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Wound infection is a common and serious medical condition with an unmet need for
improved diagnostic tools. A peptidomic approach, aided by mass spectrometry and
bioinformatics, could provide novel means of identifying new peptide biomarkers for
wound healing and infection assessment. Wound fluid is suitable for peptidomic analysis
since it is both intimately tied to the wound environment and is readily available. In this
study we investigate the peptidomes of wound fluids derived from surgical drainages
following mastectomy and from wound dressings following facial skin grafting. By applying
sorting algorithms and open source third party software to peptidomic label free tandem
mass spectrometry data we provide an unbiased general methodology for analyzing and
differentiating between peptidomes. We show that the wound fluid peptidomes of patients
are highly individualized. However, differences emerge when grouping the patients
depending on wound type. Furthermore, the abundance of peptides originating from
documented antimicrobial regions of hemoglobin in infected wounds may contribute to an
antimicrobial wound environment, as determined by in silico analysis. We validate our
findings by compiling literature on peptide biomarkers and peptides of physiological
significance and cross checking the results against our dataset, demonstrating that well-
documented peptides of immunological significance are abundant in infected wounds,
and originate from certain distinct regions in proteins such as hemoglobin and fibrinogen.
Ultimately, we have demonstrated the power using sorting algorithms and open source
software to help yield insights and visualize peptidomic data.
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INTRODUCTION

Infected and slow-healing wounds are one of the major costs of
the healthcare industry, with some estimates stating that 2–4% of
the total healthcare expenditure in Europe is being dedicated to
wound care (1, 2). These costs are the result of prolonged
hospital stays, more nursing care and dressing changes as well
as the prescription of antibiotics and antimicrobial substances
(3). Improving diagnostic tools, enabling early prevention of
infection, would reap great benefit for the individual patients as
well as society. Recent technology advances have led to the
development of proteomic approaches enabling the study of
the physiology and status of wounds (4–6). Moreover, in order to
study the protease dynamics of wounds, comparative degradomics
approaches studying the N-terminal proteome have been
developed (7, 8).

We have recently developed a peptidomics method for the
characterization of endogenous peptides of wound fluids. We
compared acute non-infected wound fluids with plasma samples
and found significantly higher protein and peptide numbers in
wound fluids compared with plasma, which typically were also
smaller in size as compared to plasma-derived peptides. We also
analyzed wound fluids collected from dressings after facial
surgery and demonstrated the utility of peptidomics in wound
fluid analysis, showing specific peptide-patterns of various
selected proteins, such as those involved in coagulation and
complement activation. Together, the work defined a workflow
for analysis of peptides derived from human wound fluids,
demonstrating a proof of concept that such wound fluids can
be used for analysis of subtle qualitative differences in peptide
patterns derived from individual patient samples (9). Qualitative
analyses of the peptide fragmentation patterns using peptigrams
yielded apparent differences between the individual patient
samples, suggesting that such datasets could act as potential
biomarkers for assessment of infection and inflammation during
wound healing. However, it still remained to be investigated
whether bioinformatic approaches applied on the whole datasets
would provide additional information. We particularly focused
on establishing algorithms and strategies to define potential
biomarkers that could be utilized in future clinical studies. As
antimicrobial defense and innate immunity is intimately linked
to wound healing another goal of the work was to explore
whether there could be alterations in global patterns of
antimicrobial peptides (AMP).

Peptides are generated as a result of the interaction between
protein substrates and proteases, making peptidomics especially
well-suited to study highly proteolytic environments such as
wounds. Peptidomic analysis therefore have a potential to
complement and extend the existing knowledge gained from
proteomics by providing a different perspective on physiological
events. From an analytical perspective, the field of peptidomics is
particularly suitable for the implementation of bioinformatics, as
shown by already existing databases and tools (10). Methods
commonly used in proteomics, such as mass spectrometry (MS),
naturally translates well into the field of peptidomics. In this
study we therefore used an objective bioinformatic approach to
investigate datasets generated by tandem mass spectrometry
Frontiers in Immunology | www.frontiersin.org 2
(MS/MS) on the peptidome of acute wound fluids, non-
infected wounds and wounds infected with Staphylococcus
aureus. Our aim was to gain new insight into the physiology
and pathophysiology of wounds, as well as to identify contenders
for biomarkers. We also aimed to establish and validate a
workflow for investigating the peptidome using MS/MS data
and simple algorithms in Python, as well as demonstrate how
open source software like Deep-AmPEP30 (11), Proteasix (12)
and Peptigram (13) may be used to support peptidomic research
and help gain novel insights.

Using these approaches, we hereby describe a comprehensive
characterization of the wound fluid peptidome from acute surgical
wounds of different types. Furthermore, by doing a literature
search aided by algorithms we showed that biomarkers and
antimicrobial peptides are clustered in specific regions of
proteins. Interestingly, an abundance of established AMPs
derived from the well-known region in hemoglobin subunit
beta (112–147) (HBB) (14–18) as well as peptides derived from
LPS-binding regions of hemoglobin were found in infected
surgical wounds (19). Additionally, by utilizing large scale
antimicrobial prediction by AmPEP, we found that peptides
predicted to be antimicrobial were particularly identified in
infected surgical wounds, as compared to non-infected and
sterile acute wound fluids. Taken together, we demonstrate the
power of using an unbiased and simple data driven approach to
wound fluid peptidomics and present novel insights regarding
wound environment.
METHODS

Sample Collection and Peptide Extraction
The overall workflow is illustrated in Figure 1. Plasma was
collected from citrated venous blood from healthy donors, sterile
acute wound fluids were obtained from surgical drainages after
mastectomy, and wound fluids from patients that underwent
facial full-thickness skin grafting were extracted from Mepilex®

wound dressings (Mölnlycke Health Care AB, Sweden) as
previously described (9, 20). The materials were kept frozen at
−20°C before use. For peptide extraction, samples were
defrosted, and mixed with 8 M urea supplemented with
RapiGest SF (Waters, USA) and incubated for 30 min at RT
followed by size exclusion using filters with 30 kDa cut-off
(Microcon 30, regenerated cellulose, Millipore, Ireland) as
previously described (9). The filtrates containing the peptides
were stored at −20°C before analysis by LC-MS/MS.

