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Abstract: Sphingosine-1-phosphate (S1P) is a highly potent sphingolipid metabolite, which controls
numerous physiological and pathological process via its extracellular and intracellular functions.
The breast is mainly composed of epithelial cells (mammary gland) and adipocytes (stroma).
Adipocytes play an important role in regulating the normal functions of the breast. Compared to
the vast amount studies on breast epithelial cells, the functions of S1P in breast adipocytes are
much less known. Thus, in the current study, we used human preadipocyte cell lines SGBS and
mouse preadipocyte cell line 3T3-L1 as in vitro models to evaluate the effects of S1P on cell viability,
differentiation, and gene expression in adipocytes. Our results showed that S1P increased cell viability
in SGBS and 3T3-L1 preadipocytes but moderately reduced cell viability in differentiated SGBS and
3T3-L1 adipocytes. S1P was also shown to inhibit adipogenic differentiation of SGBS and 3T3-L1 at
concentration higher than 1000 nM. Transcriptome analyses showed that S1P was more influential on
gene expression in differentiated adipocytes. Furthermore, our network analysis in mature adipocytes
showed that the upregulated DEGs (differentially expressed genes) were related to regulation of
lipolysis, PPAR (peroxisome proliferator-activated receptor) signaling, alcoholism, and toll-like
receptor signaling, whereas the downregulated DEGs were overrepresented in cytokine–cytokine
receptor interaction, focal adhesion, starch and sucrose metabolism, and nuclear receptors pathways.
Together previous studies on the functions of S1P in breast epithelial cells, the current study implicated
that S1P may play a critical role in modulating the bidirectional regulation of adipocyte-extracellular
matrix-epithelial cell axis and maintaining the normal physiological functions of the breast.

Keywords: sphingosine-1-phosphate; preadipocyte; cell viability; adipocyte differentiation; gene expression;
transcriptomics

1. Introduction

Sphingosine-1-phosphate (S1P) is a highly potent sphingolipid metabolite which tightly controls
various physiological and pathological processes via its extracellular and intracellular functions [1,2].
Its extracellular function follows an “inside-out” signaling model [3]. S1P is first synthesized from
sphingosine by sphingosine kinases 1 (SphK1), which is located in the cytosol. Then, it is transported
out of the cell to interact with a family of five G protein-coupled receptors (S1PR1–5) to regulate
various cellular functions such as proliferation, apoptosis, differentiation, growth, migration, invasion,
and angiogenesis [4–7]. However, the intracellular function of S1P is less understood. It is synthesized
by sphingosine kinase 2 (SphK2) either inside the nucleus or in the perinuclear region. S1P then
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epigenetically affects gene expression by inhibiting histone deacetylase HDAC1 and HDAC2 [8–10]
and can induce cell apoptosis [11,12].

The breast is a highly specialized female exocrine organ responsible for producing milk to feed
offspring. It is structurally divided into ductal epithelium and connective tissue stroma [13]. The ductal
epithelium contains luminal, myoepithelial and basal cells and forms the mammary gland [14].
The stroma, which mainly contains adipocytes, plays an important role in regulating morphogenesis,
development and homeostasis of the mammary gland [13,15,16]. S1P has been extensively studied for
its regulatory role in normal physiology and pathogenesis of the mammary gland [17–20]. However,
its function in breast adipocytes is far from being understood. Limited previous studies showed
that S1P inhibits the differentiation of mouse preadipocyte 3T3-L1 cells at concentration higher than
0.5 µM [21]; and modulates adipocyte hypertrophy [22–24] and proinflammation response [25].

In addition, adipocytes constitute an abundant source of extracellular matrix (ECM) components in
the breast [13,26], which play important roles in cell communication, adhesion, and homeostasis [27–29].
S1P can remodel the dynamic ECM and facilitate cell communication between adipocytes and ductal
epithelial cells by altering the tight junction assembly [30]. A recent study showed that the level of S1P
was about 10 times higher in the interstitial fluid (layer of fluid surrounding the mammary gland) than
the mammary gland itself [31]. This implicates that S1P plays a critical role in regulating mammary
ductal epithelium, stromal adipocyte tissue and their mutual communications.

To get a better understanding of its functions in adipocytes, we evaluated the effects of S1P on cell
viability, differentiation, and gene expression in both human pre- and differentiated adipocyte SGBS cells
and mouse pre- and differentiated adipocyte 3T3-L1 cells. It was observed that S1P moderately increased
cell viability in preadipocytes but decreased cell viability in differentiated adipocytes, and inhibited
adipogenic differentiation at concentration higher than 1 µM. Compared to preadipocytes, the number
of gene regulated by S1P was significantly increased in the differentiated adipocytes.

2. Results

2.1. Effect of S1P on Cell Viability of Pre- and Differentiated Adipocytes

The effect of S1P on cell viability was evaluated against pre- and differentiated SGBS and
3T3-L1 adipocytes using the MTT assay (Figure 1). For SGBS preadipocytes, cell viability was
statistically significantly increased from 12% at 1000 nM to 28% at 5000 nM after 24 h of S1P treatment
and by 10% (p < 0.05) at 2500 nM and 20% at 5000 nM (p < 0.05) after 48 h of S1P treatment.
No statistically significant change in cell viability was observed for any S1P concentration at 72 h of
treatment. For 3T3-L1 preadipocytes, cell viability was statistically significantly increased from 15% at
90 nM to 46% at 5000 nM at 24 h of S1P treatment, from 20% at 90 nM to 43% at 5000 nM at 48 h of S1P
treatment, and by 21% at 1000 nM, 20% at 2500 nM and 27% at 5000 nM after 72 h of S1P treatment.
In general, the effect of S1P on cell viability was stronger in 3T3-L1 preadipocytes and prolonged
exposure to S1P weakened the effect.

