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Abstract: In this paper, the main objectives are to investigate and select the most suitable parameters
used in particle swarm optimization (PSO), namely the number of rules (nrule), population size (npop),
initial weight (wini), personal learning coefficient (c1), global learning coefficient (c2), and velocity
limits (fv), in order to improve the performance of the adaptive neuro-fuzzy inference system in
determining the buckling capacity of circular opening steel beams. This is an important mechanical
property in terms of the safety of structures under subjected loads. An available database of 3645
data samples was used for generation of training (70%) and testing (30%) datasets. Monte Carlo
simulations, which are natural variability generators, were used in the training phase of the algorithm.
Various statistical measurements, such as root mean square error (RMSE), mean absolute error (MAE),
Willmott’s index of agreement (IA), and Pearson’s coefficient of correlation (R), were used to evaluate
the performance of the models. The results of the study show that the performance of ANFIS optimized
by PSO (ANFIS-PSO) is suitable for determining the buckling capacity of circular opening steel beams,
but is very sensitive under different PSO investigation and selection parameters. The findings of this
study show that nrule = 10, npop = 50, wini = 0.1 to 0.4, c1 = [1, 1.4], c2 = [1.8, 2], fv = 0.1, which are the
most suitable selection values to ensure the best performance for ANFIS-PSO. In short, this study
might help in selection of suitable PSO parameters for optimization of the ANFIS model.

Keywords: particle swarm parameters; adaptive neuro-fuzzy inference system; circular opening steel
beams; buckling capacity

1. Introduction

Circular opening steel beams have been increasingly acknowledged in structural engineering
because of their many remarkable advantages [1], including their ability to bridge the span of a large
aperture or their lighter weight compared with conventional steel beams. In general, the industrial
approach to producing such a structural member is the rolled method, involving a single steel piece.
This is then cut so that the two halves can be assembled, making an I-section, which is also called an
H-section steel beam. Hoffman et al. [2] showed that the flexural stiffness and specific gravity per unit

Materials 2020, 13, 2210; doi:10.3390/ma13102210 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-5412-797X
https://orcid.org/0000-0002-8038-2381
https://orcid.org/0000-0002-1603-5000
https://orcid.org/0000-0002-4157-7717
https://orcid.org/0000-0001-9707-840X
http://dx.doi.org/10.3390/ma13102210
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/13/10/2210?type=check_update&version=2


Materials 2020, 13, 2210 2 of 27

length was improved significantly in circular opening steel beams structures. In addition, economic
and aesthetics factors are also beneficial points that deserve significant attention [3,4]. A typical
structural member has a regular circular openings along its length [1–8], and is about 40–60% deeper
and 40–60% stronger than a regular I-section [5,6]. Because of these advantages, circular beams
are not only used in lightweight or large-span structures, but are also used for other complex civil
engineering structures, such as bridges [9]. Due to the possibility of using circular opening steel
beams in various engineering applications, investigation of the failure behavior is crucial to ensure
the safety of structures. Several previously published studies on the failure modes of circular beams,
for instance the work by Sonck et al. [3], have shown that the web openings are the leading causes of
the complex failure behavior of cellular beams, including web post-buckling (WPB), the Vierendeel
mechanism (VM), rupture of the web post-weld [1], local web buckling (LWB), and web distortional
buckling (WDB) [5,6].

Miscellaneous analysis-related research studies have been conducted to study the behavior of
circular opening steel beams [10–12], which have mainly focused on the web openings using various
numerical approaches [7,9]. As an example, Chung et al. [11] used finite element models with material
and geometrical nonlinearity to calculate the behavior of circular beams, resulting in approximately
15.8% of error. Numerical methods help create various case studies in order to gain more knowledge
about the working principles of the structures. Taking the work of Panedpojaman and Thepchatri [4]
as an example, the authors created a total of 408 nonlinear finite element models using ANSYS
software to investigate the behavior of circular steel beams. The results indicated that there is always a
small difference between the finite element model and the theoretical formulation. In another study,
Sonck et al. [3] generated 597 numerical models, which were calibrated with laboratory tests for
14 geometrically different full-scale steel cellular beams and verified with 1948 numerical analyzes.
The results showed that the experimental and numerical curves were identical, with a maximum load
gap range of 5.1% to 6.5%. Typically, the numerical models are useful for evaluating the behavior of
circular beams [1,3,6,9,13]. However, these model require much effort and the use of modern software
and equipment.

