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Abstract

Internal affective states produce external manifestations such as facial expressions. In humans, the Facial
Action Coding System (FACS) is widely used to objectively quantify the elemental facial action units (AUs) that
build complex facial expressions. A similar system has been developed for macaque monkeys—the Macaque
FACS (MaqFACS); yet, unlike the human counterpart, which is already partially replaced by automatic algo-
rithms, this system still requires labor-intensive coding. Here, we developed and implemented the first proto-
type for automatic MaqFACS coding. We applied the approach to the analysis of behavioral and neural data
recorded from freely interacting macaque monkeys. The method achieved high performance in the recognition
of six dominant AUs, generalizing between conspecific individuals (Macaca mulatta) and even between species
(Macaca fascicularis). The study lays the foundation for fully automated detection of facial expressions in ani-
mals, which is crucial for investigating the neural substrates of social and affective states.

Significance Statement

MaqFACS is a comprehensive coding system designed to objectively classify facial expressions based on
elemental facial movements designated as actions units (AUs). It allows the comparison of facial expres-
sions across individuals of same or different species based on manual scoring of videos, a labor- and time-
consuming process. We implemented the first automatic prototype for AUs coding in macaques. Using
machine learning, we trained the algorithm on video frames with AU labels and showed that, after parameter
tuning, it classified six AUs in new individuals. Our method demonstrates concurrent validity with manual
MaqFACS coding and supports the usage of automated MaqFACS. Such automatic coding is useful not
only for social and affective neuroscience research but also for monitoring animal health and welfare.

Introduction
Facial expressions are both a means of social commu-

nication and also a window to the internal states of an in-
dividual. The expression of emotions in humans and
animals was discussed first by Darwin (1872) in his epony-
mous treatise in which he attributed the shared features
of emotional expression in multiple species to a common
ancestor. Further elaboration of these ideas came from
detailed understanding of the neuromuscular substrate of
facial expressions (i.e., the role of each muscle in moving

facial features into configurations that have social com-
municative value). These studies brought to light the ho-
mologies, but also the differences in how single facial
muscles, or groups of muscles give rise to a relatively
stereotypical repertoire of facial expressions (Ekman,
1989; Ekman and Keltner, 1997; Burrows et al., 2006;
Vick et al., 2007; Parr et al., 2010).
The affective states that give rise to facial expres-

sions are instantiated by distinct patterns of neural ac-
tivity (Panksepp, 2004) in areas of the brain that have
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projections to the facial motor nucleus in the pons. The
axons of the motor neurons in the facial nucleus distribute
to the facial musculature, including the muscles that move
the pinna (Jenny and Saper, 1987; Welt and Abbs, 1990). Of
all possible facial muscle movements, only a small set of co-
ordinated movements give rise to unique facial configura-
tions that correspond, with some variations, to primary
affective states. Human studies of facial expressions pro-
posed six primary affective states or “universal emotions”
that were present in facial displays across cultures (Ekman
and Friesen, 1986; Ekman and Oster, 1979; Ekman and
Friesen, 1988; for review, see Ekman et al., 2013). The
cross-cultural features of facial expressions allowed the de-
velopment of an anatomically based Facial Action Coding
System (FACS; Friesen and Ekman, 1978; Ekman et al.,
2002). In this system, a numerical code is assigned for each
elemental facial action that is identified as an action unit
(AU). Considering the phylogenetic continuity in the facial
musculature across primate species (Burrows and Smith,
2003; Burrows et al., 2006, 2009; Parr et al., 2010), a natural
extension of human FACS was the homologous Macaque
FACS (MaqFACS; Parr et al., 2010), developed for coding
the facial action units in Rhesus macaques (for multispecies
FACS review, seeWaller et al., 2020).
The manual scoring of AUs requires lengthy training and

a meticulous certification process for FACS coders, which
is a time-consuming process. Therefore, considerable ef-
fort has been made toward the development of automatic
measurement of human facial behavior (Sariyanidi et al.,
2015; for review, see Barrett et al., 2019). These advances
do not translate seamlessly to macaque monkeys, and,
importantly, similar developments are desirable because
macaques are commonly used to investigate and under-
stand the neural underpinnings of communication via facial
expressions (Livneh et al., 2012; Pryluk et al., 2020). We
therefore aimed to develop and test an automatic system
to classify AUs in macaques, one that would allow compar-
ison of elicited facial expressions and neural responses at
similar temporal resolutions.
Like humans, macaque monkeys do not normally acti-