Cell viability was moderately decreased for both differentiated SGBS and 3T3-L1 adipocytes upon
S1P treatment. For differentiated SGBS adipocytes, cell viability was statistically significantly decreased
by 10–15% in the concentration of 500–5000 nM after 24 h of S1P treatment, and from 12% at 10 nM
to 25% at 5000 nM at 48 h of S1P treatment. For differentiated 3T3-L1 adipocytes, cell viability was
statistically significantly decreased from 8% at 90 nM to 21% at 5000 nM (except at 270 nM, p > 0.05) at
24 h of S1P treatment and 9% at 1000 nM to 18% at 5000 nM after 48 h of S1P treatment. No statistically
significant change in cell viability was observed for both differentiated SGBS and 3T3-L1 adipocytes for
72 h of S1P treatment at any concentration. Similar to preadipocytes, prolonged treatment weakened
the effect of S1P in differentiated adipocytes.

The opposite effects on cell viability suggested that S1P elicited different functions between pre-
and differentiated adipocytes.
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Figure 1. Cell viability (% of control) of preadipocyte SGBS cells (A), preadipocyte 3T3-L1 cells (B), 
differentiated adipocyte SGBS cells (C) and differentiated adipocyte 3T3-L1 cells (D) under 
sphingosine-1-phosphate (S1P) treatment (10–5000 nm) for 24 h, 48 h, and 72 h, respectively. Cells 
treated with methanol were used as the vehicle control. Results were shown in mean ± SD and 
analyzed by one-way ANOVA followed by Dunnett’s post hoc test. Data were calculated from six 
independent experiments. A significant difference (*) was defined by p < 0.05 as compared to control 
under different time series (* 24 h, # 48 h, $ 72 h). 
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at 10 nM to 25% at 5000 nM at 48 h of S1P treatment. For differentiated 3T3-L1 adipocytes, cell 
viability was statistically significantly decreased from 8% at 90 nM to 21% at 5000 nM (except at 270 
nM, p > 0.05) at 24 h of S1P treatment and 9% at 1000 nM to 18% at 5000 nM after 48 h of S1P treatment. 
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L1 adipocytes for 72 h of S1P treatment at any concentration. Similar to preadipocytes, prolonged 
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2.2. Effect of S1P on Adipocyte Differentiation 

To examine the effect of S1P on adipocyte differentiation, we treated the SGBS and 3T3-L1 
preadipocytes with S1P (concentrations: 100, 500, 1000, 2000 and 5000 nM) throughout the whole 
differentiation process (14 days for SGBS and 10 days for 3T3-L1). The lipid content was much higher 
in differentiated SGBS adipocytes than differentiated 3T3-L1 adipocytes (Figure 2A). Furthermore, 
statistically significant decrease in lipid content was observed in both differentiated adipocytes when 
S1P concentration was higher than 1000 nM (Figure 2B,C). For differentiated SGBS adipocytes, the 
lipid content was reduced by 19% at 1000 nM, 19% at 2000 nM and 23% at 5000 nM; whereas for 
differentiated 3T3-L1 adipocytes, the lipid content was reduced by 32% at 1000 nM, 37% at 2000 nM 
and 44% at 5000 nM. Apparently, S1P exerted a much stronger inhibitory effect on differentiation in 
3T3-L1 cells. Our current observation is consistent with previous studies [21]. 

Figure 1. Cell viability (% of control) of preadipocyte SGBS cells (A), preadipocyte 3T3-L1 cells
(B), differentiated adipocyte SGBS cells (C) and differentiated adipocyte 3T3-L1 cells (D) under
sphingosine-1-phosphate (S1P) treatment (10–5000 nm) for 24 h, 48 h, and 72 h, respectively. Cells treated
with methanol were used as the vehicle control. Results were shown in mean ± SD and analyzed by
one-way ANOVA followed by Dunnett’s post hoc test. Data were calculated from six independent
experiments. A significant difference (*) was defined by p < 0.05 as compared to control under different
time series (* 24 h, # 48 h, $ 72 h).

2.2. Effect of S1P on Adipocyte Differentiation

To examine the effect of S1P on adipocyte differentiation, we treated the SGBS and 3T3-L1
preadipocytes with S1P (concentrations: 100, 500, 1000, 2000 and 5000 nM) throughout the whole
differentiation process (14 days for SGBS and 10 days for 3T3-L1). The lipid content was much higher
in differentiated SGBS adipocytes than differentiated 3T3-L1 adipocytes (Figure 2A). Furthermore,
statistically significant decrease in lipid content was observed in both differentiated adipocytes when
S1P concentration was higher than 1000 nM (Figure 2B,C). For differentiated SGBS adipocytes, the lipid
content was reduced by 19% at 1000 nM, 19% at 2000 nM and 23% at 5000 nM; whereas for differentiated
3T3-L1 adipocytes, the lipid content was reduced by 32% at 1000 nM, 37% at 2000 nM and 44% at
5000 nM. Apparently, S1P exerted a much stronger inhibitory effect on differentiation in 3T3-L1 cells.
Our current observation is consistent with previous studies [21].Int. J. Mol. Sci. 2020, 21, x 4 of 16 