Machine learning (ML) algorithms, a branch of artificial intelligence (AI) techniques, have been
constantly developed during the past few decades due to the significant increase in computer
science [14–21]. Various ML models have been effectively implemented to solve countless specific
engineering problems, including in material sciences [22–24], geotechnical engineering [25–29],
and especially structural engineering [18,30–32]. As an example, Vahid et al. [33] selected an artificial
neural network (ANN) algorithm, the most popular ML model, to predict the shear capacity of a web
opening steel I-beam. The proposed ANN model had better accuracy compared with other existing
formulas or theoretical predictions derived from the ACI 318-08 standard. Abambres et al. [34] also
used the ANN method to investigate the buckling load capacity of cellular beams under uniformly
distributed vertical loads, using eight geometrical parameters. Good results were achieved by the ANN,
giving 3.7% for the total error and 0.4% for the average relative error. Blachowski and Pnevmatikos [35]
proposed an ANN model for the design and control of the vibration of structural elements under
earthquake loading. In the same context of seismic excitation, Pnevmatikos and Thomos [36] employed
a stochastic control approach to determine the influence of random characters on the dynamic behavior
of engineering structures. The neuro-fuzzy system is another efficient ML algorithm, which has been
employed in many structural and material engineering applications, including for steel structures.
Seitllari and Naser [37] investigated the performance of an adaptive neuro-fuzzy inference system
(ANFIS) in predicting a fire-induced spalling phenomenon in steel-reinforced concrete structures.
Naser [38] derived a material model for steel structures, taking into account the dependency of
temperature based on machine learning techniques. Basarir et al. [39] compared the performance
between conventional regression techniques and ANFIS in predicting the ultimate pure bending of
concrete-filled steel tubular members. Naderpour and Mirrashid [40] used ANFIS to predict the shear
strength of beams that had been reinforced with steel stirrups. Mermerdaş et al. [41] applied ANFIS
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to evaluate the flexural behavior of steel circular hollow section (CHS) beams. It was stated that
the ANFIS was a promising tool for quick and accurate evaluation of the mechanical behavior of
steel-based engineering structures.

In general, the ML algorithms are excellent and effective for evaluating the behavior of
structural members, including circular beams. However, their performance depends significantly on
the selection of parameters used to learn the models [42]. Therefore, the process of determining such
parameters is crucial to obtain highly reliable and accurate prediction results. Concerning the ANN,
many parameters could be involved, such as the initial weights, biases to start the training phase,
the learning rate, the stopping criterion, the choice of features in the training phase, the choice of the
splitting dataset ratio, the number of hidden layers and the corresponding activation functions, the
training algorithm, and the number of neurons in each hidden layer [43–45]. Considering the ANFIS,
two groups of parameters can be considered, namely the nonlinear parameters of the antecedent
membership function (MF) and linear parameters of the consequent MF, which depends on the
partitioning of the fuzzy space, as well as the type of Sugeno model [46,47]. Besides, many optimization
techniques, such as particle swarm optimization (PSO), differential evolution (DE), evolutionary
algorithm (EA), genetic algorithm (GA), artificial bee colony (ABC). or cuckoo search (CS) techniques,
have been proposed to optimize the parameters of the ML models [48,49]. Each optimization technique
also possesses many different parameters that need to be tuned to obtain good prediction performances,
inducing the time required to adjust the combination of these parameters [48,49]. Among the
well-known optimization techniques, PSO is considered as one of the most popular and effective
techniques [50]. Many hybrid ML algorithms have used PSO for the parameter tuning process,
including ANN, ANFIS, and Support Vector Machine (SVM) algorithms [51–53]. In the literature,
limited studies have used ANFIS optimized by PSO (ANFIS-PSO) to predict the mechanical properties
of structural members. Moreover, a systematic investigation of ANFIS-PSO parameters under random
sampling has not been performed, as the sampling method has been proven to greatly affect the
accuracy of the ML algorithms [54].

In this study, the main purpose was to carry out a parametric investigation of PSO parameters
to improve the performance of ANFIS in predicting the buckling capacity of circular opening steel
beams, which is an important mechanical property that is crucial for the safety of structures under
subjected loads. The database used in this work consisted of 3645 data samples, which were derived
from numerical results using ANSYS and available in the literature. The parametric studies were
carried out with the help of Monte Carlo simulations, which are natural variability generators, in the
training phase of the algorithm. Various statistical measurements, such as the root mean square error
(RMSE), mean absolute error (MAE), Willmott’s index of agreement (IA), and Pearson’s coefficient of
correlation (R), were used to evaluate the performance of the model.

