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Abstract: This paper builds an infinity shaped (“∞”-shaped) laser scanning welding test platform
based on a self-developed motion controller and galvanometer scanner control gateway, takes
the autogenous bead-on-plate welding of 304SS with 3 mm thick specimens as the experimental
objects, designs the experimental parameters by the Latin hypercube sampling method for obtaining
different penetration depth welded joints, and presents a methodology based on the neuroevolution
of augmenting topologies for predicting the penetration depth of “∞”-shaped laser scanning welding.
Laser power, welding speed, scanning frequency, and scanning amplitude are set as the input
parameters of the model, and welding depth (WD) as the output parameter of the model. The model
can accurately reflect the nonlinear relationship between the main welding parameters and WD by
validation. Moreover, the normalized root mean square error (NRMSE) of the welding depth is about
6.2%. On the whole, the proposed methodology and model can be employed for guiding the actual
work in the main process parameters’ preliminary selection and lay the foundation for the study of
penetration morphology control of “∞”-shaped laser scanning welding.

Keywords: infinity shaped laser scanning welding; laser beam oscillation; penetration depth predic-
tion; Latin hypercube sampling (LHS); neuroevolution of augmenting topologies (NEAT)

1. Introduction

A commonly used steel grade is 304 stainless steel (304SS). The addition of alloy ele-
ments such as Cr and Ni endows 304SS with good processing performance and corrosion
resistance in most harsh environments. This steel grade is widely used in the aviation,
aerospace, shipbuilding, medical, and automotive fields. During its application, welding
from the front when it is difficult to turn over or inconvenient to weld inside is inevitable
for the assembly of components and the quality of welded joints plays a vital role in decid-
ing the reliability and satisfactory property of the fabrications; furthermore, penetration
morphology has an important influence on the weld quality [1,2].

Laser welding is considered a preferable method to achieve the joining of medium
plates, given its advantages of high power density, low heat input, deep penetration,
narrow heat affected zone, and excellent mechanical properties [3,4]. However, some weld
defects such as underfill, crack, and porosity easily occur in laser welding [5,6].

Laser scanning welding is a new welding technique that emerged in recent years.
Different scanning welding trajectories can be achieved by controlling the galvanometer
scanner [7]. Laser scanning welding technology reportedly has the potential to improve
tolerances of joint gaps, microstructure homogeneity, and weld quality. Kraetzsch et al.
found that the cracks of dissimilar Al/Cu and Al/Ti welds could be reduced by beam
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oscillation [8]. Berend et al. confirmed that high frequency oscillation could eliminate
the “humping” defect of Al alloy weld [9]. Vänskä et al. found that the assembling
misalignment of 5 mm-thick stainless steel tube can be overcome by using beam oscillation
to widen the weld [10]. Wang et al. also developed circular oscillation welding, obtained
sound welds, and established that the beam oscillation was responsible for an increase in
the weld ductility [11]. Zhou et al. studied the influence of the scanning trajectory, scanning
amplitude, and scanning frequency of a beam during laser scanning welding on the pores
of a 6061 aluminum alloy and effectively inhibited the generation of pores [12]. Yang
examined the welding of aluminum alloy under laser scanning tracks with “—”, “|”, and
“O”-shapes, thereby reducing the weld porosity [13]. “∞”-shaped laser scanning welding
has gained significant interest from academia and industry in recent years. Moreover,
the “∞”-shaped laser scanning welding pool has good stability and an obvious inhibitory
effect on the pore defects in the aluminum alloy weld, thus reducing the porosity to within
1% [7]. Wang et al. verified that compared to the linear and circle oscillating modes, the
novel infinity beam oscillating presented fewer welding defects and better mechanical
properties [14]. However, the beam oscillation can modify the criterion of the welding
mode transformation and change the weld formation mechanisms, which further leads to
unstable control of penetration and affects welding quality.

Good penetration is conductive to ensuring product quality [15–17]. However, the
relationship between the welding process parameters and the welding depth (WD) is
unknown, non-linear, and complicated, thereby rendering it impractical to determine
the optimal process parameters intuitively, even for skilled operators. Moreover, the
beam oscillation welding increased process parameters and made the weld process more
complicated [18–20].