 

 
Figure 2. Changes in lipid accumulation (% of vehicle) in differentiated SGBS and 3T3-L1 adipocytes 
with S1P treatment throughout the whole differentiation process (14 days for SGBS and 10 days for 
3T3-L1). SGBS and 3T3-L1 preadipocytes were induced to differentiate under S1P treatment 
(concentration: 100–5000 nM). Oil red O staining was applied to visualize lipid droplets accumulated 
inside differentiated adipocytes. Photos were taken under a light microscope at 200× magnification 
(A). The staining solution was extracted and quantified by absorbance of 492 nm, which represents 
the lipid content inside the differentiated SGBS adipocytes (B) and 3T3-L1 adipocytes (C). The results 
were represented as mean ± SD and analyzed by one-way ANOVA followed by Dunnett’s post hoc 
comparisons. Data were calculated from three independent experiments. A significant difference (*) 
was defined by p < 0.05 as compared with vehicle control. 

2.3. Effect of S1P on Gene Expression in Pre- and Differentiated Adipocytes 

The gene expression affected by S1P treatment (concentration: 100 nM) was investigated by 
transcriptomics using the Affymetrix Clariom™ S Mouse/Human Array (Thermo Fisher Scientific). 
Differentially expressed genes (DEGs) were highlighted in green (fold change ≤ −1.5 and p < 0.05) and 
red (fold change ≥ 1.5 and p < 0.05) in the volcano plots (Figure 3). We identified 139 DEGs in SGBS 
preadipocytes, 178 DEGs in 3T3-L1 preadipocytes, 411 DEGs in differentiated SGBS adipocytes and 
974 DEGs in differentiated 3T3-L1 adipocytes, respectively. The top 30 up- and downregulated DEGs 
are summarized in Table 1. 
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Figure 2. Changes in lipid accumulation (% of vehicle) in differentiated SGBS and 3T3-L1 adipocytes
with S1P treatment throughout the whole differentiation process (14 days for SGBS and 10 days
for 3T3-L1). SGBS and 3T3-L1 preadipocytes were induced to differentiate under S1P treatment
(concentration: 100–5000 nM). Oil red O staining was applied to visualize lipid droplets accumulated
inside differentiated adipocytes. Photos were taken under a light microscope at 200×magnification
(A). The staining solution was extracted and quantified by absorbance of 492 nm, which represents
the lipid content inside the differentiated SGBS adipocytes (B) and 3T3-L1 adipocytes (C). The results
were represented as mean ± SD and analyzed by one-way ANOVA followed by Dunnett’s post hoc
comparisons. Data were calculated from three independent experiments. A significant difference (*)
was defined by p < 0.05 as compared with vehicle control.



Int. J. Mol. Sci. 2020, 21, 9284 4 of 16

2.3. Effect of S1P on Gene Expression in Pre- and Differentiated Adipocytes

The gene expression affected by S1P treatment (concentration: 100 nM) was investigated by
transcriptomics using the Affymetrix Clariom™ S Mouse/Human Array (Thermo Fisher Scientific).
Differentially expressed genes (DEGs) were highlighted in green (fold change ≤ −1.5 and p < 0.05) and
red (fold change ≥ 1.5 and p < 0.05) in the volcano plots (Figure 3). We identified 139 DEGs in SGBS
preadipocytes, 178 DEGs in 3T3-L1 preadipocytes, 411 DEGs in differentiated SGBS adipocytes and
974 DEGs in differentiated 3T3-L1 adipocytes, respectively. The top 30 up- and downregulated DEGs
are summarized in Table 1.
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Figure 3. Volcano plots [fold change vs. p-value (−log10)] displaying differentially expressed genes
(DEGs) in pre- and differentiated adipocytes treated with 100 nM S1P compared to vehicle control.
Genes with fold change ≤ −1.5 (green) and ≥1.5 (red) and p < 0.05 are highlighted in SGBS preadipocyte
(A), 3T3-L1 preadipocyte (B), differentiated SGBS adipocyte (C) and differentiated 3T3-L1 adipocyte (D).
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Table 1. The top 30 up- and downregulated DEGs in pre- and differentiated SGBS and 3T3-L1 adipocytes.