2. Novelty and Significance of This Study

As reported in the introduction, the estimation of the buckling capacity of circular opening steel
beams is important for the safety of structures under subjected loads. As instability is a complex
(nonlinear) problem that is affected by various parameters, the determination of the critical buckling
load remains challenge for researchers (engineers) in the fields of mechanics and civil engineering.
Despite various experimental works having investigated this problem, it is not easy to derive a
generalized expression that considers all the parameters that govern the instability of circular opening
steel beams. To overcome this difficulty, the use of ML techniques, such as ANFIS optimized by
the PSO algorithm proposed in this study, could be a good choice as a surrogate model. This soft
computing method could help to explore the nonlinear relationships between the buckling capacity and
the input variables, especially the geometrical parameters of the beams. In addition, the investigation
of PSO parameters based on the Monte Carlo random sampling technique could contribute to better
knowledge on selection of suitable parameters to achieve better performance with the PSO algorithm,
which could be further recommended for other problems. Finally, the proposed ML-based model
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could be a potential tool for researchers or structural engineers in accurately estimating the buckling
capacity of circular opening steel beams, which could (i) work within the ranges of values used in this
study for the input variables and (ii) save time and costs in development of other numerical schemes
(i.e., finite element models).

3. Database Construction

The database in this study was obtained by analyzing 3645 different configurations of circular
opening steel beams (Figure 1). It should be noted that the database was extracted from a validated finite
element model, which was previously proposed in the literature by Abambres et al. [34]. It consisted
of 8 input parameters, namely the length of the beam (denoted as L), the end opening distance
(denoted as d0), circular opening diameter (denoted as D), the inter-opening distance (denoted as d),
the height of the section (denoted as H), the thickness of the web (denoted as tweb), the width of the
flange (denoted as wflange), the thickness of the flange (denoted as tflange), and the buckling capacity,
which was considered as the target variable (denoted as Pu). It should be pointed out that the database
was generated for one material type (with a typical Young’s modulus of 210 GPa and Poisson’s ratio
of 0.3). The results of the statistical analysis of the Pu and the corresponding influential parameters are
presented in Table 1.
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Figure 1. Diagram of circular opening steel beam under uniform loading and its geometrical parameters.

Table 1. Initial statistical analysis of the dataset.

Variable Length of
Beam

End Opening
Distance

Opening
Diameter

Inter-Opening
Distance

Height of
Section

Thickness
of Web

Width of
Flange

Thickness
of Flange

Buckling
Capacity

Symbol L d0 D d H tweb wflange tflange Pu

Unit m mm mm mm mm mm mm mm N/m

Role Input Input Input Input Input Input Input Input Output

Min 4.0 12.0 247.0 24.70 420.00 9.0 162.0 15.0 26.4

MD a 6.0 256.5 373.0 108.17 560.00 12.0 216.0 20.0 169.3

Max 8.0 718.0 560.0 274.40 700.00 15.0 270.0 25.0 1361.7

Mean 6.0 265.4 383.6 112.51 560.00 12.0 216.0 20.0 225.7

SD b 1.4 157.5 93.0 68.51 114.33 2.5 44.1 4.1 182.5

CV c 23.6 59.3 24.2 60.90 20.42 20.4 20.4 20.4 80.9
a Median. b Standard deviation. c Coefficient of variation (%).
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The input and target variables in this work were scaled in the range of [0, 1] to minimize the
numerical bias of the dataset. After performing the simulation part, a transformation into the normal
range was conducted to better interpret the obtained results. Concerning the development phase,
the dataset was split into two parts, namely the training part (70% of the total data) and the testing part
(the remaining 30% of the data), which served as the learning and validation phases of the proposed
ANFIS-PSO model, respectively.