LC-MS/MS Analysis
LC-MS/MS experiments were performed using an Orbitrap
Fusion Tribrid MS system (Thermo Scientific) as described
previously (9). Subsequent analysis was also performed using
an HFX Orbitrap MS system (Thermo Scientific) equipped with
a Dionnex 3000 Ultimate HPLC (Thermo Fisher). Injected
peptides were trapped on an Acclaim PepMap C18 column (3
µm particle size, 75 µm inner diameter x 20 mm length). After
the elution the peptides were introduced into the mass
February 2021 | Volume 11 | Article 620707
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spectrometer and analyzed as previously described (9). Briefly
the capillary temperature was set at 275°C. Data acquisition was
carried out using a top 20 based data-dependent method. MS was
conducted in the range of 350–1,350 m/z at a resolution of
120,000 FWHM. The filling time was set at a maximum of 100
ms with limitation of 3 x 106 ions. MSMS was acquired with a
filling time maximum 300 ms with limitation of 5 x 104 ions, a
precursor ion isolation width of 2.0 m/z and resolution of 15,000
FWHM. The normalized collision energy was set to 28%. Only
multiply charged (2+ to 5+) precursor ions were selected for
MS2. The dynamic exclusion list was set to 30 s.

Application of Sorting Algorithms on
Peptidome Data
The data from MS/MS was analyzed in PEAKS X (21) combined
with the NCBI Human_20413_20190124 proteomic database,
generating a dataset consisting of 11 samples and 3 different file-
types, as described below. The retrieved files were analyzed
further using algorithms in Jupyterlab using the Python 3.7.5
kernel in the Jupyterlab 2.1.5 IDE. The libraries used for analysis
were Pandas 1.0.5, Matplotlib 3.2.2, Numpy 1.18.5 and Seaborn
0.10.1 (requirements and code available at GitHub: https://
github.com/ErikHartman/2020-peptidomics). To validate the
various preparations of the dressing and acute wound
fluids, and to allow for further inter-group semi-quantitative
analysis, the absolute quantities of the total spectral count were
Frontiers in Immunology | www.frontiersin.org 3
compared between the different groups. Spectral counting was
utilized in order to maximize the hits for peptides of lower
abundance (22).

Characterizing the Peptidomes
Due to the variability in data dependent acquisition the replicate
injections of the same sample (n=4) were concatenated before
the database search. To reduce the number of false positive
identifications, a spectral count value cutoff was applied to the
dataset. The cutoff was set to ≥ 4, in line with the reasoning from
Lundgren et al. (23). Using the inherent methods of Pandas, the
amino acid profile was determined for the different groups. The
frequency of a specific letter was multiplied with the spectral count
for the respective sequence. The amino acids were then grouped
according to side chain properties (24). The complete sequence as
well as the P1 and P1’ position was analyzed. The amino acid
composition of the complete SWISS-Prot database was included in
the dataset as a reference (25). When counting the frequencies of
P1 and P1’ amino acids, peptides derived from the N and C-
terminals of the origin-proteins were removed from the dataset to
only include cleaved sequences. To investigate what protein
substrates resulted in the most peptides in each group, the
cumulative spectral count of each unique protein was obtained,
and the top 10 proteins were plotted in pie charts. Noting that
hemoglobin-derived peptides were overly abundant in the infected
and non-infected samples, pie charts were made after discarding
FIGURE 1 | Flowchart describing the methodology from sample collection to data analysis. The samples were collected, and the peptides were extracted. Following
this, the samples were analyzed by LC-MS/MS and run through PEAKS X. Thereafter the general characteristics of the peptidomes were extracted and the files were
formatted and sorted in Python. Lastly, analysis was done using algorithms in Python as well as utilizing 3rd party software.
February 2021 | Volume 11 | Article 620707
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peptides deriving from hemoglobin subunit alpha, beta, and delta.
To detect sequences with outlying spectral count, the spectral
count of the sequences in each group was plotted over the number
of occurrences across patients, using matplotlib. The retention
time of outliers was controlled in all samples to detect false
positives. N and C-terminals were set to the 4 proximal amino
acids of each terminal in line with the MEROPS database standard
(26). The spectral count distribution of unique N and C-terminals
were analyzed and plotted with each N and C-terminal as a
datapoint. The terminal amino acids were then grouped
according to side chain properties (24) and the distribution of
grouped N and C-terminals were analyzed and plotted in a
similar manner.

The inter and intra-group variance was visualized using Venn
diagrams. The 3-way Venn diagrams were visualized using
Python, whereas the 5-way Venn diagram had to be visualized
using InteractiVenn (27). The intersectional peptides (i.e. the
peptides found in all samples within a group) were identified. To
identify the peptides differing the most in relative quantity
between each group, the difference between the spectral counts
from the intersectional peptides in the infected and non-infected
samples respectively were calculated. The 50 peptides yielding
the largest difference were formatted and run through the
Proteasix open source tool for protease prediction. Proteasix is
a peptide-centric tool based on a cleavage site database, built
through CutDB, Uniprot and literature, which utilizes
knowledge of protease preference from e.g. the ENZYME
database to predict the responsible protease for a peptide from
a specific protein substrate (12).

Literature Search
To validate our findings an extensive database search was
conducted using PubMed (28), Elsevier’s ScienceDirect (29) and
LUBsearch (30), using relevant search terms such as “Peptide”,
“Biomarkers”, “Peptidome” and “Antimicrobial”. The peptide
sequences presented in the articles were saved if the article was
deemed of sufficient quality and relevance. Using a Python script,
the gathered data was cross-checked against matching sequences
in our datasets. In Supplementary Table 1 we display all input
data for the script and all matching sequences.