vate a full set of action units required for a classical ster-
eotypical expression, and partial sets of uncommon
combination of action units are also probable and give
rise to mixed or ambiguous facial expressions (Chevalier-
Skolnikoff, 1973; Ekman and Friesen, 1976). Therefore,
we chose to classify not only the fully developed facial ex-
pressions (Blumrosen et al., 2017) but also action units

that were shown to play a role in the exhibition of affective
states and social communication among macaque mon-
keys. We included even relatively rare facial expressions
as long as certain action units were reliably involved in
these expressions. We test the automatic recognition
of facial configurations and show that it generalizes to
new situations, between conspecific individuals, and even
across macaque species. Together, this work demon-
strates concurrent validity with manual MaqFACS coding
and supports the usage of automated MaqFACS in social
and affective neuroscience research, as well as in moni-
toring animal health and welfare.

Materials and Methods
Video datasets. We used videos from two different

datasets. The first, the Rhesus dataset (RD), consists
of 53 videos from 5 Rhesus macaques (selected from
10 Rhesus monkeys). Part of this dataset was used for
training and testing our system within and across
Rhesus subjects. The second, the Fascicularis dataset
(FD), includes two videos from two Fascicularis maca-
ques and was used only for testing our system across
Fascicularis subjects.
All the videos in both sets capture frontal (or near-fron-

tal) views of head-fixed monkeys. The video-frames were
coded for the AUs present in each frame (none, one, or
many).
The subjects and the videos for RD were selected with

respect to the available data in FD, considering the scale
similarity, the filming angle and the AU frequencies occur-
ring in the videos.

The Rhesus macaque facial action coding system.
There are several stereotypical facial expressions that mac-
aques produce (Fig. 1A), that represent, as in humans, only
a subset of the full repertoire of all the possible facial move-
ments. For example, Figure 1B represents three common
facial expressions from the FD (Fig. 1B, left, blue) and two
other facial configurations that, among others, occurred in
our experiments (Fig. 1B, right, yellow). Therefore, to allow
the potential identification of all the possible facial move-
ments (both the common and the less common ones), we
chose to work in the MaqFACS domain and to recognize
AUs, rather than searching for predefined stereotypical fa-
cial expressions. The MaqFACS contains the following three
main groups of AUs based on facial sectors: upper face,
lower face, and ears (Parr et al., 2010). Each facial expres-
sion is instantiated by a select combination of AUs (Fig. 1C).

AU selection. The criteria for AU selection for the analy-
sis in this work were their frequencies (which should be
sufficient for training and testing purposes) and the impor-
tance of each AU for affective communication ( Fig. 1D,E;
Parr et al., 2010; Ballesta et al., 2016; Mosher et al.,
2016). Frequent combinations of lower face AUs together
with upper face AUs (Fig. 1F, outside the magenta and
green frames) may hint at the most recurring facial ex-
pressions in the test set. For example, the UpperNone AU
together with the lower face AU25 generate a near-neutral
facial expression. Considering that our aim is to recognize
single AUs (as opposed to complete predefined facial ex-
pressions), lower face and upper face AUs were not
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Figure 1. Motivation for using automatic MaqFACS to analyze facial expressions. A, The stereotypical facial expressions in maca-
que monkeys include the “neutral,” “lip-smacking,” “threat,” “alert,” and “fear grimace” expressions (Altmann, 1962; Hinde and
Rowell, 1962). B, Some of the facial expressions that monkeys produce during the experiments that require head immobilization
match the stereotypical expressions produced during natural behaviors (e.g., the three images with blue frames on the left corre-
spond to the neutral, lip-smacking, and threat expressions). We have also observed facial expressions that were less frequently de-
scribed in the literature (two images with yellow frames on the right). C, A comparison between the neutral and lip-smacking facial
expression shows that the lip-smacking example contains AU11 2 (Brow Raiser) in the upper face, AU251 26118i (Lips part, Jaw
drop, and True Pucker) in the lower face, and EAU3 (Ear Flattener) in the ear region. D, The proportion of each upper face AU in the
FD test set. Bars with the solid outline (first three highest bars) represent the most frequent AUs, which were chosen for the analysis
in this work. UpperNone - no coded action in the upper face, AU1+2 - brow raiser, AU43_5 - eye closure, AU6 - cheek raiser, AU41-
glabella lowerer. E, Same as D, but for lower face. First five most frequent AUs were chosen for the analysis. F, Proportion matrix of
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merged into single analysis units. This approach is also
supported by the MaqFACS coding process, which is per-
formed separately for the lower and upper faces.
The most frequent upper face AUs in the FD were the