In response to this problem, scholars from various countries have conducted numerous
experimental studies, mainly to study the effect of different oscillation parameters on the
WD for optimizing the welding process parameters and improving the welding methods
and equipment. Li et al. established that the WD decreased significantly as the oscillation
diameter and frequency increased, and the weld penetration in circular oscillating laser
welding for the 5083 aluminum alloy is approximately proportional to the line energy
of laser oscillation [21]. Li et al. found that when the welding oscillation amplitude
of 304SS was lower than 0.4 mm, the weld penetration was unchanged; otherwise, the
weld penetration and area were greatly decreased as the oscillation amplitude increased,
an outcome caused by the welding mode variation [3]. Chen et al. concluded that the
penetration of the “∞”-shaped laser scanning weld were inversely proportional to the
scanning amplitude and scanning frequency of 5052 aluminum alloy, and the weld cross-
section was a wide U-shape [7]. However, the relationship model between laser scanning
welding parameters and penetration, especially for “∞”-shaped laser scanning welding,
remains unexplored.

Although developed mathematical models such as polynomial response surface and
radial basis function can be used to build the relationship between process parameters and
welding seam geometry, the prediction performance of models cannot be guaranteed, even
with numerous sample points [22–24], because of the coupling effect of welding parameters
and the non-linear causality.

The excellent non-linear processing ability of the neural network has obvious ad-
vantages for predicting weld forming and mechanical properties [25,26]. However, the
mathematical principle of a BP neural network determines its inherent defect of easily
falling into the local optimum. In addition, its training effect is too dependent on the initial
random weights and thresholds [17]. Compared with traditional neural network methods,
the neuroevolution of augmenting topologies (NEAT) creates artificial neural networks
through simulated evolution and allows the network topology and the connection weights
to be simultaneously optimized through an evolutionary process [27]. Moreover, the NEAT
searches through a minimal number of weight dimensions, thereby significantly reducing
the number of generations necessary to identify a solution [28].
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This work builds an “∞”-shaped laser scanning welding experimental platform based
on a motion controller and a galvanometer scanner control gateway that are self-developed,
takes the autogenous bead-on-plate welding of 304SS with 3 mm thick specimens as the
experimental objects, and focuses on a model based on the neuroevolution of augmenting
topologies for predicting the WD of “∞”-shaped laser scanning welding, in which input
parameters synthesize laser power (LP), welding speed (WS), scanning frequency (SF),
and scanning amplitude (SA). To solve the problem in which the distribution character-
istics of the original sample data cannot be accurately described even with numerous
sample points, the Latin hypercube sampling (LHS) is introduced in the design of the
experimental parameters.

The verification experiment confirms that the prediction accuracy can meet the re-
quirements of the main process parameter determination and subsequent penetration
control. The model can accurately reflect the nonlinear relationship between the main
welding parameters and WD, a feature which is helpful to ensure the penetration quality
of “∞”-shaped laser scanning welding.

2. Experimental Setup
2.1. Experimental Platform

The experimental setup (Figure 1) included a MAX PHOTONICS MFSC-4000 fiber
laser (Maxphotonics Co., Ltd., Shenzhen, China), an OSPRI LDW400 wobble welding
head (OSPRI Co., Ltd., Shenzhen, China), a Kawasaki six-axis industrial robot, a PC-based
motion controller (self-developed), and a galvanometer scanner control gateway (self-
developed). This fiber laser was a continuous beam mode with a wavelength of 1070 nm
and a beam parameter product (BPP) of 2.8 mm mrad. The radius of the focused laser beam
spot was approximately 0.4 mm. The wobble welding head consisted of a collimation unit
with a focal length of 75 mm, two galvanometer scanner units, and a focusing unit with a
focal length 300 mm. The beam oscillation was controlled by the galvanometer scanner
and can be oscillated up to a maximum frequency of 250 Hz. The beam diameter is 1.6 mm
at the focal position. The welding head was driven by the robot to move linearly in the
X-direction.
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Figure 1. Scheme of the experimental setup for laser scanning welding.

The control system layout is shown in Figure 2. The experiment is implemented in a
self-developed, PC-based motion controller with an Intel(R) Core (TM) i5-7200 U 2.5 GHz
CPU, 16.00 GB SDRAM computer (Shandong Ezcode Intelligent Technology Co., Ltd.,
Jinan, China) and a Windows 10 operating system extended by Kithara real-time suite
(KRTS) to guarantee real-time performance [29].
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Figure 2. The control system layout.