Antimicrobial Peptide Prediction Using
Deep-AmPEP30
The antimicrobial propensity was investigated in the different
groups. The unique peptides were run through the novel Deep-
AmPEP30 algorithm, a classification model using reduced amino
acid composition and convolutional neural networks to predict
short AMPs (11). Peptides with a Deep-AmPEP30 score of <0.7
were truncated from the dataset. Thereafter, the spectral count
for each sample was multiplied with the respective Deep-
AmPEP30 score to retrieve the antimicrobial score. The scores
for the various samples were visualized in a heatmap using
Seaborn. To investigate what protein substrates resulted in
AMPs, the peptides with a Deep-AmPEP30 score ≥ 0.7 were
grouped on their respective protein and a pie chart was created
from the 10 most common proteins.
Frontiers in Immunology | www.frontiersin.org 4
Visualization Using Peptigram
Three proteins, fibrinogen A, hemoglobin subunit beta and
hemoglobin subunit alpha, were identified as of interest and
were further investigated and visualized using Peptigram (13)
(Supplementary Data Sheet 1). To produce the Peptigrams,
peptides derived from these proteins were singled out and
formatted to be inserted into the Peptigram website (http://
bioware.ucd.ie/peptigram/). Peptigram is a free-to-use web-
based software developed to visualize differences between
peptidomic samples using peptide alignment maps and profiles.

Statistical Methods
The paired Student t-test was applied using GraphPad when
deemed appropriate (31). The degrees of freedom were set to N-1
for all standard deviations and were calculated using Pandas
and Numpy.

Dataset
The dataset retrieved from MS/MS when run through PEAKS X
combined with the NCBI Human_20413_20190124 proteomic
database resulted in 3 types of xlsx-files per sample: peptide-files,
protein-peptide-files and protein-files (available at https://github.
com/ErikHartman/2020-peptidomics). Each filetype contained
some unique information regarding sequence and protein-
distribution and was utilized when deemed appropriate. The
raw datafiles have been submitted to ProteomeExchange
(PXD023244, http://www.proteomexchange.org/).
RESULTS

General Characteristics of the Peptidomes
Our data consists of 2 types of clinical samples, sterile acute
wound fluid (n=5) and fluid extracted from non-sterile wound
dressings (n = 6). The samples constituting the wound dressing
group differed, as half (n = 3) of the wounds were healthy
whereas half infected by S. aureus, confirmed both clinically and
by wound culture. The total spectral count between the groups
did not vary significantly, validating further inter-group semi-
quantitative analysis (Supplementary Figure 1).

Due to the varying wound environments between the groups,
we hypothesized that there could be differences in the general
characteristics, such as average peptide length and mass, of the
peptidomes. As seen in Supplementary Table 2 there was neither
any significant difference regarding the average mass (1,319–
1,439 kDa) nor the average length (12.06–13.41 amino acids). The
same applied to the average number of peptides in each group
without reducing signal noise (spectral count cutoff ≥ 4) (acute:
3,331 ± 686, non-infected: 4,095 ± 873, infected: 3,815 ± 2,083).
When employing the spectral count cut off, the number of unique
peptides found was reduced dramatically (acute: 812 ± 143, non-
infected: 1,006 ± 250, infected: 1,434 ± 455), showing that many
peptides are false positives and/or of low quantity. Acute wound
fluid contained the least number of peptides per sample but had
the largest fraction of peptides above the spectral count cutoff
(28.3%), whereas the non-infected samples had the most peptides
February 2021 | Volume 11 | Article 620707
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per sample but the smallest fraction of peptides above the spectral
count cutoff (15.0%). Plotting the spectral count for all samples
revealed some outlying sequences with consistent retention time,
which are presented in Supplementary Figure 2. Figure 2A
shows the inter and intra group variance of found peptides when
regarding the intersectional peptides as compared to the total
unique peptides in a given group or between groups (acute: 124
(6.1%), non-infected: 127 (8,1%), infected: 144 (10.0%), between
groups: 142 (3.9%)). Notably, the peptidome of patient 10 is
substantially smaller and contains very few unique peptides as
compared to patient 9 and 11.

Differences in Proteomic Diversity
Identifying which protein substrates give rise to peptides in the
different wound environments may reveal interesting aspects of
the wound’s proteome and proteolytic dynamics. Therefore, a
proteomics perspective was applied to the data by summing up
the spectral count of peptides originating from the same protein.
The relative abundance of proteins originating in peptides was
plotted in a pie chart (Figure 2B). The groups varied regarding
protein diversity, and the group difference regarding the
proportion constituting hemoglobin derived peptides is
especially distinct, as they were found predominantly in the
infected samples and barely at all in acute wound fluids. To
Frontiers in Immunology | www.frontiersin.org 5
reduce the influence of hemoglobin on proteomic diversity,
pie charts were created after discarding peptides associated
with hemoglobin (Supplementary Figure 3). The results
revealed the presence of histone 2 and 4 derived peptides in
the infected samples.

Amino Acid Profiles of the Peptidomes
To investigate whether the distribution of amino acids differed
between the groups, the sequences were truncated and a
frequency analysis of the amino acids in the first (P1’) and last
(P1) position as well as in the complete sequence was conducted
(Figure 3, Supplementary Table 3). Inherent N and C-terminals
of protein substrates were not included in the analysis. A
reference for the amino acid distribution of complete protein-
sequences was created by using data from SWISS-Prot. As can be
seen in the amino acid-profile, the complete sequences were
nearly identical to the reference. However, differences were seen
when comparing the groups, as wound fluids derived from
dressings contained a larger proportion of acidic residues in
the P1 position. In Supplementary Figure 4, data from in vitro
experiments by Saravanan et al. (32) on S. aureus aureolysin
degradation of thrombin are presented. The data showed that the
wound fluids extracted from bacteria containing wounds showed
similar profiles to the in vitro digested samples in the P1 position.
A