none-action AU (defined here as “UpperNone”), the Brow
Raiser AU11 2 and AU43_5, which is a union of Eye
Closure AU43 and Blink AU45 (Fig. 1D). The two latter
AUs differ only in the movement duration, and hence were
joined.
There were five relatively frequent AUs in the lower face

test set (Fig. 1E) that we merged into several AU group-
ings. All AUs that mostly co-occurred with other ones
(within the same face region) were analyzed as a combi-
nation rather than as single units (Fig. 1F, inside the green
frame). The upper face AUs, however, rarely appeared as
combination (Fig. 1F, inside the magenta frame).
Overall, our system was trained to classify the following six

units: AU112, AU43_5, and UpperNone in the upper face,
and AU251 26, AU251 261 16, and AU251 261 18i in the
lower face (Fig. 1G,H, left). Although AU12 was one of the
most prevalent AUs in the FD test set and often occurred in
combination with other lower face AUs, it was eliminated
from further analysis because it appeared too infrequently in
the RD.

Animals and procedures. All surgical and experimental
procedures were approved and conducted in accordance
with the regulations of the Institute Animal Care and Use
Committee, following National Institutes of Health regula-
tions and with AAALAC accreditation.
Two male Fascicularis monkeys (Macaca fascicularis)

and 10 Rhesus monkeys (Macaca mulatta) were video-
taped while producing spontaneous facial movements. All
monkeys were seated and head fixed in a well lit room
during the experimental sessions.
The two monkeys produced facial behaviors in the con-

text described in detail in the study by Pryluk et al. (2020;

Fig. 2, Extended Data Figs. 2-1, 2-2, 2-3). The facial
movements obtained during neural recordings have not
been previously analyzed in terms of action units. Earlier
experiments showed that self-executed facial movements
recruit cells in the amygdala (Livneh et al., 2012; Mosher et
al., 2016) and the anterior cingulate cortex (ACC; Livneh et
al., 2012), and that neural activity in these regions is tempo-
rally locked to different socially meaningful, communicative
facial movements (Livneh et al., 2012). The video data from
these monkeys was captured using two cameras (model
MQ013RG, Ximea; one camera for the whole face and one
dedicated to the eyes), with lenses mounted on them: 16
mm (model LM16JC10M, Kowa Optical Products Co. Ltd.)
for the face camera and 25 mm (model LM25JC5M2,
Kowa Optical Products Co. Ltd.) for the eye camera. The
frame rates of the face and eye videos are 34 frames/s
(;29 ms) and 17 frames/s (;59 ms), respectively. The size
parameters are 800� 700 pixels for the facial videos and
700� 300 pixels for the videos of eyes. Both video types
have 8 bit precision for grayscale values. The lighting in the
experiment room included white LED lamps and an infra-
red LED light bar (MetaBright Exolight ISO-14-IRN-24,
Metaphase Technologies) for face illumination.
The 10 Rhesus monkeys were filmed during baseline ses-

sions as well as during provocation of facial movements by
exposure to a mirror and to videos of other monkeys. Videos
of facial expressions of the Rhesus macaques were recorded
at 30 frames/s (;33 ms) rate, with 1280� 720 pixels size pa-
rameters and 24 bit precision for RGB values.

Behavioral paradigms. The intruder task is similar to
the one described in the study by Pryluk et al. (2020), in-
cluding a monkey intruder instead of a human (Fig. 2,
Extended Data Figs. 2-1, 2-2, 2-3). A single experimental
block includes six interactions (trials) with a monkey in-
truder that is seated behind a fast LCD shutter (,1 ms re-
sponse time, 307 � 407 mm), which is used to block the

Figure 2. Monkey–intruder behavioral paradigm. Monkey–intruder block, The subject monkey is sitting behind a closed shutter. The
intruder monkey is brought into the room and seated behind the shutter, which remains closed. The shutter opens and closes 18
times, and the monkeys are able to see each other while it is open. The subject monkey can not see any part of the intruder unless
the shutter is open. At the end of the block, the shutter closes and the intruder monkey is taken out from the room (Extended Data
Figs. 2-1, 2-2, 2-3, examples of monkey interactions).

