
REVIEW ARTICLE

Neurological Sciences (2025) 46:561–578
https://doi.org/10.1007/s10072-024-07878-x

genetic factors are thought to be involved in 5–10% of the 
PD cases [3]. The etiology of PD remains unclear, but is 
usually due to a combination of genetics, age, and environ-
mental risks [4]. Moreover, there is growing evidence that 
viral or bacterial exposures, pesticides, and alterations in the 
gut microbiota play an important role in the pathogenesis of 
PD [5]. Additionally, it is now understood that patients with 
PD develop significant neuroinflammation and immune 
dysfunction at an early age, which is closely associated with 
a variety of non-motor symptoms such as sleep and gastro-
intestinal dysfunction [5–7]. The immune dysfunction com-
bined with complex gene-environment interactions may be 
the major factor that enables the development and progres-
sion of PD.

Microbiota can maintain human health by regulating 
host immunity and promoting intestinal barrier function 
[8, 9]. Furthermore, growing evidence has shown that the 
gut microbiota may be the important contributor to central 
nervous system (CNS) dysfunction [10, 11]. Gut microbiota 
alterations can increase both intestinal and blood-brain-
barrier (BBB) permeabilities, which leads to a continuous 
accumulation of gut microbiota-derived molecules and 

Introduction

Parkinson’s disease (PD) is the second most common neuro-
degenerative disease characterized by the motor symptoms 
bradykinesia, rigidity and tremor, and many non-motor 
characteristics, accounting for 1% of the world’s population 
over 60 years of age [1]. The neuropathological features of 
PD are the loss of dopaminergic neurons and the presence 
of a-synuclein (α-Syn)-containing Lewy bodies (LBs) in 
the substantia nigra pars compacta (SNpc) [2]. Generally, 
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metabolites in the brain, thereby promoting neuroinflam-
mation in CNS [12]. Gut dysbiosis has been found to be 
strongly associated with the pathology of PD in both clinical 
and preclinical studies [13–16]. The neurotoxin 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) used for PD 
animal model can lead to a change in gut microbial compo-
sition [14]. Similarly, alterations in the microbiome induced 
microglial activation and neuroinflammation in mice over-
expressing α-Syn, which in turn promote motor dysfunction 
of the mice [15]. In addition, gastrointestinal dysfunction 
and gut dysbiosis in PD patients can also interfere with 
absorption and utilization of many drugs [17–20], suggest-
ing that improving gut dysbiosis in PD may be an important 
role in treating and preventing the progression of PD. Sev-
eral therapeutic strategies targeting gut microbiota includ-
ing fecal microbiota transplantation (FTM), prebiotics and 
probiotics, and dietary interventions have been validated in 
animal models and PD patients with the aim of improving 
symptoms and/or slowing progression of PD [21–28]. It is 
worth noting that a number of preclinical studies in recent 
years have identified some small molecule compounds and 
genetic alterations that can ameliorate the neurodegen-
eration of dopamine neurons and motor deficits in PD by 
improving the composition of the gut microbiota and neu-
roinflammation [29–32], indicating that they may plays pro-
tective effects on PD by improving the microbiota-gut-brain 
axis. In this review, we first introduce the machinery of the 
microbiota-gut-brain axis. Then, we provide a description 
of gut dysbiosis in PD and their underlying mechanisms 
for mediating neuroinflammation and peripheral immune 
response in PD pathology. Finally, we highlight the poten-
tial small-molecule compounds and genic therapeutic 
strategies targeting the microbiota-gut-brain axis and their 
applications in PD.

Gut microbiota and the microbiota-gut-
brain axis

Gut microbiota is a complex ecological community that live 
in the digestive tract of humans and animals, consisting of 
thousands of microorganisms such as bacteria, viruses and 
eukaryotes [33]. The composition of the gut microbiota 
varies in different digestive tracts. There are relatively few 
bacterial species in the stomach and small digestive tract 
[34]. However, there is a dense ecosystem of microorgan-
isms containing multiple species in the colon [35]. The colo-
nization of gut microbiota is established at birth, but their 
composition can be altered by internal and external factors 
such as diet, antibiotics, bacterial infections, host genetics, 
and age [36, 37]. Most gut microbiota are beneficial to the 
human body, including protecting the body from pathogens 

by production of different antimicrobial substances, enhanc-
ing an individual’s immune system, playing an important 
role in digestion and metabolism [38–40]. Recently, grow-
ing evidence has shown that gut microbiota modulates CNS 
immune responses and functions. Microglia are the tissue 
macrophages of the brain that are essential for maintaining 
tissue homeostasis and clearing the pathogens from tissues 
[41]. Erny et al. reported that global defects in microglia 
with phenotypic immaturity were observed in germ-free 
(GF) mice, whereas the microglia impairment can be recti-
fied to the recolonization with a complex microbiota [42]. 
They also determined that short-chain fatty acids (SCFAs), 
a bacterial fermentation product, played a critical role in 
microglia maturation and function [42]. Additionally, it has 
been found that cyclic SCFAs produced by gut microbiota 
also enhance the integrity of the BBB by increasing the pro-
duction of tight junction proteins, further limiting the entry 
of undesirable substances into the brain [43]. Furthermore, 
lipoproteins and lipopolysaccharides produced by the gut 
microbiota can stimulate immune cells to release cyto-
kines, which cross the BBB and activate neurons, leading 
to changes in mood and behavior of the host [44]. Increased 
BBB permeability was also observed in GF mice beginning 
with intrauterine life, which was associated with decreased 
expression of the tight junction proteins occludin and clau-
din-5, which regulate barrier function of the endothelial 
tissue [45]. Taken together, gut microbiota and their metab-
olites play important roles in maintaining CNS homeostasis 
and immune responses.

