuronal death
in autologous co-cultures of activated T lymphocytes and
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iPSC-derived midbrain neurons of sporadic PD patients
[124]. In addition, increased numbers of CD3"/CD4" T cells
near microglia and astrocytes were detected in the brains
of a-Syn transgenic models, implying that these infiltrating
peripheral adaptive immune cells are involved in the process
of activating immune cells in the CNS to enhance the neu-
roinflammatory response [125]. T helper (Th)17 cells are a
subset of CD4" T lymphocytes with strong proinflammatory
property [126]. In MPTP-induced PD mouse models, Th17
cells were found to invade into SNpc where BBB was dis-
rupted [127]. In addition, Th17 cells directly exacerbated
DAergic neuronal loss through LFA-1/ICAM-1 interaction
in MPP*-treated ventral mesencephalic (VM) cell cultures
[127]. CD4'CD25" Tregs are a subpopulation of CD4" T
cells that specifically express the transcription factor FoxP3
in the nucleus and CD25 and CTLA-4 on the cell surface,
and play essential functions in suppressing immune activa-
tion and maintaining immune homeostasis and tolerance
[128]. CD3-activated Tregs were demonstrated to protect
against dopaminergic neuronal loss through inhibition of
microglial oxidative stress and inflammation induced by
activated microglia in a MPTP mouse model of PD [129].
Recently, there is growing supports for the idea that intes-
tinal inflammatory processes and gut-derived inflammation
associated with dysbiosis play a pathogenic role in PD [130,
131]. Several lines of evidence have shown that abnormally
altered gut microbiota in PD contributed to neuroinflamma-
tion and neurodegeneration by affecting the differentiation
and proliferation of T cells in the gut. Faecalibacterium
and Roseburia, which are reduced in PD, produce butyr-
ate, which exerts potent effects on many colonic mucosal
functions such as inhibiting inflammation, reinforcing the
defense function of the colon and decreasing oxidative
stress [132, 133]. Butyrate enhances the acetylation of
Foxp3 protein and reduces the expression of pro-inflam-
matory factors in dendritic cells (DCs) through inhibition
of histone deacetylase (HDAC), thereby promoting Treg
production [134, 135]. Similarly, propionate, another SCFA
of microbial origin capable of HDAC inhibition, also pro-
motes de novo Treg-cell generation in the periphery in vivo
[134]. In addition, it has been reported that SCFAs also can
increase colonic Treg population size and function and pro-
tect against colitis in a Ffar2(GPR43)-dependent manner
[136]. In colon, butyrate induces the differentiation of Treg
cells and IL-10-producing CD4" T cells through acting on
the G protein-coupled receptor GPR109a which expressed
on dendritic cells and macrophages [137]. Furthermore,
butyrate can interact on the GPR109a receptor in colonic
epithelial cells and induce the production of IL-18, and
subsequently suppresses colonic inflammation [137]. Thus,
a decrease in the abundance of butyrate-producing bacte-
ria in PD may exacerbate neurodegeneration by failing to
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suppress neuroinflammation. In the mice colonized with
the symbiotic mucosa-associated segmented filamentous
bacterium (SFB) ‘Candidatus Arthromitus’, Omenetti et al.
observed that adhesion of SFB to intestinal epithelial cells
acted on CD11c" cells in the lamina propria to stimulate the
production and release of IL-6 and IL-23, and thereby stim-
ulated the differentiation and activation of Th17 cells, which
played an important role in the protection of intestinal bar-
rier integrity and the maintenance of intestinal homeostasis
[138, 139]. In the terminal ileum, commensal Th17 cells
induced by SFB exerted unique anti-inflammatory effects
and regulated effector T cell responses through expres-
sion of transcription factor c-MAF and the cytokine IL-10
[140]. Beta-N-methylamino-L-alanine (BMAA), a natural
proteinogenic diamino acid produced by cyanobacteria, dia-
toms and methanogens, is usually detected in its free form
[141]. Although there is no evidence that human gut micro-
biota can produce BMAA, a study has reported that hyper-
methylation in the promoter region of the SLC7A11 gene in
patients with PD is link to downregulation of the cysteine-
glutamate antiporter, a target of BMAA, which is thought to
be consistent with environmental risks related to PD [142].
A recent study observed that mice were orally administered
with BMAA for 12 weeks significantly reduced the abun-
dance of microbiota SFB in the ileal mucosa, leading to
increased intestinal inflammation and loss of intestinal bar-
rier integrity. Surprisingly, BMAA treatment induced propa-
gation of a-Syn aggregates from the gut to the SN region
of the brain via the vagus nerve, which in turn triggered
neuroinflammation, dopaminergic neuron degeneration,
and movement disorders [143]. This leads to the conclusion
that the regulation of Th17 by SFB may play a fundamental
role in the progression of generation of a-Syn aggregates
and the occurrence of neuroinflammation, but further inves-
tigations are needed by more studies. Recently, it has been
found that Subgingival plaque (LIP SP) caused an increased
abundance of Veillonella parvula (V. parvula) and Strepto-
coccus mutans (S. mutans) in the feces of MPTP-induced
PD mice, leading to activation of microglia in the brain, and
proliferation of T helper 1 (Th1) cells in the brain and gut.
In V.parvula - and S.mutans -treated PD mice, administra-
tion of IFNy protected dopaminergic neurons from damage
caused by dysbiosis [144].