continued
AU combinations in the FD test set, for the most frequent AUs. Cells inside the magenta (bottom left) and green frames (top right) rep-
resent the combinations of upper face and lower face AUs, correspondingly. AUs that frequently occurred in combination with other
AUs (in the upper face or the lower face, separately) are denoted by “1.” Cell values were calculated as the ratio between the number
of frames containing the combination of the two AUs and the total number of frames containing the less frequent AU. G, Left, Images
of upper face AUs from the FD test set. UpperNone, No coded action in the upper face; AU11 2, Brow Raiser; AU43_5, Eye closure.
Right, The difference of the images from the neutral face image. H, Same as G, but for lower face. AU25126, Lips part and Jaw drop;
AU251 26116, Lips part, Jaw drop, and Lower lip depressor; AU251 261 18i, Lips part, Jaw drop, and True Pucker.
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visual site. When the shutter opens, the monkeys are able
to see each other. Each trial is ;9 s, and the shutter is
closed for ;1 s between the trials. Altogether, the length
of the interaction part (from the first shutter opening until
its last closure) is 60 s.
We recorded the facial expressions of the subject mon-

key, along with monitoring the intruder monkey behavior.
When the intruder monkey was brought to or out from the
room (the “enter–exit” stage), the shutter was closed and
the subject monkey could not see any part of the intruder
unless the shutter was open. The “enter” and the “exit”
phases were each 30 s long.

Data labeling. Video data annotation was conducted
using Noldus software The Observer XT (https://www.noldus.
com/human-behavior-research/products/the-observer-xt).
The recorded behavior coding was exported in Excel 2016
(Microsoft) format for further processing.
RD videos were labeled by an FACS-accredited (Friesen

and Ekman, 1978; Ekman et al., 2002) and MaqFACS-ac-
credited (Parr et al., 2010) coding expert. Another trained
observer performed the coding of all FD videos according
to the MaqFACS manual based on the study by Parr et al.
(2010). Facial behavior definitions were discussed and
agreed on before the coding. To ensure consistency, we
checked the inter-rater reliability (IRR) for one of the two FD
videos against an additional experienced coder. Our target
percentage of agreement between observers was set to
80% (Baesler and Burgoon, 1987), and the IRR test re-
sulted in 88% agreement (Extended Data Fig. 5-1).
All the videos were coded for MaqFACS AUs along with

their frequencies and intensities. Analyzed frames with no
labels were considered as frames with neutral expression.
Upper and lower face AUs were coded separately. This
partition was inspired by observations indicating that fa-
cial actions in the lower face have little influence on facial
motion in the upper face and vice versa (Friesen and
Ekman, 1978). Moreover, neurologic evidence suggests
that lower and upper faces are engaged differently by fa-
cial expressions and that their muscles are controlled by
anatomically distinct motor areas (Morecraft et al., 2001).

Image preprocessing. For each video from both data-
sets, seven landmark points (two corners of each eye, two
corners of the mouth and the mouth center) were man-
ually located on the mean image of frames with neutral ex-
pression. For image height (h) and width (w), the reference
landmark points were defined by the following coordi-
nates: 0.42 w/0.3 h and 0.48 w/0.3 h for left eye corners;
0.52 w/0.3 h and 0.58 w/0.3 h for right eye corners; 0.44
w/0.55 h for mouth left corner; 0.56 w/0.55 h for mouth
right corner; and 0.5 w/0.5 h for the mouth center
(Extended Data Fig. 3-1).
Affine transformations (geometric transformations that

preserve lines and parallelism; e.g., rotation) were applied
to all frames of all videos so that the landmark points
were mapped to predefined reference locations (Fig. 3A,
Extended Data Fig. 3-1). The alignment procedure was
necessary to correct any movement, either from the align-
ment of the camera (angle, distance, height) or movement
of the monkey, that would shift the facial landmarks be-
tween video frames. After the alignment procedure, total

average image of all mean neutral expression frames was
calculated. Two rectangular regions of interest (ROIs), one
for the upper face and one for lower face, were marked
manually on the total average image (Fig. 3B). Finally, all
the frames were cropped according to the ROI windows
(Fig. 3C), resulting in 396� 177 pixel upper face images
and 354�231 pixel lower face images. After this step, the
originally RGB images were converted to grayscale. For
each video, one “optimal” neutral expression frame was
selected of all the neutral expression images. Difference
images (d -images) were generated by subtraction of the
optimal neutral frame from all the frames of the video (Figs.
1G,H, right, 3D). The main idea behind this operation was
to eliminate variability because of texture differences in ap-
pearance (e.g., illumination changes) and to analyze the
variability of facial distortions (e.g., action units) and indi-
vidual differences in facial distortion (Bartlett et al., 1996).
In the last preprocessing step, upper face and lower face
databases (DBs) were created by converting the d -images
to single-dimension vectors and storing them as a two-di-
mensional matrix containing the pixel brightness values
(one dimension is the size of the total image pixels, and the
second dimension represents the image quantity). The
DBs were then used for the construction of training and
test sets (Fig. 3E).