The microbiome-gut-brain axis is a bidirectional com-
munication system between gut microbiota and the nerves 
system, which can influence brain activity, behavior, devel-
opment, as well as levels of neurotransmitter receptors 
through neuroimmune and neuroendocrine mechanisms 
[46–50]. Gastrointestinal (GI) motility and secretion are 
regulated primarily by reflexes within enteric nervous sys-
tem (ENS) in the physiological state, but they are mainly 
modulated by the autonomic nervous system (ANS) from 
the brain when the homeostasis of the organism is threatened 
[51]. The ANS widely innervates most organ systems in the 
body, which includes the parasympathetic nervous system, 
the sympathetic nervous system, and the ENS [52]. In the 
vertebrate gut, the ENS consists of neurons and glial cells 
arranged in ganglia forming two distinct enteric plexuses 
and their interconnecting neural pathways [53]. The enteric 
plexus mainly consists of two neural networks embedded 
in the intestinal wall: the myenteric plexus located between 
the longitudinal and circular muscle layers, and the submu-
cosal plexus located in the connective tissues of the submu-
cosa [53]. The ganglionated plexus can provide local neural 
regulation on tissues and cells adjacent to the ganglia. Since 
ENS neurons do not extend into the intestinal lumen, they 
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sense the gut microbiota primarily through microbial mol-
ecules that penetrate the epithelial barrier and the epithe-
lial cells themselves [54]. Certain microbial components, 
microbiota-regulated hormones, and microbiota-dependent 
immune mediators can directly interact with the enteric neu-
rons as well as vagal and spinal afferents innervating the 
gut. The local signals can be transmitted through sensory 
neural circuits to brain regions involved in cognition, emo-
tion, fear/anxiety, somatic sensations, and/or feeding behav-
ior [55–57]. In turn, the vagal and spinal efferents nerves 
transmit signals to the intestinal mucosa and affect gastro-
intestinal homeostasis through indirect interactions with the 
ENS, ultimately influencing local immune function and the 
composition of the gut microbiota [58].

In addition to ENS sensing of microbial molecules, 
enteroendocrine cells (EECs) and enterochromaffin cells 
(ECCs) also form an important intermediate in microbi-
ota-ENS signaling. Microbial products and metabolites 
(e.g., secondary bile acids, indole derivatives, and SCFAs) 
can signal through EECs and ECCs to regulate the secre-
tion of several neuropeptides and neuromodulators such 
as the appetite-regulating hormone GLP1, hormones, and 
neurotransmitters. If these secretions cross the BBB, they 
can directly affect the activity of central neurons [59]. Fur-
thermore, it has been reported that the gut microbiota has 
bidirectional interactions with the neuroendocrine signaling 
pathway mediated by the hypothalamic-pituitary-adrenal 
(HPA) axis [60]. Stress factors can increase the release of 
corticotropin-releasing hormone (CRH) from the hypo-
thalamus, which subsequently stimulates the secretion of 
adrenocorticotropic hormone (ACTH) from the anterior 
pituitary gland. Under the influence of ACTH, the adre-
nal glands begin to secrete cortisol, which can impact the 
microbiota-gut-brain axis through multiple pathways [61]. 
Studies have found that cortisol receptors are expressed 
in a variety of intestinal cells, including epithelial cells, 
EECs, and immune cells, which suggest that cortisol may 
have direct effects on intestinal function [62–65]. In addi-
tion, cortisol can also change the composition and diversity 
of the gut microbial genome by altering intestinal tran-
sit time, intestinal permeability, and nutrient supply [65]. 
Conversely, gut dysbiosis can also alter HPA axis function. 
Mechanistically, gut dysbiosis may lead to increased release 
of cytokines including interleukin (IL)-1β, IL-6, and tumor 
necrosis factor-α (TNF-α), which may cross the BBB and 
activate the HPA axis [66, 67]. Lipopolysaccharide (LPS) 
and peptidoglycan (a component of the cell wall of most 
bacteria) released by gut microbes can also activate the HPA 
axis [68, 69]. Abnormalities in the control or integration of 
interoceptive signals can lead to perturbations throughout 
the entire microbiota-gut-brain axis system [70]. A grow-
ing body of studies have shown that abnormalities in the 

microbiota-gut-brain axis are associated with intestinal dis-
orders such as irritable bowel syndrome (IBS), functional 
dyspepsia, chronic abdominal pain, as well as psychiatric 
and neurodegenerative disorders [71–76].

Gut microbiota and inflammation in PD 
pathology

Gut dysbiosis in PD

Gut dysbiosis, which is defined as alterations in the structure 
and/or function of the gut microbiota, have been reported in 
patients diagnosed with neurological disorders [62, 77]. GI 
dysfunction, especially constipation, is an important nonmo-
tor symptom of PD that usually precedes the motor symp-
toms by several years [78]. Many studies have confirmed 
the correlation between GI dysfunction of PD and composi-
tion of gut microbiota, which have discovered that there was 
a diversity of microbiota in the feces of patients with PD 
[79–82] (Table 1). Results from a clinical study showed the 
abundance of Prevotellaceae in the feces of patients with 
PD reduced by 77.6% compared to healthy controls, which 
also was significantly correlated with the Unified Parkin-
son’s Disease Rating Scale (UPDRS)-III total score [83]. 
Furthermore, they also found that the relative abundance of 
Enterobacteriaceae were significantly increase in patients 
with a postural instability and gait difficulty (PIGD) phe-
notype and was positively associated with the severity of 
postural instability and gait disturbance [83]. Gut microbial 
analysis of 89 PD patients in Siberia showed changes in 
the content of 9 genera and 15 species of microorganisms 
in the intestines of patients compared to healthy controls. 
There was a decrease in Dorea, Bacteroides, Prevotella, 
and Faecalibacterium and an increase in Christensenella, 
Catabacter and Lactobacillus. This gut microbial pattern 
may trigger the localized inflammation, which in turn leads 
to aggregation of α-Syn and the production of LBs [84]. 
A study by Liu and his colleagues has shown a significant 
difference in the fecal microbiota between tremor and non-
tremor subtypes in 80 PD patients in Taiwan, China. The 
relative abundance of Clostridium, Verrucomicrobia, and 
Akkermansia in the feces of PD patients with the tremor 
subtype was higher than that of the non-tremor subtype, 
whereas Propionibacterium, Bacteroidia, Flavobacterium, 
Mogibacterium, Sutterella, Alcaligenacea Cupriavidus, and 
Desulfovibrio were more abundant in the non-tremor sub-
types. Moreover, Lactobacillus abundance was correlated 
with the severity of motor symptoms in patients [85]. In 
another clinical study included 24 patients with PD and 14 
healthy volunteers, it was reported that putative cellulose 
degraders from the genera Blautia, Faecalibacterium and 
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Type of 
study

Study subjects Gene 
amplification

Altered microbiota Clinical 
correlations

Ref.