B C

FIGURE 2 | Large intra and inter group peptide variance and differences in protein substrate distribution (A) Venn-diagrams depicting the intra and inter group
variance of peptide sequences, after employing a spectral count cut off. The leftmost diagram shows the intergroup variance, whereas the other depict the intragroup
peptidomic variances. (B) Table showing the average amount of peptides derived from hemoglobin subunit beta (HBB) in the groups, showing significantly more
peptides derived from HBB in the infected group as compared to the acute wound fluid group (p=0.0231) (C) Pie charts of the protein substrate environment in the
different groups made by counting the total spectral count of all peptides associated to its parent protein. The numbers below the pie charts are the total number of
proteins that have one or more peptides.
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Prevalence of Specific N and C-Terminals
The N- and C-terminal of peptides are especially interesting
since most peptides are generated post-translationally by the
interaction between proteases and substrate proteins. To
investigate the distribution of different N- and C-terminals
between the groups, a frequency analysis of terminal segments,
looking only at the first and last 4 amino acids, was conducted,
aggregating the spectral count of all peptides with the
corresponding unique terminal sequence. Sequences derived
from the protein substrates inherent N and C-terminal were
not discarded from the dataset, as they are also of interest when
looking for biomarkers. Figure 4A was created by plotting the
aggregated spectral count of the unique terminal sequences. The
steep curvature presented in all graphs indicated a preference for
certain sequences. When comparing the groups, differences in
the shape of the curvature was noticed, with an especially steep
curve in the infected group. The sequences constituting the tip of
the curve varied between the groups, although there was an
overlap. At the C-terminal, sequences like HKYH, LERM and
SKYR were especially prevalent in the infected group (241 ± 201,
170 ± 144, 130 ± 105), while sequences like KGEE, RMFL and
FERI are most prevalent in acute wound fluid (55 ± 8, 43 ± 20, 48
± 13) (Figure 4B). The sequences were then grouped according
to their side-chain polarity and acidity, yielding similar results
(Supplementary Figure 5).
Frontiers in Immunology | www.frontiersin.org 6
Protease Prediction Using Proteasix
The differing peptidomes may be due to either varying protein
substrate concentrations or protease environments. To investigate
the possible differences in the protease environment, the protease
prediction tool Proteasix was used on the 50 most distinct
peptides in the infected and non-infected samples. Proteasix
predicts the protease responsible for generating a specific
peptide from a specific protein using an extensive cut-site
database, resulting in a generated list of proteases likely to be
responsible for the peptidome (12). The top 5 proteases
responsible for generating the 50 most distinct peptides in the
samples were: Infected: PGA3, ELANE, Ctsl, Capn1 and Capn2.
Non-infected: Capn2, Capn1, MMP7, PGA3, and Ctss
respectively. Full list is found in Supplementary Table 4.

Peptides Validated Through
Previous Studies
Due to our unbiased approach and limited dataset, an extensive
literature search was conducted to validate and put our results
into perspective. First, a basal search was made utilizing
google, searching on the peptide sequences primarily found in
the infected samples. Interestingly, this showed that many of
the peptides originated from the hemoglobin subunit beta
C-terminal (region 112-147 VCVLAHHFGKEFTPPVQA
AYQKVVAGVANALAHKYH) which has been documented as
FIGURE 3 | Amino acid composition of the different wound fluid peptidomes. Pie charts created by frequency analysis of amino acids in the complete sequence,
weighting the results by the relative quantity (spectral count) of the peptides. Similarly done for the last position (P1’) and first position (P1) but excluding those
peptide sequences corresponding to the protein substrate inherent N- and C-terminal, since they are not generated by proteases. For reference, a pie chart was
made by using data on the whole SWISS-prot database, showing a distinct similarity regarding the amino acid distribution in whole sequences. The most noticeable
difference between the different groups can be seen when looking at the P1 position, showing a much larger proportion of acidic amino acids in both the infected
and non-infected. The five most prominent amino acids are denoted by one-letter abbreviations.
February 2021 | Volume 11 | Article 620707
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AMPs (14–18). To complement these results, a more structured
literature search was made by searching after matches on
peptides found in previous studies in our data, utilizing a
Python script (Supplementary Table 1). The results from this
search can be seen in Table 1, showing that peptides previously
identified as biomarkers for various inflammatory diseases
indeed are present in the wound samples to varying degrees.

Furthermore, peptides recognized as biomarkers tend to be
clustered around certain regions, as seen in Table 1. As
mentioned, the hemoglobin subunit beta region (112–147)
stands out, having been thoroughly described for its various
antimicrobial properties both in vitro and in vivo, but also as a
biomarker for several inflammatory conditions such as
hypertrophic scar formation (33), acute severe pancreatitis (37)
and transitional cell carcinoma (41). In order to estimate the
presence of the various peptides and regions in the different
groups, spectral counting was performed. This showed that the
quantity of the investigated regions differed between groups, and
that documented regions from e.g. hemoglobin was mostly
present in infected wound fluids.

Antimicrobial Peptides of Peptidomes
As the literature search showed, many peptides detected in our
datasets were found to possess antimicrobial properties, such as
Frontiers in Immunology | www.frontiersin.org 7
peptides derived from the abovementioned region in hemoglobin
subunit beta. Furthermore, the quantity of peptides derived from
this region differed between the groups. To elucidate this further,
a peptide alignment map was made of the region using the open
source program Peptigram (Figure 5A). The figure showed that
more peptides were generated from this region in the infected
samples than in the non-infected samples, and to a much lesser
degree in the acute wound fluid group. Furthermore, the peptide
profile showed a larger overall abundance and coverage of
peptides from hemoglobin subunit Beta in the infected samples
(Figure 5B).