4. Machine Learning Methods

4.1. Adaptive Neuro-Fuzzy Inference System

Jang et al. [55] introduced the fuzzy adaptive system of adaptive neurology, called ANFIS, as an
improved ML method and a data-driven modeling approach to evaluate the behavior of complex
dynamic systems [56,57]. ANFIS aims to systematically generate unknown fuzzy rules from a given
set of input and output data. ANFIS creates a functional map that approximates the internal system
parameter estimation method [58–60]. Fuzzy systems are rule-based systems developed from a set
of language rules. These systems can represent any system with good accuracy and are, therefore,
considered to be universal approximators. Thus, ANFIS is the most popular neuro-fuzzy hybrid
network used for the modeling of complex systems. The ANFIS model’s main strength is that it is
a universal approximator with the ability to request interpretable “if–then” rules [61]. In ANFIS,
a Sugeno-type fuzzy system was used to construct the five-layer network.

4.2. Particle Swarm Optimization (PSO)

Eberhart and Kennedy developed the PSO algorithm in 1995. It is an evolutionary computing
technique with a particular enhancement method, population collaboration, and competition based
on the simulation of simplified social models, such as bird flocking, fish schooling, and swarming
theory [62–65]. It is a biological-based algorithm that shapes bird flocking social dynamics large number
of birds flock synchronously, suddenly change direction, iteratively scatter and group, and eventually
perch on a target. The PSO algorithm supports simple rules for bird flocking and acts as an optimizer
for nonlinear continuous functions [66]. PSO has gained much attention and has been successfully
applied in various fields, especially for unconstrained continuous optimization problems [67]. Indeed,
in PSO, a swarm member, also called a particle, is a potential solution, which is used as a search space
point. The global equilibrium is known as the food position. The particle has a fitness value and a
speed with which to change its flight path for the best swarm experiences to find the global optimum
in the D-dimensional solution space. The PSO algorithm is easy to implement and many optimization
problems have been empirically shown to perform well [68]. However, its performance depends
significantly on the algorithm parameters described below.

4.2.1. Initial Weight (wini)

The particle in the PSO is represented as a real-valued vector containing an instance of all
parameters that characterize the problem of optimization. By flying a number of particles, called a
swarm, the PSO explores the solution space. The initial swarm is generated at random, and generally
consecutive iterations maintain a consistent swarm size. The swarm of particles looks for the optimum
target solution in each iteration by referring to past experiences.

4.2.2. Cognition Learning Rate (Personal Learning Coefficient—c1)

PSO enriches swarm intelligence by storing the best positions that each particle has visited so far.
Particles I recall the best position among those it met, called pbest, and the best positions of its neighbors.
There are two variants, namely lbest and gbest, used to hold the neighbors in the best position. The
particle in the local version keeps track of the best lbest location obtained by its neighboring local



Materials 2020, 13, 2210 6 of 27

particles. For the global version, any particles in the whole swarm will determine the best location for
gbest. Therefore, the gbest model is the lbest model’s special case.

4.2.3. Social Learning Rate (Global Learning Coefficient—c2)

PSO starts with the random initialization in the search space of a population (swarm) of individuals
(particles) and operates on the particles’ social behavior in the swarm. Consequently, it finds the best
global solution by simply adjusting each individual’s trajectory to their own best location and to the
best swarm particle in each phase (generation). Nevertheless, the trajectory of each particle in the
search space is modified according to their own flying experience and the flying experience of the other
particles in the search space by dynamically altering the velocity of each particle.

4.2.4. Number of Particles (Population Size—npop)

The location and speed of the ith particle can be expressed in the dimensional search space.
Every particle has its own best (pbest) location, according to the best personal objective value at the
time t. The world’s best particle (gbest) is the best particle found at time t in the entire swarm.

4.2.5. Velocity Limits (fv)

Each particle’s new speed is determined as follows:

yi,j(t + 1) = wyi,j(t) + c1r1(pi,j − xi,j(t)) + c2r2(pg,j − xi,j(t)); j = 1, 2, . . . , d (1)

where c1 and c2 are constants referred to as acceleration coefficients, w is referred to as the inertia
factor, and r1 and r2 are two independent random numbers distributed evenly within the spectrum.
The location of each particle is, thus, modified according to the following equation in each generation:

ai,j(t + 1) = ai,j(t) + yi,j(t + 1), j = 1, 2, 3, . . . , d (2)

In the standard PSO, Equation (1) is used to calculate the new velocity according to its previous
velocity and to the distance of its current position from both its own best historical position and its
neighbors’ best positions. The value of each factor in Yi can be clamped within the range to monitor
excessive particles roaming outside the search area, then the particle flies toward a new location.