Therapies targeting the gut microbiota in PD

Several lines of evidence have identified gut microbiota
disturbances in patients with PD, which can also affect
levodopa absorption [20]. In addition, several therapeutic
strategies targeting gut microbiota have been validated in
preclinical animal models and PD patients with the aim of
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improving symptoms and/or slowing progression of PD. In
recent years several evidence have found that many drugs,
natural small molecule compounds and deletion of inflam-
mation-related genes also exert anti-inflammatory and
neuroprotective effects by modulating the gut microbiota
(Table 2).

Drugs
Ceftriaxone

Ceftriaxone is a new third-generation cephalosporin com-
monly used in clinical practice, which has excellent activity
against many Gram-negative and Gram-positive microor-
ganisms [145]. Recently, a study showed that intraperitoneal
injection of ceftriaxone (200 mg/kg) for 7 days alleviated
MPTP-induced activation of astroglia and microglia in the
substantia nigra, reduced the expression of neuroinflamma-
tion-related TLR4, myeloid differentiation primary response
88 (MyD88), and phosphorylated NF-kB (p-NF-kB) in the
brain and colon of PD mice, and decreased the serum con-
centration of IL-1f, IL-6, and TNF-a [146]. They further
demonstrated that ceftriaxone reduced the abundance of the
Proteus genus and increased the abundance of Akkerman-
sia, which suggests that ceftriaxone may exert neuroprotec-
tive effects by regulating inflammation and gut microbiota
[146].

Hua-Feng-Dan (HFD)

Hua-Feng-Dan (HFD) is a traditional Chinese medicine
containing a variety of components, which has been used to
treat stroke and PD [147]. Previous studies have indicated
that cinnabar and realgar were the main active components
of HFD in in vitro [147, 148]. In a chronic LPS plus rote-
none (ROT)-induced rat model, Chen et al. found that the
HFD-original (containing 10% cinnabar and 10% realgar,
0.06 g/kg/d) rescued LPS-and ROT-induced loss of DA neu-
rons, improved motor dysfunction of the rats and attenu-
ated the activation of microglia in the substantia nigra tissue
[149]. In addition, the results from gut microbiome analysis
demonstrated that HFD-original ameliorated the LPS- and
ROT-induced the increased abundance of Verrucomicro-
biaceae and Lactobacteriaceae genera and the decreased
abundance of Enterobacteeriaceae genera [149]. Thus, the
active ingredients cinnabar and realgar in HFD may have a
protective effect on neuronal degeneration and improve the
composition of gut microbiota in PD models.