Since many of the peptides found in large quantities have not
been investigated for antimicrobial properties, in silico predictions
of antimicrobial activity were made on our complete dataset using
a bioinformatic tool available for short peptides (< 30 amino
acids), Deep AmPEP-30. This yielded a prediction score of being
antimicrobial between 0-1 for each peptide based on its amino
acid-sequence (Supplementary Table 5). In order to only include
peptides with a high probability of being antimicrobial, all
peptides with a prediction score below 0.7 were discarded. The
prediction score was then multiplied with the associated spectral
count, yielding an antimicrobial score. The antimicrobial score is
an estimation of the peptide’s contribution to the antimicrobial
environment. The antimicrobial environment of the different
A B

FIGURE 4 | Identification of the most abundant N- and C-terminals. (A) Scatter plots visualizing the distribution of the present N-terminals (the first 4 amino acids)
and C-terminals (the 4 last amino acids) by plotting the aggregated spectral count of the unique terminal sequences. A difference in curvature in the different groups
can be seen. (B) Table showing the sequence and average spectral count of the most abundant terminals, which are highlighted in the scatter plots.
February 2021 | Volume 11 | Article 620707
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samples was visualized in a heatmap (Figure 6A) showing
distinctively different antimicrobial environments in the
different samples.

The peptides with the highest antimicrobial score in the non-
infected and infected samples originate from the antimicrobial
Frontiers in Immunology | www.frontiersin.org 8
region 112-147 in hemoglobin subunit Beta, while they originate
from G3P, FIBA and APOA4 in acute wound fluid (Figure 6B).
To visualize which proteins served as substrates for the AMPs in
the different groups, pie charts were made (Figure 6C) by
summing the total spectral count of all AMPs from each
TABLE 1 | Peptides from hemoglobin subunit beta and alpha, as well as fibrinogen alpha validated through previous studies.

Region Previous found significance Total
spectral
count
WF

Total
spectral
count
NINF

Total
spectral
count
INF

HBA (129–142) FLASVSTVLTSKYR
(1) FLASVSTVLTSK
(2) KFLASVSTVL
(3) SVSTVLTSKYR

(1) Upregulated in hypertrophic scar tissue (33)
(2) Biomarker cutaneous lupus erythematosus (34)
(3) LPS-binding (19), upregulated in hypertrophic scar tissue (33)

34
(1) 0
(2) 0
(3) 0

118
(1) 13
(2) 0
(3) 7

305
(1) 0
(2) 0
(3) 45

HBA (111-129)
(1) AAHLPAEFTPAVHASLDKF
(2) AHLPAEFTPAVHA

(1) Found in cervicovaginal fluid and shown to potentiate smooth
muscle contractions (35)
(2) LPS-binding (19)

59
(1) 0
(2)0

66
(1) 6
(2)5

162
(1) 21
(2)13

HBA (1-29) MVLSPADKTNVKAAWGKVGA
HAGEYGAEA
(1) VLSPADKTNVKAAWGK
(2) VLSPADKTNVK
(3) TNVKAAWGK

Generated by candidal aspartactic peptidases and has
bactericidal effect (36)
(1) Upregulated in hypertrophic scar tissue (33)
(2) Urinary biomarker acute severe pancreatitis (37), LPS-binding (19)
(3) Upregulated in hypertrophic scar tissue (33)

29
(1) 0
(2) 0
(3) 0

211
(1) 4
(2) 33
(3) 0

844
(1) 5
(2) 52
(3) 8

HBA (32-93) RMFLSFPTT KTYFPHFDLS
HGSAQVKGHG KKVADALTNA VAHVDDMPNA
LSALSDLHAH KLR
(1) SFPTTKTYFPHFDLSHGSAQVK
(2) TYFPHFDLSHGSAQVKGHGKK
(3) TYFPHFDLSHGSAQVK

Found to have a role to protect against infection in the vagina (38)
Effective against E. coli, Strep. faecalis, Staph. aureus and
Candida (17)
(1) Antibacterial peptide in menstrual blood (14)
(2) Upregulated in hypertrophic scar tissue (33)
(3) Urinary biomarker acute severe pancreatitis (37).

575
(1) 0
(2) 0
(3) 16

613
(1) 0
(2) 0
(3) 22

1770
(1) 8
(2) 5
(3) 18

HBB (1-21) MVHLTPEEKSAVTALWGKVNV
(1) VHLTPEEKSAVTA
(2) VHLTPEEKSA

Generated by candidal aspartactic peptidases and has bactericial
effect (36)
(1) Upregulated in hypertrophic scar tissue (33)
(2) LPS-binding (19)

90
(1) 19
(2) 0

242
(1) 21
(2) 0

533
(1) 14
(2) 0

HBB (112-146)
LVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
(1) AGVANALAHKYH
(2) AHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
(3) EFTPPVQAAYQKVVAGVANALAHKYH
(4) NALAHKYH
(5) VVAGVANALAHKYH
(6) VAGVANALAHKYH

Shown to be antibacterial against both gram-positives and gram-
negatives. Antiviral and antifungal properties (14, 17, 18). Found to
play a role in the defense against bacteria in the vagina (15).
(1) Urinary biomarker Psoriatic arthritis (39)
(2) Antibacterial peptide in menstrual blood (14)
(3) Urinary biomarker renal cell carcinoma (40)
(4) LPS-binding (19)
(5) Urinary biomarker acute severe pancreatitis (37), transitional cell
carcinoma (41) Upregulated in hypertrophic scar tissue (33)
(6)Upregulated in hypertrophic scar tissue (33)

39
(1) 15
(2) 0
(3) 0
(4) 0
(5) 4
(6) 11

233
(1) 41
(2) 0
(3) 0
(4) 28
(5) 38
(6) 30

524
(1) 109
(2) 5
(3) 4
(4) 57
(5) 26
(6) 53

FIBA (603-624) SYKMADEAGSEADHEGTHSTKR
(1) DEAGSEADHEGTHSTK
(2) SYKMADEAGSEADHEGTHST
(3) KMADEAGSEADHEGTHST
(4) DEAGSEADHEGTHSTKR
(5) AGSEADHEGTHSTKRG

(1) Urinary biomarker in Rheumatoid arthritis (39), renal cell
carcinoma (40)
(2) Serum biomarker preeclampsia (42)
(3) Serum biomarker Chrohn’s disease (43)
(4) Urinary biomarker in Infantile necrotizing enterocolitis (44)
(5) Urinary biomarker Psoriatic arthritis (39)