4.3. Monte Carlo Simulation

The Monte Carlo technique has been commonly used as a variability generator in the training
phase of the algorithm, taking into account the randomness of the input space [69–72]. Hun et al. [73]
studied the problem of crack propagation in heterogeneous media within a probabilistic context using
Monte Carlo simulations. Additionally, Capillon et al. [74] investigated an uncertainty problem in
structural dynamics for composite structures using Monte Carlo simulations. Overall, the Monte
Carlo method has been successfully applied to take into account the randomness in the field of
mechanics [75–80]. The key point of the Monte Carlo method is to repeat the simulations many
times to calculate the output responses by randomly choosing values of the input variables in the
corresponding space [81,82]. In this manner, all information about the fluctuations in the input space
can be transferred to the output response. In this work, a massive numerical parallelization scheme
was programmed to conduct the randomness propagation process. The statistical convergence of the
Monte Carlo method reflects whether the number of simulations is sufficient, which can be defined as
follows [83–85]:

fconv =
100
mS

m∑
j=1

S j (3)

where m is the number of Monte Carlo iterations, S is the random variable considered, and S is the
average value of S.
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4.4. Quality Assessment Criteria

In the present work, three quality assessment criteria—the correlation coefficient (R), root mean
squared error (RMSE), and mean absolute error (MAE)—have been used in order to validate and test
the developed AI models. R2 allows us to identify the statistical relationship between two data points
and can be calculated using the following equation [86–92]:

R =

√√√√√√√√√√√√√√√√√√
N∑

j=1

(
y0, j − y

)(
yp, j − y

)
√

N∑
j=1

(
y0, j − y

)2 N∑
j=1

(
yp, j − y

)2
(4)

where N is the number of observations, yp and y are the predicted and mean predicted values, while y0
and y are the measured and mean measured values of Young’s modulus of the nanocomposite,
respective j = 1:N. In the case of RMSE and MAE, which have the same units as the values being
estimated, low value for RMSE and MAE basically indicate good accuracy of the models’ prediction
output [93,94]. In an ideal prediction, RMSE and MAE should be zero. RMSE and MAE are given by
the following formulae [95–99]:

RMSE =

√√√ N∑
i=1

(y0 − yp)
2/N (5)

MAE =
1
N

N∑
i=1

∣∣∣y0 − yp
∣∣∣ (6)

In addition, the Willmott’s index of agreement (IA) has also been employed in this study.
The formulation of IA is given by [100,101]:

IA = 1−

N∑
i=1

(
y0 − yp

)2

N∑
i=1

(∣∣∣y0 − y
∣∣∣+ ∣∣∣yp − y

∣∣∣)2
(7)

5. Results and Discussion

5.1. Description of Parametric Studies

In order to investigate the influence of PSO parameters on the performance of ANFIS, parametric
studies were carried out by varying nrule, npop, wini, c1, c2, and fv, as indicated in Table 2. It is
noteworthy that the proposed range was selected by considering both problem dimensionality (i.e.,
complexity) and computation time. As recommended by He et al. [102] and Chen et al. [48], the PSO
initial weight should be carefully investigated. Therefore, a broad range of wini was proposed, ranging
from 0.1 to 1.2. The number of populations varied from 20 to 300 with a nonconstant step, whereas the
coefficients c1 and c2 ranged from 0.2 to 2 with a resolution of 0.2. The number of fuzzy rules varied
from 5 to 40. Finally, the fv ranged from 0.05 to 0.2.

The relationship between the number of fuzzy rules and the number of total ANFIS weight
parameters is depicted in Figure 2. As can be seen, the relationship is linear, showing that as the number
of fuzzy rules increases, the number of ANFIS weight parameters increases. For illustration purposes,
the number of weight parameters increases from 50 to 370, while the number of fuzzy rules increases
from 5 to 40. Additionally, the characteristics of the ANFIS structure are described in Table 3, showing
that the Gaussian membership function was used to generate fuzzy rules.
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Table 2. Values used for parameters in parametric studies.

Parameters Values Used

nrule 5 10 15 20 30 40

npop 20 40 60 80 100 150 200 250 300

wini 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

c1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

c2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

fv 0.05 0.1 0.15 0.2
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optimized by PSO.

Table 3. Characteristics of ANFIS structure.