Natural small molecule compounds
Dihuang Granule

Compound Dihuang Granule (CDG) is another traditional
Chinese medicine used in the treatment of PD. Several
preclinical evidence has shown that CDG can effectively
improve neurotoxin-induced upregulation of inflammatory
factors, neuronal degeneration, motor dysfunction and GI
dysfunction [150, 151]. Recently, it has been reported that
orally administrated 10 g/kg/day CDG in PD mouse mod-
els can ameliorate MPTP-induced gut microbial dysbiosis,
inflammatory responses in the CNS and colon via block-
ing the TLR4/NF-«B pathway, which in turn protected the
intestinal barrier responses [31].

Curcumin

Curcumin (CUR) is a low molecular weight polyphenol
compound derived from turmeric that has been found to
have anti-inflammatory, antioxidant and anticancer proper-
ties [152]. It was previously found that CUR exerts neu-
roprotective effects in PD through inhibition of reactive
oxygen species (ROS) production, microglial activation,
and production of a-Syn aggregation [153—155]. In addi-
tion, CUR can play a protective role in many diseases by
restoring microecological dysregulation and improving
intestinal barrier function [156, 157]. Cui et al. found that
given through intragastric administration of CUR (100 mg/
kg/day) daily for 4 weeks effectively improved MPTP-
induced motor deficits, glial activation, and the aggregation
of a-Syn. The results from 16 S rRNA sequencing showed
that the abundance of Muribaculaceae, Lactobacillaceae,
Lachnospiraceae, and Eggerthellaceae was increased,
while the abundance of Aerococcaceae and Staphylococ-
caceae was decreased in CUR-treated mice compared with
MPTP mice. Furthermore, serum metabolomics analysis
showed that CUR treatment resulted in a rapid increase in
tyrosine and levodopa (dopa) levels in the brain, and that
these changes were associated with the abundance of Lac-
tobacillaceae and Aerobacteriaceae, suggesting that CUR
can ameliorate the progression of PD by modulating the gut
microbiota-metabolite axis [32].