0
(1) 0
(2) 0
(3) 0
(4) 0
(5) 0

70
(1) 5
(2) 0
(3) 0
(4)12
(5) 0

19
(1) 4
(2) 0
(3) 0
(4) 0
(5) 0

FIBA (20-35) (Fibrinopeptide A)
ADSGEGDFLAEGGGVR
(1) DSGEGDFLAEGGGV
(2) ADSGEGDFLAEGGGV
(3) DSGEGDFLAEGGGVR
(4) EGDFLAEGGGVR
(5) FLAEGGGVR

Synovial biomarker for Psoriatic arthritis (45)
(1) Serum biomarker preeclampsia (42), Synovial fluid biomarker for
Inflammatory arthritis (45)
(2) Serum biomarker preeclampsia (42)
(3) Serum biomarker renal cell carcinoma (46), non-small cell lung
carcinoma (47), Crohn’s disease (43)
(4) Serum biomarker Alzheimer’s disease (48), renal cell carcinoma (46),
Crohn’s disease (43)
(5) Synovial fluid biomarker for Inflammatory arthritis (45)

189
(1) 20
(2) 0
(3) 43
(4) 23
(5) 8

107
(1) 0
(2) 0
(3) 26
(4) 16
(5) 0

43
(1) 0
(2) 0
(3) 14
(4) 9
(5) 0
February 20
21 | Volum
e 11 | Artic
An extensive literature search was made using pubmed, elsevier and lubsearch. Documented peptides were extracted and matched with sequences in our dataset, resulting in several
matches. Several regions of proteins (mainly Hemoglobin subunit alpha and beta and fibrinogen alpha) yielded peptides associated with antimicrobial properties and biomarker potential.
These are presented in the table together with the sum of the spectral count of all sequences confined within the region (in bold), and the spectral count of the exact peptides. Sequences
without any exact match in our dataset, but with close similarity to many other sequences are also included.
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substrate protein above the prediction score cutoff value. As can
be seen in Figure 6C, the hemoglobin derived AMPs were more
prevalent in the wound dressing group as compared to the acute
wound fluid group. The total sum of the spectral count of the
peptides above the prediction score cutoff value were [acute: 776
(n=5), non-infected: 702 (n=3) infected:1695 (n=3)].
DISCUSSION

Peptidomics is demonstrably well suited for the implementation
of bioinformatics and big data analysis (10). Recognizing
patterns and identifying key peptides in different environments
will result in a better understanding of conditions like
inflammation and infection, as well as protease and protein
dynamics. Furthermore, it will enhance our understanding of
processes related to wound-healing, which may prove pivotal for
future advances in wound care (49). This study demonstrated the
efficacy and potential impact of simple sorting algorithms on
peptidomic data, and how open source software may be
implemented in research. Our datasets were generated through
data dependent acquisition, but it may very well be implemented
Frontiers in Immunology | www.frontiersin.org 9
on other types of quantifiable data with a similar structure,
although different methods of data-gathering may result
in different findings as they often favor certain peptide-
characteristics, and inter-methodology comparisons may
therefore not be viable.

The field of peptidomics is not yet established to the same
extent as seen for proteomics, although contemporary research
shows that peptides play a substantial role in many physiological
and immunological processes (50–53). To our knowledge, the
unaltered wound fluid peptidome has not been thoroughly
described, leaving room for our data to complement and
extend existing knowledge (54, 55). From an analytical
standpoint, previous studies have shown that spectral counting
and intensity-based quantification methods both have their
merits in peptidomic approaches (56). Although using
intensity is accurate and preferred when determining the ratio
between identical peptides in quantitative analyses, spectral
counting combined with filtering can be applied for inter-
peptide approximate quantitative measurements, yielding
specificity and sensitivity while reducing the number of false
positives. The hit ratio for peptides of lower abundance may thus
be improved using spectral counting, which is of importance
A

B

FIGURE 5 | Presence of peptides derived from the antimicrobial C-terminal (112–147) of hemoglobin subunit beta across the different wound fluids. (A) To elucidate
the difference in peptide expression of the region, a peptide alignment map was made, depicting the found peptides, aligned to the parent sequence of hemoglobin.
The color intensity of the peptides reflects the average spectral count in the respective groups, ranging between 1–32. (B) Peptide profiles of the whole HBB -
protein. Each green line along the x-axis represents an amino acid (AA) in the HBB sequence that is found in a peptide. The vertical size of the line is proportional to
the number of peptides containing that AA while the color intensity is proportional to the summed.
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from a discovery and biomarker perspective, as sequences
discarded from the dataset due to intensity cutoffs are kept
when utilizing spectral counting, thus motivating its use in this
study. When looking at the general characteristics of the whole
peptidomes, such as average mass, peptide length and the total
number of unique peptides, insignificant differences between
groups and samples were seen (Supplementary Table 2).
However, the infected group did contain one outlying sample,
with a considerably smaller peptidome than the others.
Additionally, there were little differences regarding the total
spectral count between groups (Supplementary Figure 1),
validating the sample preparation and allowing for semi-
quantitative comparisons between the groups.

Investigating the unique peptides making up the peptidomes
demonstrated a high variance in composition, between acute
wound fluids from mastectomy drainages and wound fluids
extracted from wound dressings of infected and non-infected
surgical wounds (Figure 1A). Furthermore, the protein substrate
environment varied between groups, as the acute wound fluid
samples contained a more varied environment as compared to
the wound dressings samples which was dominated by
hemoglobin, especially in the infected subgroup (Figures 1B,
C). We also show that there is a striking similarity between the
amino acid distribution of the peptidomes and that of the Swiss-
Prot database, validating our dataset and the connection between
peptidome and proteome.
Frontiers in Immunology | www.frontiersin.org 10
As protease specificity is foremost determined by the amino
acid residues closest to the cleavage sites (P1, P1’) (57),
we hypothesized that the distribution of these amino acids
could be influenced by differences in the respective protease
environments. It was therefore interesting that a difference was
indeed observed in the amino acid distribution at the P1 position
between the acute wound fluid and wound dressing group.
Notably, the preference for acidic residues in the last position
in the wound dressing group was similar to the results obtained
by Saravanan et al. (32), which used aureolysin in order to
fragment thrombin in vitro. Taken together, these results serve as
a proof of principle that different protease environments can
indeed generate detectable differences in global cleavage sites
(Supplementary Figure 5). It is notable that S. aureus (9) was
only found in the infected wound dressings but not in the acute
sterile wound fluids since it was extracted from a sterile
environment, providing a possible explanation for the observed
differences in cleavage sites and linking the findings from the
present study with previous vitro results on aureolysin digested
fragments. The samples were searched against a S. aureus
database, but no significant proteins were found.