Upregulated DEGs Downregulated DEGs

Pre-
SGBS

Diff-
SGBS

Pre-
3T3-L1

Diff-
3T3-L1

Pre-
SGBS

Diff-
SGBS

Pre-
3T3-L1

Diff-
3T3-L1

PIK3C2B HAS1 Gm17332 Fstl1 FGF20 EMX2 Tmsb15b2 Stard9

CTPS2 CIDEC Ces2c Gm8281 OLFM3 ACAN Gm14092 Krtap16-3

ZNF506 TNFRSF19 Olfr1477 Mier2 FCER1A IFIT1 Gm13298 Folr1

UBE2D3 ZNF141 Sftpc Gm2237 MRAP SETD3 Wdr17 Usp26

TRABD2A GPRC5A Vmn1r46 Atg7 PHYHIPL IRAK1 Slc25a31 Mcoln2

OSBPL1A KLHL13 Tcp11l1 Lacc1 CEMIP FYCO1 Gm20823 Gad2

CISH THRSP Pou2f1 Depdc7 KLHDC8B DENND3 Olfr1436 Gm17482

BIRC3 ADAMTS9 Ssx9 Adipoq CDKAL1 NEO1 Vmn1r227 Gm17428

SCRIB CAT Olfr810 B3gnt9 TMEM170B ARID1A Olfr1323 Pygl

CCDC54 SYN2 Gm14025 Trim13 FOXO1 STPG2 Olfr825 Ubash3b

OR1B1 CLHC1 Gm3127 Slx4 SHISA4 PODN Ccdc152 Rnase9

PLSCR5 LIPE Olfr807 Lrrc9 DIRC3 HPS1 Iqcj Fam19a1

SPATA5 AGBL2 Lctl Eif6 PDE6A CDH22 Afp Chd7

SLC25A25 HACD3 Clec7a Rcor2 BRD9 TTLL12 Oas1a Gm11111

OR11H12 GK Ifna11 Esp36 FRY RASSF3 Gm20738 Vpreb2

LOC340074 NAT2 Atp8a1 Arhgap33 QRSL1 MICAL2 Gm10477 Gm2745

NDUFA8 PDE11A Sema3d Ensa FDXR RGS7 Olfr809 Col16a1

KSR1 CST2 5330417C22Rik Sh2b1 C17orf64 ATP11A Gm5662 Prlr

API5L1 CD207 Olfr392 Pcdhb21 KIRREL3 LCTL Gm19668 Gm4399

CCDC160 SENP8 Klra23 Sema4g LY6G6C PITPNM2 Hsfy2 Gm4406

OR2F1 PDE1B Gm10037 D430020J02Rik MUC3A ADRBK1 Rhbdl3 Arhgef26

LONRF1 EPHA4 Olfr133 Saal1 DEFB104A MINK1 Tmprss11c Pnmal1

TRIM49D2 BCO1 4930402K13Rik Olfr1076 C9orf50 LTBP2 Lrit2 Defa3

POGZ HPD Pde9a Sssca1 TMEM129 MAN2A2 S100a14 Defa17

TACC3 LAIR1 Vmn1r4 Fbxw17 LAGE3 SCUBE3 Gm5538 Vmn2r110

PTK2 SLC38A4 Fpr-rs6 Zadh2 SLC2A7 GSK3A Mlana Lrrtm3

STK32A ADIPOQ 3425401B19Rik Abi3bp KRTAP1–5 MKL Sult2a2 LOC102642717

CCL20 LIPA Lama3 Fam180a RAB25 RFESD Olfr773 Gm10436

GMPR SMOX Pdk2 Mtor FLOT1 CCDC181 Car3 Olfr1258

C17orf47 NME8 Catsperd Foxm1 MYO1E RGS21 Elmod1 Defb25

2.4. Gene Ontology (GO) Analysis

We analyzed the GO terms for DEGs in pre- and differentiated SGBS and 3T3-L1 adipocytes using
ConsensusPathDB [32]. The top 10 enriched GO terms (p < 0.05) in biological process, molecular function
and cellular component are summarized in Figure 4. It was obvious that the enriched GO terms were
different between pre- and differentiated adipocytes and between SGBS and 3T3-L1.
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Figure 4. Top 10 enriched GO terms in biological process (A), molecular function (B), and cellular
component (C). For each cell type, the DEG list was subjected to GO analysis and the most enriched
GO terms were summed up. Size of the bubbles indicates counts of genes identified in each GO term,
and colors of the bubbles show significance (−log10 p-value) of GO enriched fold changes compared
to control.

2.5. Pathway Entichment Analysis

Up- and downregulated DEGs (|fold change| ≥ 1.5 and p < 0.05) were individually subjected to
pathway enrichment using ConsensusPathDB. For the upregulated DEGs, the enriched pathways were
inflammatory signaling and cytokine involved pathways in SGBS preadipocytes; cell cycle/mitosis
related pathways in 3T3-L1 preadipocytes; lipid metabolism-related pathways (e.g., PPAR signaling
pathway, metabolism of fatty acid, metabolism, and metabolism of lipids) in differentiated SGBS
adipocytes; and G protein-coupled receptor signaling-related pathways (e.g., signaling by GPCR,
GPCR ligand binding, and GPCR downstream signaling) in differentiated 3T3-L1 adipocytes,
respectively (Figure 5A). For the downregulated DEGs, the enriched pathways were identified
to be metabolite regulation associated pathways in SGBS preadipocytes; GPCR signaling and olfactory
transduction pathways in 3T3-L1 preadipocytes; focal adhesion and axon guidance related pathways in
differentiated SGBS adipocytes; and cell cycle and cell mitosis-related pathways (e.g., cell cycle,
mitotic and amplification of signal from the kinetochores) in differentiated 3T3-L1 adipocytes,
respectively (Figure 5B).
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Figure 5. Pathway enrichment analysis in pre- and differentiated SGBS and 3T3-L1 adipocytes. The top
10 enriched pathways for upregulated DEGs (A) and downregulated DEGs (B) DEGs are plotted
separately. Size of the bubbles indicated the count of genes identified in each pathway, and color of the
bubbles show significance (−log10 p-value) of enriched pathway compared to control.