Parameter Description

Number of inputs 8
Number of outputs 1
Input membership function type Gaussian
Number of parameter per membership function 2
Number of fuzzy rules nrule
Output membership function type Linear
Number of nonlinear parameters 8 × 2 × nrule
Number of linear parameters 9 × nrule
Number of total parameters 25 × nrule

5.2. Preliminary Analyses

5.2.1. Computation Time

Figure 3 presents the influence of nrule and swarm parameters on the computation time. It is
worth noting that the running time was scaled with respect to the minimum value of the corresponding
parameter. For instance, the computation time using nrule = 10 is two times larger than the case
using nrule = 5. Additionally, in Figure 3, it is seen that nrule and npop exhibited the highest slope
(about 0.75), confirming that these two parameters required considerable computation time. For all
other parameters, the computation time remained constant when increasing the value of the parameter.
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Figure 3. Influence of variable increment ratio on running time, noting that both nrule and npop exhibit
a slope coefficient of 0.75.

5.2.2. PSO Stopping Criterion

In this study, 1000 iterations were applied as a stopping criterion in the optimization problem for
the weight parameters of ANFIS. Figure 4 shows the convergence of statistical criteria in the function
of nrule, whereas Figure 5 presents the convergence of these criteria regarding npop. For the evaluation
of RMSE, MAE, and R over 1000 iterations in 6 cases for different nrule, the training parts are given in
Figure 4a–c, whereas the testing parts are displayed in Figure 4d–f. It was observed that at least 800
iterations were required to obtain convergence results for RMSE, MAE, and R for all the cases. However,
no specific trend could be deduced in order to obtain the best nrule parameter. Finally, it is worth
noting that for all the cases of nrule, the values of RMSE, MAE, and R for the testing part were very
close. Indeed, the values of RMSE for the testing part ranged from 0.038 to 0.043, the values of MAE
for the testing part varied from 0.015 to 0.022, and those of R ranged from 0.95 to 0.97. The evaluation
of RMSE, MAE, R over 1000 iterations in 9 cases of npope is shown (Figure 5). Similar results were
obtained as for nrule. At least 800 iterations were needed to obtain the convergence results.
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Figure 4. Convergence of several statistical criteria over 1000 iterations in terms of nrule for the training
part: (a) RMSE, (b) MAE, (c) R. Convergence of several statistical criteria over 1000 iterations in terms
of nrule for the testing part: (d) RMSE, (e) MAE, (f) R.
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Figure 5. Convergence of several statistical criteria over 1000 iterations in terms of npop for the training
part: (a) RMSE, (b) MAE, (c) R. Convergence of several statistical criteria over 1000 iterations in terms
of npop for the testing part: (d) RMSE, (e) MAE, (f) R.

5.2.3. Statistical Convergence

In order to take into account variability in the input space, 200 random realizations were performed
for each configuration. These realizations increased the influence of the probability density function of
inputs on the optimization results. In terms of nrule, Figure 6a–c indicate the statistical convergence
of RMSE, MAE, and R for the training part, whereas Figure 6d–f present the statistical convergence
of the same parameters for the testing part, respectively. It can be seen that after about 100 random
realizations, statistical convergence was reached, which was correct for all the tested cases. Similarly,
Figure 7 shows the statistical convergence in terms of npop for both training and testing parts. Similarly,
200 random realizations were observed to be sufficient to achieve reliable results.
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Figure 6. Statistical convergence over 200 random realizations in terms of nrule for the training part:
(a) RMSE, (b) MAE, (c) R. Statistical convergence over 200 random realizations in terms of nrule for the
testing part: (d) RMSE, (e) MAE, (f) R.
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Figure 7. Statistical convergence over 200 random realizations in terms of npop for the training part:
(a) RMSE, (b) MAE, (c) R. Statistical convergence over 200 random realizations in terms of npop for the
testing part: (d) RMSE, (e) MAE, (f) R.

5.3. Parametric Performance

5.3.1. Influence of Number of Rules (nrule)

The evaluation of RMSE, MAE, R, and IA in the function of nrule is presented in Figure 8a–d,
respectively, for both training and testing parts. It can be seen that the accuracy of the ANFIS-PSO
reduced when the number of nrule increased (i.e., RMSE and MAE increased, while R and IA decreased).
It is worth noting that the higher the number of rules, the larger dimensionality of the problem
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(Figure 2). Therefore, regarding the total number of ANFIS weight parameters, the computation time,
and the average value of the statistical criteria (RMSE, MAE, R, and IA), nrule = 10 was considered as
the most appropriate value.
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5.3.2. Influence of Population Number (npop)