A case-
control 
study

72 PD patients 
and 72 controls

The V1-V3 
regions of the 
bacterial 16 S 
ribosomal RNA 
gene

Prevotellaceae↓;
Enterobacteriaceae↑;

The severity of 
postural instabil-
ity and gait 
disturbance

[83]

A cross-
sec-
tional 
cohort 
study

197 PD patients 
and 103 controls

The bacterial 
16 S rDNA V4 
region

Christensenellaceae↑; Desulfovibrionaceae↑; Bifidobacterium↑;
Collinsella↑;
Bilophila↑;
Akkermansia↑;
Lachnospiraceae↓; Roseburia↓;
Lachnospiraceae↓;
Faecalibacterium↓

Firmer stool 
consistency and 
constipation 
severity

[79]

A pro-
spective 
obser-
vational 
case-
control 
study

193 idiopathic PD 
patients,
22 progressive 
supranuclear 
palsy (PSP),
22 multiple 
system atrophy 
(MSA),
and 103 controls

The V3-V4 
region of the 16 S 
ribosomal RNA 
gene

Lachnospiraceae↓;Lactobacillaceae↑↓
Christensenellaceae↑

Cognitive 
impairment;
Gait;
Disturbances;
and postural 
instability

[80]

A case-
control 
study

51 PD patients 
and 48 controls

The V4 region 
of the 16 S ribo-
somal RNA gene

Akkermansia↑;Prevotella↑↓
Prevotella copri↑;Lactobacillales/Lactobacillaceae/Lactobacill↓↓
Lactobacillus↓

Clinical scores, 
such as UPDRS, 
NMSQ and 
SCOPA

[81]

A case-
control 
study

45 patients and 45 
healthy spouses

The V3-V4 
region of 16 S 
ribosomal RNA 
gene

Clostridium IV↑; Aquabacterium↑; Holdemania↑; Sphingomo-
nas↑; Clostridium XVIII↑; Butyricicoccus↑; Anaerotruncus↑;Lact
obacillus↓;
Sediminibacterium↓

Disease dura-
tion; levodopa 
equivalent doses 
(LED)↓Cognitive 
impairment

[82]

A case-
control 
study

24 PD patients 
and 14 healthy 
volunteers

The V3-V5 
region of 16 S 
ribosomal RNA 
gene

Blautia↓; Faecalibacterium↓;
Ruminococcus↓;
Escherichia-Shigella↑;
Streptococcus↑; Proteus↑; Enterococcus↑

Disease severity 
and PD duration

[86]

A case-
control 
study

89 patients and 66 
patients without 
severe somatic 
pathology and 
manifestations 
of parkinsonism 
(control group)

The V3-V4 
region of 16 S 
ribosomal RNA 
gene

Dorea↓; Bacteroides↓; Prevotella↓; Faecalibacterium↓; Bac-
teroides massiliensis↓; Stoquefichus massiliensis↓; Bacteroides 
coprocola↓; Blautia glucerasea↓; Dorea longicatena↓; Bacteroi-
des dorei↓; Bacteroides plebeus↓; Prevotella copri↓; Coprococcus 
eutactus↓; Ruminococcus callidus↓;
Christensenella↑; Catabacter↑; Lactobacillus↑; Oscillospira↑; 
Bifidobacterium↑; Christensenella minuta↑; Catabacter hongkon-
gensis↑; Lactobacillus mucosae↑; Ruminococcus bromii↑; Papil-
libacter cinnamivorans↑

Aggregation of 
α-synuclein and 
generation of 
Lewy bodies

[84]

A case-
control 
study

80 PD patients 
and 77 controls

The V3-V4 
region of the 16 S 
ribosomal RNA 
gene

Bacteroide↑;
Prevotella↓;
Parabacteroides↑, Verrucomicrobia↑, Akkermansia↑, Butyricimo-
nas↑, Veillonella↑, Odoribacter↑, Mucispirillum↑, Bilophila↑, 
Enterococcus↑, and Lactobacillus↑

Tremor;
Motor symptom; 
Severity

[85]

A case-
control 
study

34 PD patients 
and 25 controls

The V4 and 
V5 hypervari-
able region of 
bacterial 16 S 
ribosomal RNA 
gene

Faecalibacterium↓;
Fusicatenibacter↓;
Clostridiales family XI↑

Medication with 
L-dopa and 
entacapone

[88]

A case-
control 
study

59 patients suffer-
ing from PD for 
> 1 year (OPD),
13 new PD 
(NPD) patients, 
68 controls

The 16 S ribo-
somal RNA gene

Rikenellaceae↑;
Turicibacteraceae↑;
Butyricimonas↑; Parabacteroides↑; Christensenellaceae R-7 
group↑; Ruminococcaceae UCG↑; Alistipes↑

PD duration and 
disease severity

[94]

Table 1  The clinical correlations between altered gut microbiota and PD
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of dugs further needs to be investigated [88]. A study has 
also reported that significantly high levels of Rikenellaceae 
and Turicibacteraceae were found in the gut microbiota of 
59 patients suffering from PD for > 1 year and 13 new PD 
patients compared to the corresponding healthy controls, 
respectively. Moreover, the genera Turicibacter and Pre-
votella were correlated with the PD severity [94]. Baldini 
et al. discovered that PD-associated microbial patterns were 
associated with gender, age, body mass index, and con-
stipation in PD patients. And the relative abundances of 
Bilophila and Paraprevotella were significantly associated 
with the Hoehn and Yahr staging [95]. Desulfovibrio bacte-
ria (DSV) belongs to sulfate-reducing bacteria (SRB) which 
can cause infections in humans. Hydrogen sulfide (H2S) 
produced by DSV can induce α-Syn aggregate formations 
[96, 97]. Results from the detection of faces from 20 PD 
patients, Murros et al. found that all PD patients had higher 
levels of Desulfovibrio in their gut microbiota than healthy 
controls. And the concentration of Desulfovibrio was signif-
icantly correlated with the severity of PD [98]. In a Chinese 
case-control study with 45 PD patients, genera Clostridium 
IV and XVIII, Butyricoccus, Aquabacterium, Holdema-
nia, Sphingomonas and Anaerotruncus were enriched in 
the PD patients gut compared to healthy controls. Among 
those flora, genera Butyricicoccus and Clostridium XlVb 
are related to cognitive impairment in PD patients. Further-
more, genera Escherichia/Shigella were negatively associ-
ated with PD duration [82]. Taken together, those studies 
indicate that gut dysbiosis is closely related to PD clinical 
symptoms, and altering the gut microbiota may be a poten-
tially therapeutic option of PD. However, the relationship 
between the relative abundance of the microbiota and dis-
ease progression in patients with PD is not consistent, pos-
sibly due to differences in methodology, race, region, age, 
and other factors. For example, local diets vary between 
different countries and regions, and different diets can lead 
to significantly different compositions of the gut microbiota 
[99, 100].