3. Discussion

In the current study, we show the opposite effects of S1P on cell viability of adipocytes. S1P enhanced
cell viability in human SGBS and mouse 3T3-L1 preadipocytes, but moderately decreased cell
viability in differentiated SGBS and 3T3-L1 adipocytes. S1P also inhibited lipid accumulation during
differentiation in both adipocytes at concentration higher than 1000 nM. Our observation was in
line with previous studies that S1P enhanced cell proliferation and suppressed adipogenesis of
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preadipocytes [21,33,34]. However, these previous studies were mainly carried out with mouse
preadipocytes (e.g., 3T3-L1 and 3T3-F442A). The inhibition of adipogenesis was evaluated by the
downregulation of adipocyte-specific transcriptional factors [34]. A high concentration of S1P was
shown to activate cAMP/PKA (cyclic AMP/protein kinase A), possibly via S1PR1/2, to promote lipolysis
and inhibit lipid accumulation [35]. However, the expressions of genes PRKACA and PRKACB were
not changed by S1P treatment in pre- and differentiated SGBS adipocytes. Similarly, the expressions
of mouse orthologs Prkaca and Prkacb were not altered by S1P stimulus in pre- and differentiated
3T3-L1 adipocytes. To explain the different effects of S1P between pre- and differentiated adipocytes,
we identified genes with significantly different expression (p < 0.05) between differentiated and
undifferentiated (i.e., pre-) SGBS and 3T3-L1 adipocytes. As shown in Figure 6, the differentially
expressed genes were mainly involved in the PI3K-AKT pathway (e.g., AKT1-3 and PI3KR1-3),
sphingolipid metabolism and S1P signaling pathway (e.g., CERS1-6, SPHK1-2 and S1PR1-5) and other
protein kinase/phosphatase signaling (e.g., ROCK2, PLCB1-4 and PPP2Rs). However, these genes were
regulated differently between SGBS and 3T3-L1 adipocytes. Specifically, genes SPHK1 and S1PR1
were upregulated in both differentiated SGBS and 3T3-L1 adipocytes compared to their respective
preadipocytes, implicating that the SphK1-S1P-S1PR1 signaling axis was enhanced. Because this
signaling axis normally promotes cell proliferation, other S1P-mediated signaling pathways must
be involved in decreasing cell viability in the differentiated SGBS and 3T3-L1 adipocytes. Moreover,
the expressions of S1PR2, S1PR3 and S1PR5 were downregulated in the differentiated SGBS adipocytes,
suggesting that S1P-S1PR2, S1P-S1PR3 and S1P-S1PR5 signaling pathways were likely to be impaired.
Further studies are warranted to identify which signaling pathway is responsible for the reduced
proliferation of differentiated SGBS and 3T3-L1 adipocytes.
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Out of the DEGs identified from transcriptomics study, 9% and 17% were involved in human
secretome in pre- and differentiated SGBS adipocytes, respectively. Furthermore, about 2% of the DEGs
were in the adipokine secretome in the differentiated SGBS adipocytes. This implicated that S1P may
play an important role in regulating the adipocyte secretory pattern, which, in turn, controls the normal
functions of adipocytes and their communications with other types of cells. Taking into consideration
that the breast is mainly composed of epithelial cells and adipocytes and S1P is accumulated to high
concentration in the interstitial fluid [13,14,31], the current study suggests that S1P is highly likely
to be crucial for the normal functions of both epithelial cells and adipocytes, as well as their mutual
communications, in the breast.

Network analysis was performed using Cytoscape [36] to investigate the biological relevance of the
identified pathways on lipid metabolism in mature adipocytes. Multiple functions of the upregulated
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DEGs were related to regulation of lipolysis, PPAR signaling, alcoholism, and toll-like receptor signaling
(Figure 7A,C). The downregulated DEGs were overrepresented in cytokine-cytokine receptor interaction,
focal adhesion, starch and sucrose metabolism, and nuclear receptors pathways (Figure 7B,D). Thus,
the functional role of S1P in lipid metabolism involved regulation of cytokines, receptors signaling
and focal adhesion. It is noteworthy that PPARs are ligand-activated transcription factors. The PPAR
pathway, which is activated by fatty acids and their derivatives regulates numerous biological processes,
such as adipocyte differentiation, lipid/glucose metabolism, and energy homeostasis.

Int. J. Mol. Sci. 2020, 21, x 10 of 16 

 

cytokine receptor interaction, focal adhesion, starch and sucrose metabolism, and nuclear receptors 
pathways (Figure 7B,D). Thus, the functional role of S1P in lipid metabolism involved regulation of 
cytokines, receptors signaling and focal adhesion. It is noteworthy that PPARs are ligand-activated 
transcription factors. The PPAR pathway, which is activated by fatty acids and their derivatives 
regulates numerous biological processes, such as adipocyte differentiation, lipid/glucose metabolism, 
and energy homeostasis. 

 
Figure 7. Pathway network analysis based on up- and downregulated DEGs in differentiated SGBS 
(A and B, respectively) and 3T3-L1 (C and D, respectively) adipocytes. The analysis was performed 
using ClueGO. Enriched pathways were obtained from the KEGG and WikiPathway databases and 
grouped based on shared genes (ranging from red circle: upregulated to blue circle: downregulated). 
Size of the nodes indicates degree of significance, where only the most significant term/pathway is 
labeled as the name of the group. Function-related networks are grouped and may partially overlap. 