The evaluation of statistical criteria in the function of npop for RMSE, MAE, R, and IA is shown in
Figure 9a–d, respectively, for both training and testing parts. It can be seen that except for the low
value for population size (i.e., npop = 20), all other npop values show good prediction results, especially
for npop = 200. However, as introduced in the preliminary analyses for computation time, the higher
the number of npop, the more time is consumed. Finally, npop = 50 was chosen as the most appropriate
average value for statistical criteria and computation time.
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5.3.3. Influence of Initial Weight (wini)

The evaluation of statistical criteria in the function of wini for RMSE, MAE, R, and IA is shown
in Figure 10a–d, respectively, for both training and testing parts. It can be seen that poor prediction
performance was obtained when wini was larger than 0.5 (i.e., an increase of RMSE and MAE values
and a decrease of R and IA values). Regarding the statistical criteria (RMSE, MAE, R, and IA), a wini

value range of between 0.1 and 0.4 was the most appropriate.
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5.3.4. Influence of Personal Learning Coefficient (c1)

The evaluation of statistical criteria in the function of c1 for RMSE, MAE, R, and IA is shown
in Figure 11a–d, respectively, for both training and testing parts. It can be seen that good prediction
performance was obtained when c1 was in the range of [1, 1.4] for all statistical criteria (RMSE, MAE,
R, and IA). Therefore, c1 = [1, 1.4] was the most appropriate value.
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5.3.5. Influence of Global Learning Coefficient

The evaluation of statistical criteria in the function of c2 for RMSE, MAE, R, and IA is shown
in Figure 12a–d, respectively, for both training and testing parts. It can be seen that good prediction
performance was obtained when c2 was higher than 1.8 for all statistical criteria (RMSE, MAE, R,
and IA). Therefore, c2 = [1.8, 2] was the most appropriate value.
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5.3.6. Influence of Velocity Limits

The evaluation of statistical criteria in the function of fv for RMSE, MAE, R, and IA is shown
in Figure 13a–d, respectively, for both training and testing parts. It can be seen that no influence
could be established regarding all statistical criteria (RMSE, MAE, R, and IA). Therefore, fv = 0.1 was
finally chosen.
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5.4. Prediction Capability of the ANFIS-PSO Model using Optimal Configuration

Table 4 summarizes all of the optimal values, as identified previously. By using the optimal
coefficient in Table 4, a regression graph between the real and predicted Pu (kN) is shown in Figure 14.
The slope of the ideal fit was then used to measure the angle between the x-axis and the ideal fit, with
angles closer than 45◦ showing better performance. Figure 14a shows the predictability when using the
training set, whereas Figure 14b shows the same information applied to the testing set. In both cases,
the angles generated by the predicted output had slopes close to that of the ideal fit. This showed that
the performance of the proposed model was consistent. Figure 15 shows the error distribution graph
using the training part, testing part, and all data. In short, using the selected number of fuzzy rules
and PSO parameters, the prediction model gave excellent results (Table 5).

Table 4. Parameters used as optimum.

Parameter Optimal Value Final Selection

nrule 10 10
npop 50 50
wini 0.1–0.4 0.4
c1 1–1.4 1
c2 1.8–2 2
fv 0.1 0.1
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Figure 14. Graphs of regression plots between actual and predicted Pu (kN) for the (a) training part
and (b) testing part.
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Table 5. Prediction capability.

Part RMSE MAE R IA Error Mean Error Std Running Time

Training 0.040 0.015 0.967 0.976 0.006 0.039
8 minTesting 0.037 0.014 0.968 0.977 0.005 0.037