In addition, gut dysbiosis has also been found in animal 
models of PD. For example, in a mouse model of PD treated 
with rotenone, 16 S rRNA sequencing of fecal microbiome 
showed an overall decrease in bacterial diversity and sig-
nificant changes in microbial composition. Moreover, the 
changes of fecal microbiota composition induced by rote-
none were strongly associated with gastrointestinal and 

Ruminococcus were reduced in the feces of patients with 
PD, while putative pathobionts from the genera Esche-
richia-Shigella, Streptococcus, Proteus, and Enterococcus 
were increased, which may lead to decreased production of 
SCFAs and increased production of endotoxins and neuro-
toxins [86]. A meta-analysis of 10 case-control studies with 
a total of 1,703 subjects showed that the composition of the 
microbiome of PD patients was significantly different from 
that of controls, including an increase in the rare taxa Mega-
sphaera and Akkermansia and a decrease in the abundant of 
Roseburia genus [87]. They also found that many bacterial 
genera are associated with PD motor severity and cogni-
tive function [87]. Weis et al. observed that several bacte-
rial taxa linked to health-promoting, anti-inflammatory and 
neuroprotective, such as Faecalibacterium and Fusicateni-
bacter, reduced in 34 PD patients [88]. Additionally, the 
Clostridiales family XI and their affiliated members which 
were capable of peptone and amino acid fermentation, 
including Peptoniphilus and Finegoldia, also increased in 
PD patients [88–90]. However, they didn’t find any differ-
ence of the beta diversity between PD and control samples. 
By analyzing the shotgun metagenome sequencing data 
obtained from the Sequence Read Archive (SRA) database, 
Yu et al. found significant differences in the diversity, abun-
dance and composition of the gut microbiota of PD patients 
compared to healthy individuals [91]. Notably, their study 
in a 6-hydroxydopamine (6-OHDA)-induced rat model of 
PD also observed that gut microbiota dysbiosis exacerbated 
behavioral deficits and oxidative stress through inhibition 
of the expression of nicotinamide mononucleotide adeny-
lyl transferase 2 (NMNAT2), a key enzyme that catalyzes 
the synthesis of nicotinamide adenine dinucleotide (NAD+) 
from NMN [91, 92]. Previous studies have reported that 
α-Syn pathologically overexpressed in intestinal tissues of 
PD mouse model [93]. Thus, we speculated that the over-
expression of α-Syn in the gut may be responsible for the 
increase in these genera, but further studies are needed to 
explore the metabolic activity of these genera with respect 
to α-Syn and their interaction with ENS. Additionally, the 
administration of drugs such as levodopa and entacapone 
to PD patients also significantly affects the relative abun-
dance of the genera Peptoniphilus, Finegoldia, Faecalibac-
terium Fusicatenibacter, Anaerococcus, Bifidobacterium, 
Enterococcus and Ruminococcus. Whether these altera-
tions in bacterial taxa affect the metabolism and absorption 

Type of 
study

Study subjects Gene 
amplification

Altered microbiota Clinical 
correlations

Ref.

A case-
control 
study

147 PD patients 
and 162 controls

The V3-V4 
regions of the 
16 S ribosomal 
RNA gene

Akkermansia muciniphila↑; Lactobacillus↑;
Turicibacter↓

Host metabo-
lism and disease 
phenotype

[95]

Table 1  (continued) 
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diffusion to the brain via the microbiota-gut-brain axis in 
LRRK2 mutant mice [103].

Gut microbiota and inflammation in PD

The research community proposes that the development of 
PD is accompanied by the activation of the innate immune 
and adaptive immune systems, which changes dynamically 
with disease progression, contributing to neuronal degen-
eration in the brain [5]. Growing evidence suggests that gut 
dysbiosis plays a key role in the development of neuroin-
flammatory and immune responses in PD (Fig. 1).

Gut microbiota, CNS inflammation and PD

Microglia, tissue-resident macrophages in the brain, are 
densely distributed in the SNpc and striatum of the brain 
involved in PD. It has been showed that overactivation of 
microglia can lead to CNS inflammation and dopamine 
neuron damage [104]. McGeer et al. first found human 

motor dysfunction in mice [101]. Likewise, gut microbial 
alpha diversity was altered in rotenone-treated Sprague-
Dawley rats. The genera Actinobacteria and Proteobacteria 
were increased, while genera Bacteroidetes, Cyanobacte-
ria and Firmicutes were decreased in rotenone-treated rats, 
which is relatively consistent with alternations reported 
in patients with PD [102]. Gut microbiota could also pro-
mote α-Syn pathology, motor and GI dysfunction of the 
thy1-aSyn-overexpressing (ASO) mouse [15]. Additionally, 
transplanting the gut microbiota derived from PD patients 
into ASO mouse further aggravated the motor dysfunc-
tion. This result further indicates that changes in the human 
microbiome may be a risk factor for PD duration. Recently, 
a study showed that the abundance of Escherichia coli (E. 
coli) was significantly increased in LRRK2 R1628P and 
G2385R mice. The LRRK2 variant (R1628P) increased 
phosphorylation of α-Syn caused by curli in E. coli-derived 
extracellular vesicles. Moreover, E. coli administration 
triggered pathologic α-Syn aggregation in the colon and 

Fig. 1  A potential inflammatory mechanism of gut microbiota in PD. 
Gut dysbiosis in PD can lead to accumulation of α-Syn in the gut, 
which can enter the brain via the vagus nerve. Gut microbiota and 
their metabolites modulate intestinal inflammation and activate astro-
cytes and microglia, which in turn release pro-inflammatory factors 
leading to dopaminergic neuronal damage. Cyclic SCFAs produced by 
gut microbiota can enhance the integrity of the BBB. Furthermore, 
SCFAs and butyrate may inhibit intestinal inflammation and neuroin-

flammation by inducing FoxP3+- Treg cell differentiation. Adhesion 
of the symbiotic mucosa-associated segmented filamentous bacterium 
(SFB) ‘Candidatus Arthromitus’ to intestinal epithelial cells acts on 
CD11c + cells in the lamina propria to stimulate the production and 
release of interleukin (IL)-6 and IL-23, and thereby stimulate the dif-
ferentiation and activation of Th17 cells, which play an important role 
in the protection of intestinal barrier integrity and the maintenance of 
intestinal homeostasis
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mice overexpressed α-Syn [15]. Interestingly, a significant 
reduction in the number of SCFA-producing bacteria and 
fecal excretion of SCFA has also been detected in fecal sam-
ples from PD patients and animal models, which may be an 
important mechanism for the abnormal neuroinflammation 
in PD [13, 117].