The PC-based motion controller acts as the master node on the EtherCAT Indus-tral
Ethernet Network (Beckhoff Automation GmbH & Co. KG, Verl, Germany) and Ether-
MAC Industrial Ethernet Network (Shandong Ezcode Intelligent Techology Co. Ltd.,
Jinan, China) [30]. On the one hand, the motion controller communicates with the cor-
responding robot servo drives by the EtherCAT Industrial Ethernet Network, where the
communication period is set to 1 ms, and the robot servo drives act as the slave node on
the EtherCAT network. On the other hand, galvanometer scanner units that are in the
OSPRI wobble welding head connect to the EtherMAC Industrial Ethernet Network via the
self-developed galvanometer scanner control gateway module with Altera EP4CE6E22C8
FPGA (Altera Corporation., California, USA), where the com-munication period is set
to 250 us and the module acts as a slave EtherMAC node. Moreover, the galvanometer
scanner control gateway module communicates with the galvanometer scanner units via
the XY2-100 serial buses, where the communication period is set to 10 us. The “one-
transmission-multiple-conversion” manner is used to align the communication period, the
gateway module receives a network frame once, and issues the instructions in multiple
sequential conversions.

Based on the KRTS, the operating system of the motion controller can be divided into
two sub-systems: the non-real-time operating system (non-RTOS) which can con-duct the
tasks with no real-time requirements, and the KRTS-Kernel which is a re-al-time system
with excellent real-time performance. The real-time interpolation stage of the robot and
galvanometer scanner units are conducted in the KRTS-kernel, and the HMI task can be
implemented in non-RTOS.

2.2. Experimental Procedure

The experiments were conducted using 3-mm-thick 304SS plates (in rolled and an-
nealed condition) measuring 120 × 50 mm2 as the base metal. The chemical composi-tion
and mechanical properties are listed in Table 1. During welding, the weld surface was
protected by gas nozzles using pure argon. The gas flow of the nozzles was 15 L/min.
Before the experiment, the surfaces of the plates were washed with acetone. After the
plates were dried, the surface oxide film was scraped off with sandpaper, and the plates
were washed with absolute ethanol.

Table 1. Chemical composition and mechanical properties of the 304SS plate.

C Si Mn P S Cr Ni Cu Fe

0.027 0.56 1.55 0.031 0.001 18.0 8.0 0.1 Bal.

Tensile strength/Mpa 660 Yield strength/Mpa 277 Elongation percentage/% 62.0

The working principle of the wobble welding head is shown in Figure 1. In laser beam
oscillation welding, the laser beam is collimated and then irradiated to the ro-tating mirrors.



Materials 2021, 14, 5984 5 of 16

The deflection of the beam deflectors is driven by motors to achieve the scanning trajectory.
The scanning pattern used is “∞”-shaped, also known as lemnis-cate. The “∞”-shaped
curve is presented in Figure 3, the length of line AB is set to 2 a, if the moving point “P”
satisfies Equation (1), and the trajectory of “P” is designated as the lemniscate:

|PA| ∗ |PB| = a2 (1)

when the WS is V = 0, the trajectory of the laser beam is as shown in Figure 4. With point
“a” as the starting point of a welding cycle, the laser beam is continuously circulated with
scanning speed Ve along the path a(i)-b-c(g)-d-e-f -g(c)-h-i(a).
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The Ve is mainly determined by the scanning frequency (SF) and the scanning am-
plitude (SA) of the laser beam. The definition of the SA of the track is shown in Figure 3.
When the WS is V > 0, the scanning trajectory of the laser is determined by the WS and the
Ve. Figure 5 shows the continuous scanning trajectory of the “∞”-shaped motion of the
laser beam.

Materials 2021, 14, x FOR PEER REVIEW 5 of 16 
 

 

The Ve is mainly determined by the scanning frequency (SF) and the scanning ampli-

tude (SA) of the laser beam. The definition of the SA of the track is shown in Figure 3. 

When the WS is V > 0, the scanning trajectory of the laser is determined by the WS and the 

Ve. Figure 5 shows the continuous scanning trajectory of the “∞”-shaped motion of the 

laser beam. 

 

Figure 5. Dynamic continuous scanning trajectory of “∞”-shaped scanning welding. 

The laser beam starts from point “m”. The welding process ends at point “n” after 

several motions. In the dynamic scanning process, the actual speed Va is a vector combi-

nation of the Ve and the V along the weld seam, which can be calculated using Equation 

(2). That is, the actual speed of “∞”-shaped scanning welding in the “a(i)-b-c(g)-d” and “e-

f-g(c)-h-i(a)” segments is far higher than that of the single pass laser WS [7]. 