5.5. Sensitivity Analysis

The sensitivity analysis was performed in order to explore the degree of importance of each input
variable using the ANFIS-PSO model. For this, quantile values at 21 points (from 0% to 100%, with a
step of 5%) of each input variable were collected from the database and served as a new dataset for
the calculation of critical buckling load. More precisely, for a given input, its value varied from 0%
to 100%, while all other inputs remained at their median (50%). This variation of values following
the probability distribution allows the influence of each input variable to be explored based on their
statistical behavior. The results of the sensitivity analysis are indicated in Figure 16 in a bar graph
(scaled into the range of 0% to 100%). It can be seen that all variables influenced the prediction of critical
buckling load through the ANFIS-PSO model. The most important input variables were L, wflange, tweb,
and tflange, which gave degree of importance values of 33.9%, 21.7%, 18.6%, and 10.6%, respectively.
This information is strongly relevant and in good agreement with the literature, in which the length
of the beam and geometrical parameter of the cross-section are the most important parameters [3–5].
However, it can be seen in Figure 16 that the height of the beam does not seriously affect the buckling
capacity of the structural members. It should be noted that only three independent values of the
section’s height were used to generate the database; for example, 420, 560, and 700 mm. Consequently,
the linear correlation coefficient between the section’s height and the buckling capacity was only −0.092.
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On the contrary, the minimum value of the beam’s length was 4000 mm (approximately 5.7 times larger
than the maximum section’s height) and five independent values were used to generate the database,
ranging from 4000 to 8000 mm, with a step of 1000 mm. Thus, the linear correlation coefficient between
the beam’s length and the buckling capacity was −0.667 (approximately 7.25 times bigger than the
linear correlation coefficient between the section’s height and the buckling capacity). Consequently,
a larger database should be considered in future studies to estimate the degree of importance of the
section’s height.
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The sensitivity analysis presented above demonstrates that the ML technique could assist in the
design phase for circular opening steel beams. In addition to reliable prediction of the critical buckling
load, the ANFIS-PSO model can also assist in the creation of input–output maps, as illustrated in
Figure 17. In particular, as L, tweb, wflange, and tflange were the most important variables, they are
used for map illustrations in this section. The values of the remaining variables were kept constant.
In Figure 17, four maps of critical buckling load are presented (with the same color range), involving
the relationship between Pu and L-wflange, L-tflange, L-tweb, and wflange-tflange, respectively. As can be
seen from the surface plots, the input–output relationship exhibited nonlinear behavior, which cannot
be easily identified from the database. Figure 17a shows that a maximum value for the critical buckling
load can be obtained if L reaches its minimum and wflange reaches its maximum value. On the other
hand, the critical buckling load reaches its minimum if L reaches its highest value and wflange reaches
its lowest value. This map confirms the negative effect of L, as pointed out in the literature [4].
In Figure 17b,c, the same results are obtained as in Figure 17a. This observation again confirms that the
geometrical parameters of the cross-section are highly important [1,5]. Such quantitative information
allows the design and analysis recommendations to be explored, as well as for new beam configurations
to be generated (within the range of variables considered in this present study).
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6. Conclusions

PSO is one of the most popular optimization techniques used to optimize and improve the
performance of machine learning models in terms of classification and regression. However, its
effectiveness depends significantly on the selection of parameters used to train this technique.
In this paper, investigation and selection of PSO parameters was carried out to improve and optimize
the performance of the ANFIS model, which is one of the most popular and effective ML models,
for prediction of the buckling capacity of circular opening steel beams. Different parameters (nrule,
npop, wini, c1, c2, and fv) of PSO were tuned on 3645 available data samples to determine the best values
for optimization of the performance of ANFIS.

The results show that the performance of ANFIS optimized by PSO (ANFIS-PSO) is suitable for
determining the buckling capacity of circular opening steel beams, but is very sensitive under different
PSO investigation and selection parameters. The results also show that nrule = 10, npop = 50, wini = 0.1
to 0.4, c1 = [1, 1.4], c2 = [1.8, 2], and fv = 0.1 are the most suitable selection settings in order to get the
best performance from ANFIS-PSO. The sensitivity analysis shows that L, wflange, tweb, and tflange are
the most important input variables used for prediction of the buckling capacity of circular opening
steel beams.

In short, this study might help in selection of the suitable PSO parameters for optimization of
ANFIS in determining the buckling capacity of circular opening steel beams. It also helps in suitable
selection of input variables for better prediction of the buckling capacity of circular opening steel
beams. However, it is noted that the optimal values of PSO parameters found in this study are suitable
for the ANFIS model in determining the buckling capacity of circular opening steel beams. Thus, it is
suggested that these parameters should be validated with other ML models applied in other problems.
Finally, variation in the mechanical properties of material used should be investigated in further
research, as this is important from a physics perspective.
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Abbreviations

Symbol Explanation SI Unit
ANFIS Adaptive neuro-fuzzy inference system
PSO Particle swarm optimization
R Correlation coefficient
RMSE Root mean squared error
MAE Mean absolute error
IA Index of agreement
CV Coefficient of variation %
nrule Number of fuzzy rules
npop PSO population size
wini PSO initial weight
c1 PSO cognition learning rate
c2 PSO social learning rate
fv PSO velocity limits
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