We further mapped genes of the S1P-S1PR1 signaling pathway in the S1P-treated differentiated 
SGBS and 3T3-L1 adipocytes. As shown in Figure 8, the regulation of S1P-S1PR1 signaling axis was 
significantly different between SGBS and 3T3-L1 cells. A unique feature is that genes AKT1, AKT2 
and AKT3 were downregulated in differentiated SGBS adipocytes, whereas the ortholog genes Akt1, 
Akt2 and Akt3 were upregulated in differentiated 3T3-L1 adipocytes. AKTs are downstream common 
targets of multiple signaling pathways other than S1P1-S1PR1, such as epidermal growth factor 
receptor (EGFR) signaling pathway and insulin receptor (IR) signaling pathway, and play important 
roles in cell proliferation, migration and survival [37–39]. Thus, the current results implicated that 
regulation of S1P-S1PR1 and crosstalk between S1P-S1PR1 and other signaling pathways in mature 
adipocytes might be species-specific. Further studies are required to identify the exact differences of 
S1P treatment between mouse and human adipocytes and investigate the transferability of mouse-
based study results to human health research. 
  

Figure 7. Pathway network analysis based on up- and downregulated DEGs in differentiated SGBS
(A and B, respectively) and 3T3-L1 (C and D, respectively) adipocytes. The analysis was performed
using ClueGO. Enriched pathways were obtained from the KEGG and WikiPathway databases and
grouped based on shared genes (ranging from red circle: upregulated to blue circle: downregulated).
Size of the nodes indicates degree of significance, where only the most significant term/pathway is
labeled as the name of the group. Function-related networks are grouped and may partially overlap.

We further mapped genes of the S1P-S1PR1 signaling pathway in the S1P-treated differentiated
SGBS and 3T3-L1 adipocytes. As shown in Figure 8, the regulation of S1P-S1PR1 signaling axis was
significantly different between SGBS and 3T3-L1 cells. A unique feature is that genes AKT1, AKT2 and
AKT3 were downregulated in differentiated SGBS adipocytes, whereas the ortholog genes Akt1, Akt2 and
Akt3 were upregulated in differentiated 3T3-L1 adipocytes. AKTs are downstream common targets
of multiple signaling pathways other than S1P1-S1PR1, such as epidermal growth factor receptor
(EGFR) signaling pathway and insulin receptor (IR) signaling pathway, and play important roles in
cell proliferation, migration and survival [37–39]. Thus, the current results implicated that regulation
of S1P-S1PR1 and crosstalk between S1P-S1PR1 and other signaling pathways in mature adipocytes
might be species-specific. Further studies are required to identify the exact differences of S1P treatment
between mouse and human adipocytes and investigate the transferability of mouse-based study results
to human health research.



Int. J. Mol. Sci. 2020, 21, 9284 11 of 16

Int. J. Mol. Sci. 2020, 21, x 11 of 16 

 

 
Figure 8. Mapping the S1P-S1PR1 signaling pathway in differentiated SGBS and 3T3-L1 adipocytes. 
WikiPathway was used to identify and visualize genes involved in the S1P-S1PR1 signaling axis in 
S1P-treated differentiated SGBS and 3T3-L1 adipocytes compared to the vehicle control. S1PR1 refers 
to sphingosine-1-phosphate receptor 1. 

4. Materials and Methods 

4.1. Materials 

Sphingosine-1-phosphate (S1P), biotin, D-pantothenic acid hemicalcium salt, apo-transferrin 
(human), insulin, 3,3′,5-triiodo-L-thyronine sodium salt (T3), rosiglitazone, dexamethasone, 3-
isobutyl-1-methylxanthine (IBMX), hydrocortisone, fetal bovine serum (FBS), Oil red O, and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were purchased from Sigma-Aldrich 
Canada (Oakville, ON, Canada). Trypsin-EDTA (0.25%), phosphate-buffered saline (PBS) and 
penicillin-streptomycin were purchased from HyClone Laboratories Inc. (Logan, UT, USA). Triton 
X-100 (98%) and Dulbecco’s phosphate-buffered saline (DPBS) was purchased from Thermo Fisher 
Scientific (Burlington, ON, Canada). Human preadipocyte cell line SGBS, which was derived from an 
infant with Simpson–Golabi–Behmel syndrome, was established in coauthor Martin Wabitsch’s 
laboratory. Mouse preadipocyte cell line 3T3-L1 was kindly provided by Professor Jane Alcon, 
College of Pharmacy and Nutrition, University of Saskatchewan, Canada. Dulbecco’s modified 
Eagle’s medium (DMEM) and 1:1 mixture of Dulbecco’s modified eagle’s medium with ham’s F12 
medium (DMEM-F12) were purchased from Gibco (Thermo Fisher Scientific, Burlington, ON, 
Canada). 

4.2. Cell Culture of Preadipocytes 

Both cell lines were cultured under preadipocyte expansion media in T-75 cell culture flasks at 
37 °C with a humidified atmosphere of 5% CO2. Human preadipocyte cell line SGBS was cultured in 
DMEM-F12 supplemented with 10% FBS, 1% penicillin/streptomycin, and 10% 5 mM 
pantothenate/biotin mixture (Pan/Bio; pantothenate:biotin = 1.7:3.3). Mouse preadipocyte cell line 
3T3-L1 was cultured in DMEM containing 10% FBS. The preadipocyte expansion media were 
changed every two to three days. 
  