= +a eV V V  (2) 

For obtaining different penetration morphology welded joints, autogenous bead-on-

plate welding experiments were performed to investigate the effect of “∞”-shaped laser 

scanning welding parameters on welding penetration morphology. The LHS method was 

used to design the experimental parameters. This sampling method can accurately deter-

mine the design space by sampling with fewer iterations and distributing the sample 

points evenly throughout the design space. Generally, the welding depth of laser scanning 

welding is affected by laser power, welding speed, scanning pattern, gap, laser beam focal 

position, shielding gas, etc. These input factors commonly determine WD. Whether in 

conduction mode or keyhole mode, a nonlinear relationship between welding parameters 

and the welding depth is considered in this study. According to a large number of actual 

experiences, surveys, and primary investigations, the WD of “∞”-shaped laser scanning 

welding is mainly determined by four main factors, including LP, WS, SF, and SA, and 

high welding speed may lead to defects of incomplete fusion and even spatter, meanwhile 

high laser power may cause excessive penetration and dent [7,14]. Considering the actual 

conditions of the wobble welding head, the bounds of scanning parameters (SF and SA) 

are set, and the working ranges of all selected process parameters are fixed by conducting 

trail tests. In addition, considering the actual welding conditions and experimental costs, 

60 samples of experimental parameters were determined by the LHS method. The work-

ing ranges of all selected experimental process parameters are as follows: 

800 LP 3000(W)

8 WS 30(mm / s)

10 SF 250(Hz)

0 SA 2.5(mm)

 

 

 

 

  

Other welding parameters are controlled as constant values, and other constant 

welding parameters in the experiment are shown in Table 2. After welding, the weldment 

is cut, polished, and etched along the section of the image sampling point by a wire cutting 

machine. Under the VMA video measuring machine, the macroscopic metallography of 
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The laser beam starts from point “m”. The welding process ends at point “n” af-
ter several motions. In the dynamic scanning process, the actual speed Va is a vec-
tor combination of the Ve and the V along the weld seam, which can be calculated
using Equation (2). That is, the actual speed of “∞”-shaped scanning welding in the
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“a(i)-b-c(g)-d” and “e-f -g(c)-h-i(a)” segments is far higher than that of the single pass laser
WS [7].

→
Va =

→
Ve +

→
V (2)

For obtaining different penetration morphology welded joints, autogenous bead-on-
plate welding experiments were performed to investigate the effect of “∞”-shaped laser
scanning welding parameters on welding penetration morphology. The LHS method
was used to design the experimental parameters. This sampling method can accurately
determine the design space by sampling with fewer iterations and distributing the sample
points evenly throughout the design space. Generally, the welding depth of laser scanning
welding is affected by laser power, welding speed, scanning pattern, gap, laser beam focal
position, shielding gas, etc. These input factors commonly determine WD. Whether in
conduction mode or keyhole mode, a nonlinear relationship between welding parameters
and the welding depth is considered in this study. According to a large number of actual
experiences, surveys, and primary investigations, the WD of “∞”-shaped laser scanning
welding is mainly determined by four main factors, including LP, WS, SF, and SA, and
high welding speed may lead to defects of incomplete fusion and even spatter, meanwhile
high laser power may cause excessive penetration and dent [7,14]. Considering the actual
conditions of the wobble welding head, the bounds of scanning parameters (SF and SA)
are set, and the working ranges of all selected process parameters are fixed by conducting
trail tests. In addition, considering the actual welding conditions and experimental costs,
60 samples of experimental parameters were determined by the LHS method. The working
ranges of all selected experimental process parameters are as follows:

800 ≤ LP ≤ 3000 (W)
8 ≤WS ≤ 30 (mm/s)
10 ≤ SF ≤ 250 (Hz)
0 ≤ SA ≤ 2.5 (mm)

Other welding parameters are controlled as constant values, and other constant weld-
ing parameters in the experiment are shown in Table 2. After welding, the weldment
is cut, polished, and etched along the section of the image sampling point by a wire
cutting machine. Under the VMA video measuring machine, the macroscopic metallog-
raphy of the fusion zone is observed and photographed to measure the relevant welding
penetration characteristics.

Table 2. Other constant welding parameters.