The above studies have shown that microbial products 
and metabolites could promote the maturation and activa-
tion of microglia, indicating that gut dysbiosis in PD patients 
may be an important mechanism for causing excessive CNS 
inflammation. Alteration of the microbial composition of 
PD patients through diet or medication may be a potential 
method to improve the DAergic neurodegeneration induced 
by the abnormal inflammation.

Gut microbiota, peripheral inflammation and PD

Dysregulation of both cellular immune responses and 
humoral immune responses in the periphery has been 
observed in PD patients and animal models [118, 119]. Data 
from several lines of preclinical and clinical studies has 
shown that the pathological process of PD is associated with 
alterations in the number and function of peripheral immune 
cell populations. A study of samples from 41 patients with 
PD showed that the phagocytic capacity of monocytes in 
the peripheral blood of patients with early-moderate PD 
was increased compared with controls [120]. In a mouse 
model induced by overexpression of α-Syn, Harms et al. 
observed that α-Syn induced microglia activation, antigen 
presentation, IgG deposition and dopaminergic neuronal 
degeneration by upregulating MHCII expression in microg-
lia. In the in vitro systems, they also found that aggregated 
α-Syn activated the antigen processing and antigen presen-
tation capacity of microglia, which in turn drove CD4 T 
cell proliferation and triggers the release of cytokines such 
as IL-1α, IFNγ, IL-1β, TNF and IL-10 [121]. In addition, 
they also found that α-Syn induced a robust infiltration of 
CCR2+ peripheral monocytes into the SN, whereas dele-
tion of CCR2 can prevent α-Syn-induced monocyte entry, 
attenuate MHCII expression, and decrease degeneration 
of dopaminergic neurons, suggesting that extravasation of 
pro-inflammatory peripheral monocytes into the CNS play 
an important role in neuroinflammation and neurodegenera-
tion in PD [122]. There is an increase in effector/memory T 
cells (Tem) and an impaired abilities of regulatory T cells 
(Treg) to suppress effector T cell function in the peripheral 
blood of patients with PD, which linked to PD pathobiol-
ogy and disease severity [123]. A study in 2018 reported 
that the number of T lymphocytes increased in postmortem 
PD brain tissues. Furthermore, activated T lymphocytes 
producing IL-17 were found to promote neuronal death 
in autologous co-cultures of activated T lymphocytes and 

leukocyte antigen (HLA)-DR+ (a major histocompatibility 
complex class II (MHC-II) cell surface receptor) respon-
sive microglia in postmortem tissues of PD patients [105], 
and the number of the HLA-DR+ microglia increased as 
the neuronal degeneration of the SNpc proceeded [106]. In 
addition, α-Syn can activate microglia through the Toll-like 
receptor 4 (TLR4) or the TLR2 pathway and promote the 
production of pro-inflammatory factors such as nitric oxide 
(NO), and TNF and interferons(IF), which in turn produce 
toxic effects on dopaminergic neurons [107–109]. Similarly, 
studies of patients with PD have also found elevated levels 
of the proinflammatory cytokines related to the risk of PD 
in the brain tissue and cerebrospinal fluid (CSF), includ-
ing TNFα, transforming growth factor (TGF)-β1, IL-6, and 
IL-1β [85, 110, 111]. These findings suggest that microglia 
overactivation plays an important role in neuroinflammation 
and neurodegeneration in PD.