Figure 8. Mapping the S1P-S1PR1 signaling pathway in differentiated SGBS and 3T3-L1 adipocytes.
WikiPathway was used to identify and visualize genes involved in the S1P-S1PR1 signaling axis in
S1P-treated differentiated SGBS and 3T3-L1 adipocytes compared to the vehicle control. S1PR1 refers to
sphingosine-1-phosphate receptor 1.

4. Materials and Methods

4.1. Materials

Sphingosine-1-phosphate (S1P), biotin, d-pantothenic acid hemicalcium salt, apo-transferrin
(human), insulin, 3,3′,5-triiodo-l-thyronine sodium salt (T3), rosiglitazone, dexamethasone, 3-isobutyl-1-
methylxanthine (IBMX), hydrocortisone, fetal bovine serum (FBS), Oil red O, and 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) were purchased from Sigma-Aldrich Canada (Oakville,
ON, Canada). Trypsin-EDTA (0.25%), phosphate-buffered saline (PBS) and penicillin-streptomycin
were purchased from HyClone Laboratories Inc. (Logan, UT, USA). Triton X-100 (98%) and Dulbecco’s
phosphate-buffered saline (DPBS) was purchased from Thermo Fisher Scientific (Burlington, ON, Canada).
Human preadipocyte cell line SGBS, which was derived from an infant with Simpson–Golabi–Behmel
syndrome, was established in coauthor Martin Wabitsch’s laboratory. Mouse preadipocyte cell
line 3T3-L1 was kindly provided by Professor Jane Alcon, College of Pharmacy and Nutrition,
University of Saskatchewan, Canada. Dulbecco’s modified Eagle’s medium (DMEM) and 1:1 mixture
of Dulbecco’s modified eagle’s medium with ham’s F12 medium (DMEM-F12) were purchased from
Gibco (Thermo Fisher Scientific, Burlington, ON, Canada).

4.2. Cell Culture of Preadipocytes

Both cell lines were cultured under preadipocyte expansion media in T-75 cell culture flasks
at 37 ◦C with a humidified atmosphere of 5% CO2. Human preadipocyte cell line SGBS was
cultured in DMEM-F12 supplemented with 10% FBS, 1% penicillin/streptomycin, and 10% 5 mM
pantothenate/biotin mixture (Pan/Bio; pantothenate:biotin = 1.7:3.3). Mouse preadipocyte cell line
3T3-L1 was cultured in DMEM containing 10% FBS. The preadipocyte expansion media were changed
every two to three days.

4.3. Adipocyte Differentiation

After reaching 80–90% confluency (day 0), SGBS preadipocytes were washed with DPBS and
then induced to differentiate in serum-free differentiation media (DMEM-F12 supplemented with 1%
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penicillin/streptomycin, 10% 5 mM Pan/Bio, 0.01 mg/mL human transferrin, 100 nM hydrocortisone,
0.2 nM T3, 25 nM dexamethasone, 250 µM IBMX, 2 µM rosiglitazone and 20 nM insulin). Four days after
induction (day 4), the differentiation media were changed to postdifferentiation media by excluding
IBMX, dexamethasone and rosiglitazone. The cells were cultured for 10 more days with media changed
every four days. The SGBS cells were fully differentiated in about 8–12 days after induction as
evidenced by changes in internal lipid droplet accumulation [40].

To differentiate 3T3-L1 preadipocytes, the cells were first cultured in preadipocyte expansion
media for two days after reaching full confluence and before inducing differentiation (day 0). The cells
were washed with DPBS and then induced to differentiate in differentiation media (DMEM containing
10% FBS, 1.0 µM dexamethasone, 0.5 mM IBMX and 1.0 µg/mL insulin) for another two days. On day
2, the media were replaced with the postdifferentiation media (DMEM with 10% FBS and 1.0 µg/mL
insulin) and cultured for another six days. Cell culture media were changed every two to three days.
Differentiation of 3T3-L1 cells were also evidenced by changes in internal lipid droplet accumulation.

4.4. Cell Viability Assay (MTT Assay)

The effect of S1P on cell viability of pre- and differentiated SGBS and 3T3-L1 adipocytes were
measured using the colorimetric MTT assay [41]. Briefly, for each adipocyte cell line, preadipocytes
were seeded at 8 × 103 cells/well and differentiated adipocytes were seeded at 1 × 104 cells/well in
96 well plates. The seeding numbers were selected based on a pilot study. The cells were allowed to
attach for 24 h before being treated with S1P (concentration: 10–5000 nM) for 24 h, 48 h, and 72 h,
respectively. Methanol was used as a vehicle control. At the end of S1P treatment, the media were
replaced with 100 µL MTT (0.5 mg/mL) dissolved in corresponding complete media and incubated
for 4 h. Then, the media containing MTT were replaced with 150 µL DMSO to dissolve the formed
formazans under constant shaking for 15 min on an orbital shaker. Absorbance was subsequently
measured at 570 nm using a BioTek Synergy HK microplate reader (BioTek, Winooski, VT, USA).
Cell viability was interpreted as the absorption ratio of treatment to control. The experiment was
carried out in triplicate with six replicates in each test, and the data were shown in mean value ± SD as
analyzed by GraphPad Prism 8 software (San Diego, CA, USA).