Diosgenin

Diosgenin, a natural steroidal saponin found primarily in
Dioscorea species, has been shown to have strong anti-
inflammatory and antioxidant activity [158, 159]. Growing
evidence has shown that diosgenin show great potential in
neuroprotection and regulation of gut microbiota [160, 161].
For example, it can attenuate amyloid-p (1-42)-induced
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Table 2 Effects of drugs and Compounds/Drugs ~ Methods of Animal  Altered microbiota Effects Ref.
small molecule components on administration  models
gut microbiota in PD and dosage
Clinical drugs
Ceftriaxone Intraperitoneal ~ MPTP- Proteus|, Alleviate MPTP-  [146]
injection, treated Akkermansiat induced activation
200 mg/kg mice of astroglia and
microglia;
Reduce expression
of TLR4, MyDSS,
p-NF-xB in the
brain and colon;
Decrease the
serum concentra-
tion of IL-1,
IL-6, and TNF-a
Cinnabar and Oral, Lipopoly- Verrucomicrobiaceae| Rescue LPS-and [149]
Realgar HFD-original: saccharide Lactobacteriaceae) ROT-induced
0.06 g/kg/day, (LPS) plus Enterobacteeriaceaet DA neurons loss;
HFD-reduced: rotenone Improve motor
0.018 g/lkg/day  (ROT)- dysfunction of the
induced rats;
rat model Attenuate activa-
tion of microglia
Natural small molecule compounds
Dihuang Granule Oral, MPTP- Proteobacteria) Improve the dam- [31]
10 g/kg/day treated Patescibacteria| age of dopaminer-
mice Muribaculum? gic neurons;
Turicibacter? Ameliorate motor
Lactobacillus?t impairments; Sup-
Ruminococcaceae? press PD-associ-
Candidatus_Sac- ated inflammation
charimonas? and oxidative
Enterorhabdus? stress
Curcumin Oral, MPTP- Muribaculaceae? Improve motor [32]
100 mg/kg/day  treated Lactobacillaceaet deficits, glial cell
mice Lachnospiraceaet activation, and
Eggerthellaceaet the aggregation of
Aerococcaceae), a-syn;
Staphylococcaceae | Upregulate the
levels of tyrosine,
methionine, sarco-
sine and creatine
Diosgenin Oral, MPTP- Firmicutes-to-Bacte- Improve motor [167]
80 mg/kg/day treated roidetes ratio, behavior;
mice Enterococcus Inhibit neuron
Streptococcus | viability and
Bacteroides| oxidative stress;
Lactobacillus genera)  Promote bile acid
(BA) -mediated
GLP-1 pathway
Resveratrol Oral, MPTP and Prevotellaceae? Improve [174]
30 mg/kg/day pro- Rikenellaceaet MPTP/P-induced
benecid Erysipelotrichaceaet  behavioral
(MPTP/P) Fimicutes-to-Bacte- performance;
-treated roidetes ratio|, Prevent
mice Lachnospiraceae MPTP/P-induced
Akkermansia, dopaminergic
neurodegeneration
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neurodegeneration [162], ameliorate LPS-induced microg-
lial activation and neuronal damage [163], and ameliorate
murine colitis by regulating macrophage polarization and
recovering the disturbed gut microbiota [164, 165]. Inter-
estingly, in a study on melanoma, the anticancer effects
of diosgenin were more dependent on inducing antitumor
immunity by modulating gut microbiota composition [161].
In a mouse model of pentylenetetrazole (PTZ)-induced
epilepsy, diosgenin (80 mg/kg/day) treatment reversed
PTZ-induced decrease in the abundance of Bacteroides and
Parabacteroides genera, inhibited the activation of enteric
glial cells (EGCs) and the TLR4-MyD88 pathway, which
in turn reduced the expression of pro-inflammatory factors
in the colon and improved the intestinal barrier function,
and ultimately inhibited the progression of epilepsy [166].
A recent study found that administered intragastrically with
diosgenin (80 mg/kg/day) restored MPTP-induced gut dys-
biosis to decrease Firmicutes-to-Bacteroidetes ratio and
the abundances of Enterococcus, Streptococcus, Bacteroi-
des and Lactobacillus genera by upregulating the GLP-1
signaling pathway, which further inhibited bile acid-medi-
ated oxidative stress and neuroinflammation, significantly
improving the pathological phenotype of PD mice [167].

Resveratrol

Resveratrol, a polyphenol compound found in many plant
species, has a variety of biological properties including
anti-inflammatory, antioxidant, anticancer and neuroprotec-
tive properties [ 168]. Experimental studies in in vitro and in
vivo have shown the neuroprotective effects of resveratrol
on PD [169]. Many studies of the pharmacological function
of resveratrol found that most of resveratrol could not be
absorbed in the small intestine, but it could interact with the
gut microbiota, regulate the composition of the gut microbi-
ota, and undergo biotransformation to active metabolites via
the gut microbiota [170—173]. FMT from resveratrol-treated
(30 mg/kg/day) PD mice to MPTP-induced PD mouse
models showed that FMT could increase the abundance
of Prevotellaceae, Rikenellaceae, and Erysipelotrichaceae
genera, decreased the ratios of Fimicutes/Bacteroidetes and
the abundance of Lachnospiraceae and Akkermansia gen-
era, which may contribute to the neuroprotective effects in
PD through increasing the number of TH-positive neurons
in the SNpc and enriched TH-positive fiber density in the
striatum [174].