The differences seen in the peptidomes are most likely due to
a combination of changes in substrate abundancy and protease
expression, as peptides are generated in the interaction between
these two entities (55). Changes in this dynamic will lead to
different peptidomes and might therefore reflect changes in
A B

C

FIGURE 6 | Increased antimicrobial activity in infected samples. (A) Heatmap depicting the predicted antimicrobial environment in the different samples. Heat map
color is determined by the antimicrobial score, which was calculated by multiplying the retrieved prediction score from Deep-AmPEP30 with the respective spectral
count for each sequence. A cut-off value (0.7) was applied on the Deep-AmPEP30 prediction score. (B) Table highlighting the peptides with the highest antimicrobial
score in each group. (C) Pie charts showing the proportions of parent proteins generating the antimicrobial peptides.
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important physiological processes (54, 58). A relevant
physiological process exemplifying this is an increase in
inflammation due to infection. This will initiate neutrophil
activation, introducing potent host-derived proteases such as
neutrophil elastase (ELANE), cathepsin G and proteinase 3 (59,
60), altering the protease environment. To investigate whether
there was a difference in protease activity between the groups, in
silico prediction using the open source program Proteasix was
conducted. The prediction by Proteasix resulted in mostly the
same proteases for both groups with proteases such as
PGA3, Capn2, Capn1, Ctsl, MMP7, MMP9, Mep1a and
ELANE, being most prevalent (Supplementary Table 4). These
are predominantly proteases known to be associated with
inflammation (61–65). Notably, proteases and their inhibitors
contribute to the balance between extracellular matrix
degradation and deposition, creating an equilibrium that is
essential for the timely and coordinated healing of cutaneous
wounds. Increased levels of proteolytic enzymes are present in
infected wounds, and neutrophil elastase is one major enzyme
released from neutrophils invading the infected wound areas
(66). It was therefore of interest that ELANE was particularly up
regulated in infected samples, serving as a possible indicator of
wound infection (67). PGA3 (pepsin) activity was also detected,
indicating actions of aspartic peptidases, a widely distributed
proteolytic enzyme family (68). Although pepsin per se is only
found in the stomach, there could be related endopeptidases
present in infected wounds. It should be noted however, that the
large amount of hits for several different proteases suggest a low
specificity in the Proteasix tool which could not discriminate
between our datasets, making it difficult to obtain conclusive
results for other proteases.

Inferring conclusions about the protease environment from
peptidomic data is made difficult by the combined influence of
both endo- and exopeptidases (56, 69). The combination renders
it difficult to discriminate whether peptides differing only by a
few amino acids at their terminals were generated by different
endopeptidases or by a different extent of exopeptidase activity.
One way of overcoming this uncertainty is by visualization
through programs like Peptigram. The distinct clustered
regions of peptides suggest that peptides within this region are
a product of the same endopeptidases but modified by
exopeptidases. Visible clusters like these are indeed present in
Figure 5A and in our Supplementary Data Sheet 1.

Antimicrobial Peptides in Wound Fluids
AMPs have recently received a lot of attention as novel
antimicrobials with a potential to substitute antibiotics (70,
71). Their antimicrobial mechanism allows for broad spectrum
bactericidal properties (72). AMPs also have comparatively
benign environmental and ecological consequences as
compared to widely used antiseptics and antibiotics (70, 71,
73). The identification of novel AMPs has been subject to in vitro
as well as in silico experiments. Deep-AmPEP30 is a recently
published open source tool in the arsenal of identification of
short AMPs and has proven to outperform many state-of-the-art
algorithms (11). We used Deep-AmPEP30, in combination with
the relative peptide abundance, as a tool to estimate and predict
Frontiers in Immunology | www.frontiersin.org 11
the antimicrobial environment in the different wound types. The
reasoning is based on the fact that the antimicrobial effect of an
antimicrobial peptide is a function of both its potency, often
described as its MIC (Minimum Inhibitory Concentration), and
its concentration (72). Interestingly, the antimicrobial score was
found to be significantly higher within the infected group than in
the non-infected and acute group, as seen in Figure 6. However,
the antimicrobial prediction score may not always accurately
predict the bactericidal or growth inhibiting properties of a
peptide (MIC), as peptides may have synergistic effects which
are not replicable in a test tube but requires the environment
present in a wound to be effective (15, 74–76).

The major protein substrates contributing to AMPs differed
between the groups but were mainly fibrinogen alpha chain and
hemoglobin subunit alpha and beta chains. Several articles have
shown that peptides derived from this region have antimicrobial
properties as can be seen in Table 1, validating our findings.
Interestingly, peptides derived from this region are abundant in
infected wounds, which suggests that hemoglobin degradation
contributes to body’s defense against microbes in the wound
environment. Indeed, Mak et al. showed that peptides such as
AHHFGKEFTPPVQAAYQKVVAGVANALAHKYH derived
from this hemoglobin region act as AMPs in the female genital
tract (14, 15). Furthermore, Table 1 shows that several other
peptides such as MVHLTPEEKSAVTALWGKVNV (36),
AHLPAEFTPAVHA (19) and SFPTTKTYFPHFDLS
HGSAQVK (14) also have proven antimicrobial properties.
These results are compatible with previous findings showing
that diverse protein families may give rise to AMPs after
proteolysis (77).