Other Constant Welding Parameters Value

The gas flow of the nozzles (L/min) 15
Defocusing distance (mm) 0

Plate thickness (mm) 3

3. Methodology and Model
3.1. Neuroevolution of Augmenting Topologies

By (1) employing a principled method of crossover of different topologies, (2) protect-
ing structural innovation using speciation, and (3) incrementally growing from a minimal
structure, the NEAT allows solutions to become incrementally more complex while they
become more optimal [28].

As shown in Figure 6, each genome includes a list of connection genes, each of which
refers to two node genes being connected in the NEAT. Each connection gene specifies
the in-node, the out-node, the weight of the connection, whether or not the connection
gene is expressed (an enable bit), and an innovation number (Innov), thereby facilitating
the identification of corresponding genes during crossover. The innovation numbers
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represent a chronology of every gene in the system and can monitor the historical origin of
every gene.
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A mutation in the NEAT can change not only connection weights, but also network
structures. Structural mutations, which expand the genome, occur in two ways: connection
mutations and node mutations (Figure 7). Through mutation, genomes of varying sizes are
created, sometimes with completely different connections specified at the same positions.
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When crossing over, the genes in both genomes with the same innovation numbers
are lined up. Genes that do not match are inherited from the more fit parent, or if they
are equally fit, from both parents randomly. Moreover, genes that do not match are either
disjoint or excess, depending on whether they occur within or outside the range of the
other parent’s innovation numbers in Figure 6.

The population is divided into species according to historical markings and topological
similarity. The compatibility distance (ϕ) of different structures can be calculated using
Equation (3).

ϕ =
a1 ∗ E

N
+

a2 ∗ D
N

+ a3 ∗W (3)

where E is the number of excess genes; D is the number of disjoint genes; W is the average
weight difference of matching genes; N is the number of genes in the larger genome; and
a1, a2, and a3 are coefficients that adjust the importance of the three factors.

The NEAT speciates the population and shares fitness, so that individuals compete
primarily within their own niches instead of against the entire population. Thus, individu-
als have time to optimize their structure before they must compete with other niches in the
population, and this feature can effectively solve the problem of fitness reduction when
adding new structures to a network.

Moreover, because the NEAT protects innovation using speciation, it can start this
way minimally and grow new structures only as necessary. This way, the NEAT searches
through a minimal number of weight dimensions, thereby significantly reducing the
number of generations necessary to find a solution.

3.2. Establishment and Training of the NEAT Model

A model was established and trained for describing the relationships between process
parameters and WD. The experimental samples are demonstrated in Figure 8, and each
graph demonstrates the changing WD with the process parameters.

The procedure of establishing and training the model is planned in detail as follows:

1. Determination of the network model structure. The main goal is to predict the WD
by selecting LP, WS, SF and SA as input parameters. Therefore, LP, WS, SF and SA
are selected as the input parameters of the NEAT model, and the WD is taken as the
output parameter. In the current related research, whether increasing the number of
hidden layers can reduce the network error is uncertain but doing so will undoubtedly
complicate the network structure and greatly increase the network training time and
data occupation space. Therefore, a three-layer network with a single hidden layer
and eight hidden layer nodes is selected in the initial design, the input layer nodes are
connected to every node in the hidden layer and the output layer, every hidden layer
node is connected to the output layer node, and the initial connections in the network
are enabled. During training, the network topology and the connection weights are
changed by crossing over and mutating to obtain the network structure with the
smallest error. Consequently, the NEAT model for predicting WD is determined,
and the initial topological structure of the model is shown in Figure 9, where the
numbers in the hidden layer represent the innovation numbers, the thickness of
connection lines are related to the value of initial random weights, the red lines mean
weight < 0, the green lines mean weight ≥ 0, and the solid lines mean that the
corresponding connections are enabled.
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2. Design of training dataset and testing dataset. As mentioned, among 60 samples
whose experimental parameters were determined by the LHS method, the experi-
mental results of 58 samples involved incomplete penetration. The large difference
of the different characteristic value of samples is not conducive to processing, so the
samples are preprocessed through mean removal. Fifty samples (training dataset)
are randomly selected for training the NEAT model from preprocessed samples. The
remaining eight samples (testing dataset) were selected for testing prediction accuracy.