Growing studies have suggested that the inflammation 
leading to neurodegeneration may be related to gut dys-
biosis [60, 112, 113]. Erny et al. found that a diverse gut 
microbiota is necessary to maintain microglia maturation, 
morphology and immune function. The absence of a host 
microbiota can lead to defects in microglia maturation, acti-
vation and differentiation as well as compromised immune 
response to bacterial or viral infections [42]. Within cau-
doputamen (CP) and substantia nigra (SN), microglia in 
germ-free wild type (GF-WT) mice displays a maturation 
arrest and/or a reduced activation state, suggesting that 
gut microbiota affect immune cells in the brain [15]. Fur-
thermore, antibiotic-treated specific pathogen-free-alpha-
synuclein-overexpressing (SPF-ASO) mice display higher 
maturation of microglia and significantly increased levels of 
the pro-inflammatory cytokines TNF-α and IL-6 compared 
with germ-free-α-Syn-overexpressing (GF-ASO) mice, 
indicating that gut microbiota can promote α-Syn-dependent 
activation of microglia [15]. In MPTP-induced PD mouse 
models, sodium butyrate, a short-chain fatty acid, was found 
to attenuate PD-associated BBB disruption by upregulation 
of occludin and zonula occludens (ZO)-1 [114]. In addition, 
an in vitro data showed that SCFAs protected the integrity of 
the BBB through direct effects on endothelial cells and acti-
vation of anti-inflammatory pathways [115]. Huuskonen et 
al. found that butyrate could induce an adaptative response 
against microglial activation [116]. Interestingly, butyrate 
performed a significant protective effect on LPS-induced 
inflammatory response in rat primary microglia. However, 
in the transformed N9 microglial cell line, sodium butyr-
ate enhanced the LPS-induced inflammatory response and 
downregulateed the DNA binding capacity of NF-κB tran-
scription factor induced by LPS stimulation [116]. It has 
been observed that SCFAs could promote the activation of 
microglial cells and leaded to enhanced motor deficits in GF 
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suppress neuroinflammation. In the mice colonized with 
the symbiotic mucosa-associated segmented filamentous 
bacterium (SFB) ‘Candidatus Arthromitus’, Omenetti et al. 
observed that adhesion of SFB to intestinal epithelial cells 
acted on CD11c+ cells in the lamina propria to stimulate the 
production and release of IL-6 and IL-23, and thereby stim-
ulated the differentiation and activation of Th17 cells, which 
played an important role in the protection of intestinal bar-
rier integrity and the maintenance of intestinal homeostasis 
[138, 139]. In the terminal ileum, commensal Th17 cells 
induced by SFB exerted unique anti-inflammatory effects 
and regulated effector T cell responses through expres-
sion of transcription factor c-MAF and the cytokine IL-10 
[140]. Beta-N-methylamino-L-alanine (BMAA), a natural 
proteinogenic diamino acid produced by cyanobacteria, dia-
toms and methanogens, is usually detected in its free form 
[141]. Although there is no evidence that human gut micro-
biota can produce BMAA, a study has reported that hyper-
methylation in the promoter region of the SLC7A11 gene in 
patients with PD is link to downregulation of the cysteine-
glutamate antiporter, a target of BMAA, which is thought to 
be consistent with environmental risks related to PD [142]. 
A recent study observed that mice were orally administered 
with BMAA for 12 weeks significantly reduced the abun-
dance of microbiota SFB in the ileal mucosa, leading to 
increased intestinal inflammation and loss of intestinal bar-
rier integrity. Surprisingly, BMAA treatment induced propa-
gation of α-Syn aggregates from the gut to the SN region 
of the brain via the vagus nerve, which in turn triggered 
neuroinflammation, dopaminergic neuron degeneration, 
and movement disorders [143]. This leads to the conclusion 
that the regulation of Th17 by SFB may play a fundamental 
role in the progression of generation of α-Syn aggregates 
and the occurrence of neuroinflammation, but further inves-
tigations are needed by more studies. Recently, it has been 
found that Subgingival plaque (LIP SP) caused an increased 
abundance of Veillonella parvula (V. parvula) and Strepto-
coccus mutans (S. mutans) in the feces of MPTP-induced 
PD mice, leading to activation of microglia in the brain, and 
proliferation of T helper 1 (Th1) cells in the brain and gut. 
In V.parvula - and S.mutans -treated PD mice, administra-
tion of IFNγ protected dopaminergic neurons from damage 
caused by dysbiosis [144].

Therapies targeting the gut microbiota in PD

Several lines of evidence have identified gut microbiota 
disturbances in patients with PD, which can also affect 
levodopa absorption [20]. In addition, several therapeutic 
strategies targeting gut microbiota have been validated in 
preclinical animal models and PD patients with the aim of 

iPSC-derived midbrain neurons of sporadic PD patients 
[124]. In addition, increased numbers of CD3+/CD4+ T cells 
near microglia and astrocytes were detected in the brains 
of α-Syn transgenic models, implying that these infiltrating 
peripheral adaptive immune cells are involved in the process 
of activating immune cells in the CNS to enhance the neu-
roinflammatory response [125]. T helper (Th)17 cells are a 
subset of CD4+ T lymphocytes with strong proinflammatory 
property [126]. In MPTP-induced PD mouse models, Th17 
cells were found to invade into SNpc where BBB was dis-
rupted [127]. In addition, Th17 cells directly exacerbated 
DAergic neuronal loss through LFA-1/ICAM-1 interaction 
in MPP+-treated ventral mesencephalic (VM) cell cultures 
[127]. CD4+CD25+ Tregs are a subpopulation of CD4+ T 
cells that specifically express the transcription factor FoxP3 
in the nucleus and CD25 and CTLA-4 on the cell surface, 
and play essential functions in suppressing immune activa-
tion and maintaining immune homeostasis and tolerance 
[128]. CD3-activated Tregs were demonstrated to protect 
against dopaminergic neuronal loss through inhibition of 
microglial oxidative stress and inflammation induced by 
activated microglia in a MPTP mouse model of PD [129].

Recently, there is growing supports for the idea that intes-
tinal inflammatory processes and gut-derived inflammation 
associated with dysbiosis play a pathogenic role in PD [130, 
131]. Several lines of evidence have shown that abnormally 
altered gut microbiota in PD contributed to neuroinflamma-
tion and neurodegeneration by affecting the differentiation 
and proliferation of T cells in the gut. Faecalibacterium 
and Roseburia, which are reduced in PD, produce butyr-
ate, which exerts potent effects on many colonic mucosal 
functions such as inhibiting inflammation, reinforcing the 
defense function of the colon and decreasing oxidative 
stress [132, 133]. Butyrate enhances the acetylation of 
Foxp3 protein and reduces the expression of pro-inflam-
matory factors in dendritic cells (DCs) through inhibition 
of histone deacetylase (HDAC), thereby promoting Treg 
production [134, 135]. Similarly, propionate, another SCFA 
of microbial origin capable of HDAC inhibition, also pro-
motes de novo Treg-cell generation in the periphery in vivo 
[134]. In addition, it has been reported that SCFAs also can 
increase colonic Treg population size and function and pro-
tect against colitis in a Ffar2(GPR43)-dependent manner 
[136]. In colon, butyrate induces the differentiation of Treg 
cells and IL-10-producing CD4+ T cells through acting on 
the G protein-coupled receptor GPR109a which expressed 
on dendritic cells and macrophages [137]. Furthermore, 
butyrate can interact on the GPR109a receptor in colonic 
epithelial cells and induce the production of IL-18, and 
subsequently suppresses colonic inflammation [137]. Thus, 
a decrease in the abundance of butyrate-producing bacte-
ria in PD may exacerbate neurodegeneration by failing to 
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Natural small molecule compounds

Dihuang Granule

Compound Dihuang Granule (CDG) is another traditional 
Chinese medicine used in the treatment of PD. Several 
preclinical evidence has shown that CDG can effectively 
improve neurotoxin-induced upregulation of inflammatory 
factors, neuronal degeneration, motor dysfunction and GI 
dysfunction [150, 151]. Recently, it has been reported that 
orally administrated 10 g/kg/day CDG in PD mouse mod-
els can ameliorate MPTP-induced gut microbial dysbiosis, 
inflammatory responses in the CNS and colon via block-
ing the TLR4/NF-κB pathway, which in turn protected the 
intestinal barrier responses [31].