Potential Biomarkers in Wound Fluids
Diagnosing infection in its early stages will significantly decrease
the cost of infection-related illnesses (78). The clinical courses of
infected and non-infected wounds are widely different and the
articles by Cutting (79) and Ligi et al. (80) showed that there are
differences in the corresponding wound fluids. Hypothetically,
this should translate to differences in the peptidomes, enabling a
peptidomic approach to diagnosing wounds by discovering
unique peptides or epitopes which can be used as biomarkers.
Indeed, much research has been conducted in order to find
peptide biomarkers in chronic and acute diseases such as acute
pancreatitis (37), Alzheimer’s (48) and different forms of cancer
(81, 82). Biomarkers would preferably exist exclusively in the
intersection of infected peptidomes and not in any other
peptidome, but unfortunately, very few of these peptides exist.
Therefore, a more realistic application of peptides as biomarkers
relies on differences in concentrations, translating to differences
in signal intensity. Alternatively, a binary method could be
applied by using a combination of peptides more common in
infected wounds. Based on our results, peptides derived from the
regions outlined in Table 1 may serve as interesting biomarker
candidates. as they seem most abundant in infected wounds.
Notably, peptides from these regions have been validated
previously as biomarkers for e.g. inflammatory arthritis (39, 45)
and renal carcinoma (40). Interestingly, many of the peptides
previously identified as biomarkers for different pathological
February 2021 | Volume 11 | Article 620707
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states (such as cancer, inflammatory gastrointestinal diseases and
autoimmune conditions in patient samples of bodily fluids such
as serum, urine and synovial fluid) are derived from similar
protein regions, suggesting a link between wound infection and
other pathological conditions involving inflammation activation.
Moreover, peptides from some of these regions, for example the
mentioned region in HBB (111–146), and region 111–129 of
hemoglobin subunit alpha have been shown to potentiate smooth
muscle contractions and bind to LPS (19, 35), adding further
relevance to our findings. Instead of identifying unique peptide
sequences as biomarkers, one could also target any difference in N
and C-terminal sequences using antibodies for the diagnosis of
infection. By analyzing the spectral count of specific N and C-
terminals we found that some terminals are preferred in the
various wound fluids, as shown in Figure 4. Comparisons
between the groups suggest a higher degree of terminal
preference in the infected than in the non-infected and acute
wound fluids, as indicated by the steepness of the curve.
Furthermore, there are indeed specific sequences found to a
greater extent in infected wounds rather than non-infected
wounds. The most prevalent being the inherent C-terminal of
hemoglobin subunit beta (HKYH), which remained intact in
many peptides. The increased preference in infected samples
could be due to specific protease activity, and/or specific substrate
availability. The nature of the prevalent terminals suggests that at
least the latter is true, as many of them are part of hemoglobin’s
innate terminals. When grouping amino acids based on their
acidity and polarity according to side chain property (24), we
found similar differences (Supplementary Figure 5), again
showing a higher degree of preference in the infected wounds.

As also shown here, the peptidomes of individuals vary
greatly, and therefore, investigating specific differences in the
peptidome between groups would benefit from larger sets of
data to sift out unreliable findings and intensify any existing
differences. It is of note that our dataset was limited and aimed at
generating proof of principle data, establish new bioinformatics
approaches, and validate the methodologies. Nevertheless, the
fact that significant differences still emerged between the
different peptidomes, despite the limited patient number,
illustrates the power of the present approach in detecting
subtle qualitative differences in peptide patterns. Future work
should therefore include larger patient groups with well-defined
wounds, as well as a refinement of the analysis. However, the fact
that our limited analysis still identified large differences between
the groups demonstrates the power of our combined
peptidomics and bioinformatics approach. The methods and
conceptual approaches used in this study, the results and their
significance are summarized in Supplementary Data Sheet 2.
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Supplementary Table 1 | The file contains all data from the literature search.
Each sheet represents one article and contains the original data extracted from the
article alongside every matching sequence in our data as provided by our
algorithm.

Supplementary Table 2 | Table of general characteristics. The table shows the
descriptive characteristics of the different peptidomes as indicated.

Supplementary Table 3 | Amino acid distribution of complete sequences. Table
showing the amino acids distribution of the complete sequences.

Supplementary Table 4 | The excel file contains the unaltered data retrieved
from the Proteasix protease prediction tool.
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Supplementary Table 5 | The excel file containing all the unaltered data retrieved
from the antimicrobial peptide prediction tool AmPEP.

Supplementary Data Sheet 1 | The folder contains all the peptigrams in their
original format.

Supplementary Data Sheet 2 | Figure summarizing the bioinformatics
approaches, the results, and their significance as presented in the article.

Supplementary Figure 1 | Total spectral count in samples. The bar chart shows
the spectral count and standard deviation in samples for the acute, non-infected
and infected samples.

Supplementary Figure 2 | Figure of outliers. (A) The figure shows the average
spectral count over the occurrence in patients. The figure was used to identify
outlying sequences with increased spectral counts. (B) The table shows the outlying
sequences alongside some characteristics.
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Supplementary Figure 3 | Protein pie charts without hemoglobin. The figure
shows pie charts where hemoglobin derived peptides have been excluded from the
dataset. The size of the pies are proportional to the total spectral count of peptide
deriving from each protein.

Supplementary Figure 4 | Amino acid distribution with aureolysin. The pie charts
show the amino acid distribution of complete sequences, P1 and P1’ position of the
peptides. The pie charts representing aureolysin degradation were made in the
same way but using the dataset from the degradation of thrombin by aureolysin
(32).

Supplementary Figure 5 | Identification of the most abundant characteristics
behind the N- and C-terminals. (A) Scatter plots visualizing the distribution of the
characteristics of N-terminals (the first 4 amino acids) and C-terminals (the 4 last
amino acids) by plotting the aggregated spectral count after grouping amino acids
by side chain properties (22). A difference in curvature in the different groups can be
seen. (B) Table showing the sequence and average spectral count of the most
abundant terminals, which are highlighted in the scatter plots.
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