4.5. Oil Red O Staining

Oil red O staining was used to measure lipid accumulation in differentiated SGBS and
3T3-L1 adipocytes. SGBS or 3T3-L1 preadipocytes were seeded at 2 × 104 cells/well in 24-well
plates and cultured with preadipocyte complete media before differentiation induction. On the
induction day (day 0), media were replaced with differentiation media +/− S1P (concentration:
100–5000 nM). After induction, the media were changed to postdifferentiation media +/− S1P for
SGBS on day 4 or 3T3-L1 on day 2. Media or media + S1P were changed every four days for SGBS
or 2–3 days for 3T3-L1 throughout the whole adipogenic differentiation phase. On day 14 for SGBS
or day 8 for 3T3-L1, lipid accumulation in differentiated adipocytes was measured using Oil red O
staining. Briefly, cells were first washed with 1× PBS twice after removal of media and then fixed with
4% paraformaldehyde in 1× PBS at room temperature for 30 min. The cells were stained with 0.2% Oil
red O working solution for 15 min after washing with 1× PBS twice. Stained cells were washed with
ddH2O until there was no pink color observed. Images were captured using an Olympus inverted
phase microscope (Olympus Canada, Richmond Hill, ON, Canada) at 200×magnification after wells
were dried. Then, 2-propanol was used to solubilize the Oil red O dye, and the extraction was seeded
in 96-well plates for lipid quantification by measuring absorbance at 492 nm using a BioTek Synergy
HK microplate reader. Differentiation media + methanol was used as a vehicle control. Preadipocytes
stained with Oil red O solution was used as a blank control. The results were presented as absorbance
percentage normalized to control (100%) using the following formula:

(Atreat − Ablank)/(Acontrol − Ablank) × 100% (1)
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4.6. Transcriptome Analysis

Pre- and differentiated SGBS and 3T3-L1 and SGBS adipocytes were treated with 100 nM S1P
for 24 h before being collected by centrifugation. Treatment with methanol was used as a vehicle
control. The collated cell pellets were sent to Applied Biosystems Microarray Research Services
Laboratory (Thermo Fisher Scientific, Burlington, ON, Canada) for RNA extraction and transcriptome
analysis. Extracted RNA samples were analyzed using the Affymetrix Clariom™ S Mouse/Human
Array, which covers all known well-annotated genes. Raw data were normalized by Robust Multiple
Averaging algorithms.

4.7. DEG Analysis

For each adipocyte transcriptome analysis, gene expression values of the S1P-treated group were
compared to methanol control group. Differentially expressed genes (DEGs) were defined as genes with
|fold change| ≥ 1.5 and p < 0.05 controlled by a false discovery rate (FDR). DEGs of the differentiated
SGBS adipocytes were filtered for secreted protein-coding genes based on the human secretome list
from the Human Protein Atlas database [42], including those identified as proteins released from
adipocytes [43].

4.8. Gene Ontology (GO) and Pathway Enrichment Analyses

GO and pathway enrichment analyses were performed on DEGs (|fold change| ≥ 1.5, p < 0.05,
FDR controlled) identified from pre- and differentiated SGBS and 3T3-L1 adipocytes. Overrepresentation
analysis (ORA) was performed using Consensus PathDB [32]. Each DEG list was input for defining
overrepresented sets in two categories: GO-based sets and pathway-based sets. GO annotations were
categorized into three GO terms: biological processes, molecular functions, and cellular components.
Significant enrichment was calculated using hypergeometric testing with Benjamini–Hochberg FDR
correction (cut-off of FDR < 0.05). Pathway enrichment analysis was only performed on DEGs from
differentiated SGBS and 3T3-L1 adipocytes by employing the ORA tool in Consensus PathDB. Up- and
downregulated DEGs were analyzed separately. We searched for pathways from three databases,
KEGG [44,45], Reactome [46] and Wikipathway [47]. Minimal overlap with the input list of 2 and
p-value cut-off at 0.05 were set as the default.

4.9. Statistical Analysis

GraphPad Prism 8 was used to perform data analysis. Data for the MTT assay were calculated
from three independent experiments with each experiment containing six replicates. Data for other
analyses were calculated from three independent experiments with each experiment containing three
replicates. Results were presented as mean ± SD. Data comparison was performed using the analysis of
variance (ANOVA, one-way or two-way), followed by Dunnett’s or Tukey’s post hoc tests. Results were
considered statistically significant for p < 0.05.

5. Conclusions

The breast, which is mainly composed of epithelial cells and adipocytes, is a highly specialized
female exocrine organ responsible for producing milk to feed offspring. Because S1P can accumulate
up to 10 times higher in the interstitial fluid than the mammary gland itself, it may be essential for
extracellular matrix remodeling and communications between epithelial cells and adipocytes. In this
study, we showed that S1P exerted potent effects not only on adipocyte differentiation but also on cell
viability and gene expression in both pre- and differentiated adipocytes. S1P-regulated pathways,
such as lipolysis, PPAR signaling and cytokine–cytokine receptor interaction, will be investigated in
our future studies to illustrate how S1P regulates the adipocyte-extracellular matrix-epithelial cell axis
to maintain normal physiological functions of the breast and prevent development of breast cancer.
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