Curcumin

Curcumin (CUR) is a low molecular weight polyphenol 
compound derived from turmeric that has been found to 
have anti-inflammatory, antioxidant and anticancer proper-
ties [152]. It was previously found that CUR exerts neu-
roprotective effects in PD through inhibition of reactive 
oxygen species (ROS) production, microglial activation, 
and production of α-Syn aggregation [153–155]. In addi-
tion, CUR can play a protective role in many diseases by 
restoring microecological dysregulation and improving 
intestinal barrier function [156, 157]. Cui et al. found that 
given through intragastric administration of CUR (100 mg/
kg/day) daily for 4 weeks effectively improved MPTP-
induced motor deficits, glial activation, and the aggregation 
of α-Syn. The results from 16 S rRNA sequencing showed 
that the abundance of Muribaculaceae, Lactobacillaceae, 
Lachnospiraceae, and Eggerthellaceae was increased, 
while the abundance of Aerococcaceae and Staphylococ-
caceae was decreased in CUR-treated mice compared with 
MPTP mice. Furthermore, serum metabolomics analysis 
showed that CUR treatment resulted in a rapid increase in 
tyrosine and levodopa (dopa) levels in the brain, and that 
these changes were associated with the abundance of Lac-
tobacillaceae and Aerobacteriaceae, suggesting that CUR 
can ameliorate the progression of PD by modulating the gut 
microbiota-metabolite axis [32].

Diosgenin

Diosgenin, a natural steroidal saponin found primarily in 
Dioscorea species, has been shown to have strong anti-
inflammatory and antioxidant activity [158, 159]. Growing 
evidence has shown that diosgenin show great potential in 
neuroprotection and regulation of gut microbiota [160, 161]. 
For example, it can attenuate amyloid-β (1–42)-induced 

improving symptoms and/or slowing progression of PD. In 
recent years several evidence have found that many drugs, 
natural small molecule compounds and deletion of inflam-
mation-related genes also exert anti-inflammatory and 
neuroprotective effects by modulating the gut microbiota 
(Table 2).

Drugs

Ceftriaxone

Ceftriaxone is a new third-generation cephalosporin com-
monly used in clinical practice, which has excellent activity 
against many Gram-negative and Gram-positive microor-
ganisms [145]. Recently, a study showed that intraperitoneal 
injection of ceftriaxone (200 mg/kg) for 7 days alleviated 
MPTP-induced activation of astroglia and microglia in the 
substantia nigra, reduced the expression of neuroinflamma-
tion-related TLR4, myeloid differentiation primary response 
88 (MyD88), and phosphorylated NF-κB (p-NF-κB) in the 
brain and colon of PD mice, and decreased the serum con-
centration of IL-1β, IL-6, and TNF-α [146]. They further 
demonstrated that ceftriaxone reduced the abundance of the 
Proteus genus and increased the abundance of Akkerman-
sia, which suggests that ceftriaxone may exert neuroprotec-
tive effects by regulating inflammation and gut microbiota 
[146].

Hua-Feng-Dan (HFD)

Hua-Feng-Dan (HFD) is a traditional Chinese medicine 
containing a variety of components, which has been used to 
treat stroke and PD [147]. Previous studies have indicated 
that cinnabar and realgar were the main active components 
of HFD in in vitro [147, 148]. In a chronic LPS plus rote-
none (ROT)-induced rat model, Chen et al. found that the 
HFD-original (containing 10% cinnabar and 10% realgar, 
0.06 g/kg/d) rescued LPS-and ROT-induced loss of DA neu-
rons, improved motor dysfunction of the rats and attenu-
ated the activation of microglia in the substantia nigra tissue 
[149]. In addition, the results from gut microbiome analysis 
demonstrated that HFD-original ameliorated the LPS- and 
ROT-induced the increased abundance of Verrucomicro-
biaceae and Lactobacteriaceae genera and the decreased 
abundance of Enterobacteeriaceae genera [149]. Thus, the 
active ingredients cinnabar and realgar in HFD may have a 
protective effect on neuronal degeneration and improve the 
composition of gut microbiota in PD models.
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Compounds/Drugs Methods of 
administration 
and dosage

Animal 
models

Altered microbiota Effects Ref.

Clinical drugs
Ceftriaxone Intraperitoneal 

injection,
200 mg/kg

MPTP-
treated 
mice

Proteus↓
Akkermansia↑

Alleviate MPTP-
induced activation 
of astroglia and 
microglia;
Reduce expression 
of TLR4, MyD88, 
p-NF-κB in the 
brain and colon;
Decrease the 
serum concentra-
tion of IL-1β, 
IL-6, and TNF-α

[146]

Cinnabar and 
Realgar

Oral,
HFD-original: 
0.06 g/kg/day, 
HFD-reduced: 
0.018 g/kg/day

Lipopoly-
saccharide 
(LPS) plus 
rotenone 
(ROT)-
induced 
rat model

Verrucomicrobiaceae↓
Lactobacteriaceae↓
Enterobacteeriaceae↑

Rescue LPS- and 
ROT-induced 
DA neurons loss; 
Improve motor 
dysfunction of the 
rats;
Attenuate activa-
tion of microglia

[149]

Natural small molecule compounds
Dihuang Granule Oral,

10 g/kg/day
MPTP-
treated 
mice

Proteobacteria↓
Patescibacteria↓
Muribaculum↑
Turicibacter↑
Lactobacillus↑
Ruminococcaceae↑
Candidatus_Sac-
charimonas↑
Enterorhabdus↑

Improve the dam-
age of dopaminer-
gic neurons;
Ameliorate motor 
impairments; Sup-
press PD-associ-
ated inflammation 
and oxidative 
stress

[31]

Curcumin Oral,
100 mg/kg/day

MPTP-
treated 
mice

Muribaculaceae↑
Lactobacillaceae↑
Lachnospiraceae↑
Eggerthellaceae↑
Aerococcaceae↓
Staphylococcaceae↓

Improve motor 
deficits, glial cell 
activation, and 
the aggregation of 
α-syn;
Upregulate the 
levels of tyrosine, 
methionine, sarco-
sine and creatine

[32]

Diosgenin Oral,
80 mg/kg/day

MPTP-
treated 
mice

Firmicutes-to-Bacte-
roidetes ratio↓
Enterococcus↓
Streptococcus↓
Bacteroides↓
Lactobacillus genera↓

Improve motor 
behavior;
Inhibit neuron 
viability and 
oxidative stress; 
Promote bile acid 
(BA) -mediated 
GLP-1 pathway