3. Set initial population and fitness rules. The initial population size is set to 300, and
each individual in the population represents a network. The score of each individual
is calculated according to the network calculation rules. To evaluate the quality of a
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solution, initial fitness minus the square of error between the output value and the
expected value of training dataset is usually employed as the fitness. Thus, the higher
the score, the smaller the proof error and the better the individual.

4. Implement the NEAT to obtain the prediction model. The NEAT was applied to
solve the prediction problem and obtain the predicted value of WD. The program
was developed based on Python 3.6 and was run in JetBrains PyCharm. Selected
parameters for the NEAT are listed in Table 3.

Table 3. Selected parameters for the NEAT.

Parameter Value

Fitness threshold 49.8
Activation_options Softplus, Relu, Sigmoid
Activation_default Softplus

Activation_mutate_rate 0.1
Aggregation_default Sum

Conn_add_prob 0.5
Conn_delete_prob 0.5
Node_add_prob 0.2

Node_delete_prob 0.2
Enabled_default True

Enabled_mutate_rate 0.05
Initial fitness 50

Population size 300
Maximum iterations 2000

Num_hidden 8
Num_inputs 4

Num_outputs 1
Initial_connection Full_direct

Compatibility_disjoint_coefficient 1.0
Compatibility_weight_coefficient 0.5

Compatibility_threshold 3.0
Elitism 3

4. Result and Discussion
4.1. Experimental Results

The WD is selected as the welding penetration depth evaluation index to evaluate the
welding process in this work. The macroscopic metallographic diagram and dimensional
measurement of the weldment sampling (No. 40) are shown in Figure 10.
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In Figure 11, the experimental results show that within the experimental range, the
experimental samples 35 and 48 were completely penetrated, and the WD of the remain-
ing 58 samples of experimental samples exhibit relatively uniform random distribution
throughout the design space. Thus, the LHS method can accurately determine the design
space by sampling with fewer iterations and describe the distribution characteristics of
data. All experimental parameters and the measurement results of the samples are shown
in Appendix A.
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4.2. Analysis of the NEAT Model Training Process

Each individual represents a network in the population and the fitness of each indi-
vidual is calculated according to the network calculation rules and the initial fitness. The
higher the fitness, the smaller the proof error and the better the individual. As the popula-
tion iteration, the population goes through creation, selection, crossover, and mutation. In
the process, individuals with high fitness are retained, while individuals with low fitness
are eliminated. Therefore, the value of the best fitness (F_score) increass continuously
(Figure 12), and the topological structure also evolves continuously (Figure 13). The topo-
logical structure of the NEAT model grows incrementally from a minimal structure, thereby
significantly reducing the number of generations necessary to find a solution. Among the
iterations, Figure 13a–g correspond to the topological structure of the NEAT model after
25, 50, 75, 175, 275, 525, and 800 generations, of evolution, respectively, and this outcome
also means the prediction error decreases continuously.
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Figure 12. The best fitness of the population as the population evolves.

The best individual gained by iterations is found and decoded, and the connection
weights and network structures are obtained for the final network. The final network
structure of the NEAT model is as shown in Figure 14. The weight of the connection
and network topology are related to the effects of each process parameter on WD. In the
working ranges of selected experimental process parameters, the main effects on WD
include LP, WS, and SA. SF has almost no effect on WD. WD is proportional to LP and
inversely proportional to WS and SA. The effect of every process parameter on the WD can
be determined indirectly by predicting WD in the process parameters’ preliminary selection.
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4.3. Validation of the Prediction Accuracy of the Proposed Approach

The established NEAT model can describe the relationships between the process
parameters and WD. To verify the prediction performance of the model, eight previously
randomly selected samples (testing dataset) were used to predict WD. Comparative analysis
of the predicted values and experiment values (Figure 15) show good agreement. The
prediction accuracy is comparable to that of references [31,32], such that can meet the
requirements of actual welding. To evaluate the performance of the model more intuitively,
the NRMSE of the model was selected as the evaluation indicator. The NRMSE of WD is
approximately 6.2%, an outcome that shows that the model has high prediction accuracy.
Overall, the established NEAT model is reliable and can be used for predicting WD in the
process parameter selection.
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5. Conclusions