TLR2 and TLR4

Toll-like receptors (TLRs), a family of pattern recogni-
tion receptors (PRRs), are observed in glial cells and neu-
rons that respond to invading exogenous pathogens and

endogenous pathogens released during tissue lesions [175].
TLR2 showed an upregulation in brain tissues of PD patients
and involved in a-Syn-induced inflammatory responses,
stimulating the release of pro-inflammatory cytokines [176,
177]. In TLR2 knockout (TLR2-/-) and wild-type (WT)
mice treated with MPTP, He et al. found that deficiency of
TLR2 significantly attenuated motor deficits and the nigros-
triatal dopaminergic degeneration, and reduced astrocyte
activation and neuroinflammation by inhibiting the TLR2/
MyD88/TRAF6/NF-kB signaling pathway. Furthermore,
TLR2 deficiency also increased the abundance of the pro-
tective genus Prevotellaceae and decreased the abundance
of the genera Oscillospira, Anaerotruncus, Lachnoclos-
tridium, and Helicobacter, which were associated with
intestinal inflammation, implying that alterations of the gut
microbiota in TLR2-deficient mice may contribute to the
recovery of PD pathology [29]. TLR4, the bacterial endo-
toxin-specific ligand, is another TLR member that have been
linked to the pathogenesis of PD. In the SN and medial tem-
poral gyrus (GTM) of PD patients, TLR4 expression was
upregulated and co-localized with phosphorylated a-Syn
in DA neuronal LBs and Iba-1 in glial cells [178]. Perez-
Pardo et al. found increased expression of TLR4, CD3" T
cells, cytokine in colonic biopsies and decreased abundance
of SCFAs-producing bacteria in patients with PD. Intestinal
inflammation, motor dysfunction, neuroinflammation, and
neurodegeneration were less in rotenone-treated TLR4-KO
mice compared to rotenone-treated WT mice [30]. However,
deletion of TLR4 leaded to a ‘pro-inflammatory’ dysbiotic
microbiota, including decreased relative abundance of the
anti-inflammatory genera Bifidobacterium and/or Lactoba-
cillus and increased relative abundance of the pro-inflam-
matory intestinal bacterial genera unclassified Rickettsia,
Coccidioides, and Lactobacillus, which may be the reason
that TLR4 deficiency could not completely protect against
rotenone-induced PD pathology [30]. Further interventional
studies, such as fecal transplantation or gene silencing of
the TLR4 pathway, are required to establish a direct link
between microbiota, TLR4, gut and CNS inflammation, and
neurodegeneration in PD.

Limitations

A large number of preclinical studies have demonstrated
that some drugs and small molecules have protective effects
on DA neuron damage in PD by affecting the composition
and abundance of gut microbiota. We have summarized and
discussed their roles in this review, but we have not con-
ducted a direct and critical comparison between the differ-
ent therapies discussed to determine which might be more
promising or effective based on current evidence. In addi-
tion, further clarification of the drug’s half-life in the body,
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their abilities to cross the BBB, and dose toxicity is needed
before it can be formally applied to clinical therapy.

Conclusion and future directions

Although several studies have reported significant changes
in the relative abundance of certain gut microbiota in the
feces of patients with PD, the results often vary given dif-
ferences in selection of patients and controls and the study
methodology [179]. Future studies need to be greater har-
monization and to use personalized approaches in the
design of microbial-directed therapeutics. Numerous of pre-
clinical studies have found that some small molecule drugs
can exert neuroprotective and anti-inflammatory effects by
restoring gut microbiota. However, the bioavailability of
these small molecule compounds in in vivo and the effects
on gut microbial metabolism and microbiota-gut-brain axis
homeostasis are needed to be further explored. In addition,
the duration and dose of treatment varied across studies, and
more studies are needed to further refine the duration and
dose of drug interventions.

Nowadays, macrogenomic microbial analyses matched
with functional assays are crucial for the selection of thera-
peutic candidate molecules targeting PD pathology. Two
mechanisms can be considered during the development of
therapeutic strategies: (i) whether microbial release of mol-
ecules is able to reestablish gut and brain barrier homeosta-
sis; and (ii) homeostasis of the brain-gut axis mediated by a
remodeling of the host microbiota.
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