[167]

Resveratrol Oral,
30 mg/kg/day

MPTP and 
pro-
benecid 
(MPTP/P) 
-treated 
mice

Prevotellaceae↑
Rikenellaceae↑
Erysipelotrichaceae↑
Fimicutes-to-Bacte-
roidetes ratio↓
Lachnospiraceae↓
Akkermansia↓

Improve 
MPTP/P-induced
behavioral 
performance;
Prevent 
MPTP/P-induced 
dopaminergic 
neurodegeneration

[174]

Table 2  Effects of drugs and 
small molecule components on 
gut microbiota in PD
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endogenous pathogens released during tissue lesions [175]. 
TLR2 showed an upregulation in brain tissues of PD patients 
and involved in α-Syn-induced inflammatory responses, 
stimulating the release of pro-inflammatory cytokines [176, 
177]. In TLR2 knockout (TLR2-/-) and wild-type (WT) 
mice treated with MPTP, He et al. found that deficiency of 
TLR2 significantly attenuated motor deficits and the nigros-
triatal dopaminergic degeneration, and reduced astrocyte 
activation and neuroinflammation by inhibiting the TLR2/
MyD88/TRAF6/NF-κB signaling pathway. Furthermore, 
TLR2 deficiency also increased the abundance of the pro-
tective genus Prevotellaceae and decreased the abundance 
of the genera Oscillospira, Anaerotruncus, Lachnoclos-
tridium, and Helicobacter, which were associated with 
intestinal inflammation, implying that alterations of the gut 
microbiota in TLR2-deficient mice may contribute to the 
recovery of PD pathology [29]. TLR4, the bacterial endo-
toxin-specific ligand, is another TLR member that have been 
linked to the pathogenesis of PD. In the SN and medial tem-
poral gyrus (GTM) of PD patients, TLR4 expression was 
upregulated and co-localized with phosphorylated α-Syn 
in DA neuronal LBs and Iba-1 in glial cells [178]. Perez-
Pardo et al. found increased expression of TLR4, CD3+ T 
cells, cytokine in colonic biopsies and decreased abundance 
of SCFAs-producing bacteria in patients with PD. Intestinal 
inflammation, motor dysfunction, neuroinflammation, and 
neurodegeneration were less in rotenone-treated TLR4-KO 
mice compared to rotenone-treated WT mice [30]. However, 
deletion of TLR4 leaded to a ‘pro-inflammatory’ dysbiotic 
microbiota, including decreased relative abundance of the 
anti-inflammatory genera Bifidobacterium and/or Lactoba-
cillus and increased relative abundance of the pro-inflam-
matory intestinal bacterial genera unclassified Rickettsia, 
Coccidioides, and Lactobacillus, which may be the reason 
that TLR4 deficiency could not completely protect against 
rotenone-induced PD pathology [30]. Further interventional 
studies, such as fecal transplantation or gene silencing of 
the TLR4 pathway, are required to establish a direct link 
between microbiota, TLR4, gut and CNS inflammation, and 
neurodegeneration in PD.

Limitations

A large number of preclinical studies have demonstrated 
that some drugs and small molecules have protective effects 
on DA neuron damage in PD by affecting the composition 
and abundance of gut microbiota. We have summarized and 
discussed their roles in this review, but we have not con-
ducted a direct and critical comparison between the differ-
ent therapies discussed to determine which might be more 
promising or effective based on current evidence. In addi-
tion, further clarification of the drug’s half-life in the body, 

neurodegeneration [162], ameliorate LPS-induced microg-
lial activation and neuronal damage [163], and ameliorate 
murine colitis by regulating macrophage polarization and 
recovering the disturbed gut microbiota [164, 165]. Inter-
estingly, in a study on melanoma, the anticancer effects 
of diosgenin were more dependent on inducing antitumor 
immunity by modulating gut microbiota composition [161]. 
In a mouse model of pentylenetetrazole (PTZ)-induced 
epilepsy, diosgenin (80  mg/kg/day) treatment reversed 
PTZ-induced decrease in the abundance of Bacteroides and 
Parabacteroides genera, inhibited the activation of enteric 
glial cells (EGCs) and the TLR4-MyD88 pathway, which 
in turn reduced the expression of pro-inflammatory factors 
in the colon and improved the intestinal barrier function, 
and ultimately inhibited the progression of epilepsy [166]. 
A recent study found that administered intragastrically with 
diosgenin (80 mg/kg/day) restored MPTP-induced gut dys-
biosis to decrease Firmicutes-to-Bacteroidetes ratio and 
the abundances of Enterococcus, Streptococcus, Bacteroi-
des and Lactobacillus genera by upregulating the GLP-1 
signaling pathway, which further inhibited bile acid-medi-
ated oxidative stress and neuroinflammation, significantly 
improving the pathological phenotype of PD mice [167].

Resveratrol

Resveratrol, a polyphenol compound found in many plant 
species, has a variety of biological properties including 
anti-inflammatory, antioxidant, anticancer and neuroprotec-
tive properties [168]. Experimental studies in in vitro and in 
vivo have shown the neuroprotective effects of resveratrol 
on PD [169]. Many studies of the pharmacological function 
of resveratrol found that most of resveratrol could not be 
absorbed in the small intestine, but it could interact with the 
gut microbiota, regulate the composition of the gut microbi-
ota, and undergo biotransformation to active metabolites via 
the gut microbiota [170–173]. FMT from resveratrol-treated 
(30  mg/kg/day) PD mice to MPTP-induced PD mouse 
models showed that FMT could increase the abundance 
of Prevotellaceae, Rikenellaceae, and Erysipelotrichaceae 
genera, decreased the ratios of Fimicutes/Bacteroidetes and 
the abundance of Lachnospiraceae and Akkermansia gen-
era, which may contribute to the neuroprotective effects in 
PD through increasing the number of TH-positive neurons 
in the SNpc and enriched TH-positive fiber density in the 
striatum [174].

TLR2 and TLR4

Toll-like receptors (TLRs), a family of pattern recogni-
tion receptors (PRRs), are observed in glial cells and neu-
rons that respond to invading exogenous pathogens and 
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as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit ​h​t​t​​p​:​/​/​​c​r​e​​a​t​i​​v​e​c​o​m​m​o​n​s​.​o​
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