In this study, a “∞”-shaped laser scanning welding test platform based on a self-
developed motion controller and galvanometer scanner control gateway is built. The
experimental platform combined galvanometer scanners and robots over standard indus-
trial ethernet networks, taking the autogenous bead-on-plate welding of 304SS with 3 mm
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thick specimens as the experiment objects and designing the experimental parameters by
the LHS method. According to the experimental data, a neuroevolution of augmenting
topologies (NEAT)-based model for predicting the penetration depth of the “∞”-shaped
laser scanning welding is established. The results demonstrate that the model has good
predictive performance and can provide reliable process guidance for “∞”-shaped laser
scanning welding. The following main conclusions can be derived:

1. To some degree, the welding depth (WD) can represent the seam quality. The estab-
lished NEAT model based on the main process parameters (laser power [LP], welding
speed [WS], scanning amplitude [SA], and scanning frequency [SF]) as inputs and
WD as output could accurately reflect the nonlinear relationship between the main
welding parameters and WD, whether in conduction mode or in keyhole mode.

2. The NEAT model had high accuracy through verification tests and could predict the
WD of the “∞”-shaped laser scanning welding results within acceptable error margins.
Moreover, the normalized root mean square error (NRMSE) of WD is approximately
6.2% by validation.

3. Good prediction performance thus makes the model reliable for the preliminary
selection of process parameters, and the proposed approach lays the foundation for
controlling penetration and evaluating the quality of “∞”-shaped laser scanning
welding. However, the welding depth is also influenced by other factors, even if
their effect is usually limited. Therefore, follow-up research is needed before the
application of this method in industry.
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Appendix A

Table A1. Experimental parameters and measurement results of 60 samples.

NO. LP (W) WS (mm/s) SF (Hz) SA (mm) WD (mm)

1 1089 21 161 0.4 0.66
2 2228 13.2 197 0.8 1.44
3 2528 12.7 129 0.4 1.86
4 1759 10.4 79 0.6 1.43
5 1529 14.8 106 0.4 1.18
6 1740 28 25 0.4 1.02
7 2944 23.9 43 1.6 1.27
8 1624 28.8 120 1.3 0.61
9 2280 25.9 88 1.4 0.90

10 1387 25.3 236 1.1 0.56
11 1261 21.8 93 0.8 0.67
12 1036 13.8 247 1.6 0.31
13 2255 23.5 179 1.7 0.81
14 2438 13 228 1 1.57
15 2788 16.3 111 1.3 1.35
16 2031 8.8 204 0.1 1.79
17 1684 18.4 30 0 1.41
18 1129 15.3 66 0.9 0.69
19 1223 26.8 22 1.8 0.30
20 2654 17.3 163 1.8 1.18
21 962 27.5 18 1.2 0.48
22 863 9.8 139 0.8 0.62
23 2179 15.6 84 0.6 1.44
24 1846 26.2 167 0.6 0.97
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Table A1. Cont.

NO. LP (W) WS (mm/s) SF (Hz) SA (mm) WD (mm)

25 2366 22.2 125 0.8 1.22
26 1454 27.4 136 1 0.67
27 1569 19.9 222 1 0.90
28 1990 14.6 172 0.1 1.48
29 1316 8.6 97 0.1 1.35
30 1489 18.9 145 1.2 0.92
31 2686 11.1 36 1.6 1.88
32 1825 19.1 221 1.4 0.85
33 2494 14 39 0.9 1.68
34 895 21.4 218 1.1 0.23
35 2972 12.2 54 0.1 Whole
36 1196 8 53 0.7 1.08
37 2475 9.9 14 0.7 2.43
38 1144 29.2 77 1.5 0.31
39 2823 17 183 0.1 2.06
40 2899 22.8 198 1.3 1.40
41 2379 20.6 243 0.6 1.32
42 930 20.1 61 1.5 0.21
43 1879 16 99 0.5 1.22
44 2047 22.5 188 1.6 0.86
45 2142 10.8 115 1.1 1.48
46 2877 24.8 46 1.6 1.22
47 1910 17.9 153 0.8 1.11
48 2743 12 146 0.5 Whole
49 1965 29.5 103 0.6 0.93
50 820 19.6 190 0.5 0.42
51 2106 28.2 131 0.2 1.13
52 2319 24.5 63 1.7 0.88
53 1007 26.7 212 0.3 0.60
54 2610 17.8 207 1.1 1.41
55 2572 25.1 27 1.1 1.28
56 1599 9.4 175 0.2 1.60
57 2747 16.8 157 0.4 1.92
58 1311 23.4 232 1.3 0.48
59 1353 29.8 70 0.3 0.74
60 1672 11.4 241 1.3 1.20
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