Eigenfaces: Dimensionality reduction and feature ex-
traction. Under controlled head-pose and imaging condi-
tions, the statistical structure of facial expressions may be
efficiently captured by features extracted from principal
component analysis (PCA; Calder et al., 2001). This was
demonstrated in the “EigenActions” technique (Donato et
al., 1999), where the facial actions were recognized sep-
arately for upper face and lower face images (the well
known “eigenfaces”). According to this technique, the
PCA is used to compute a set of subspace basis vectors
(referred to as the eigenfaces) for a dataset of facial im-
ages (the training set), which are then projected into the
compressed subspace. Typically, only the N eigenvec-
tors associated with the largest eigenvalues are used to
define the subspace, where N is the desired subspace
dimensionality (Draper et al., 2003). Each image in the
training set may be represented and reconstructed by
the mean image of the set and a linear combination of its
principal components (PCs). The PCs are the eigenfaces,
and the coefficients of the PCs in the linear combination
constitute their weights. The test images are matched to
the training set by projecting them onto the basis vectors
and finding the nearest compressed image in the sub-
space (the eigenspace).
We applied the eigenfaces analysis on the training

frames (the d -images), which were first zero-meaned (Fig.
3F). Once the eigenvectors were calculated, they were
normalized to unit length, and the vectors corresponding
to the smallest eigenvalues (,10�6) were eliminated.

Classification. One of the benefits of the mean subtrac-
tion and the scaling to unit vectors is that this operation
projects the images into a subspace where Euclidean dis-
tance is inversely proportional to correlation between the
original images. Therefore, nearest-neighbor matching
in eigenspace establishes an efficient approximation to
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image correlation (Draper et al., 2003). Consequently, we
used a K-nearest neighbors (KNN) classifier in our system.
Related to the choice of classifier, previous studies show
that when PCA is used, the choice of the subspace dis-
tance-measure depends on the nature of the classification
task (Draper et al., 2003). Based on this notion and other
observations (Bartlett et al., 1999), we chose the Euclidian
distance and the cosine of the angle between feature vec-
tors to measure similarity. In addition, to increase the gen-
erality of our approach and to validate our results, we also
tested a support vector machine (SVM) classifier. To evalu-
ate the performance of the models, we define a classifica-
tion trial as successful if the AU predicted by the classifier
was the same as in the probe image. To further justify the
classification of AUs separately for upper face and lower
face ROIs, it is worth mentioning that evidence suggests
that PCA-based techniques performed on full-face images
lead to poorer performance in emotion recognition com-
pared with separate PCA for the upper and lower regions
(Padgett and Cottrell, 1997; Bartlett, 2001).
To train a classification model for AU recognition, we

used the weights of the PCs as predictors. To predict the
AU of a new probe image, the probe should be projected

onto the eigenspace to estimate its weights (Fig. 3F).
Once the weights are known, AU classification may be ap-
plied. The output of the classifier of each facial ROI is the
AU that is present in the frame (Fig. 3G). To increase the
generality of our approach and to validate our results, we
used both KNN and SVM classifiers.

Parameter selection. In the KNN classification, we ex-
amined the variation of the following three main parame-
ters: the number of the eigenspace dimensions (PCs); the
subspace distance metric; and k, the number of nearest
neighbors in the KNN classifier.
Multiple ranges of PCs were tested (the “pcExplVar” pa-

rameter) from PC quantity that cumulatively explains 50%
of the variance of each training set to 95%, k was varied
from 1 to 12 nearest neighbors, and the performance was
also tested with Euclidian and cosine similarity measures.
For each training set and parameter set, the features were
recomputed and the model performance was re-estimated.
The process was repeated across all the balanced training
sets (see Data undersampling). The parameters of the
models and the balanced training sets were selected ac-
cording to the best classification performance in the valida-
tion process.

Figure 3. Diagram of the automatic MaqFACS AUs recognition system pipeline. A, Alignment of frames from the original video
stream (example of two videos from two different RD monkeys). Seven landmark points were manually selected on the mean of all
neutral frames of each video. In the next step, these points were mapped to corresponding predefined positions (reference land-
marks, common for all videos). The resulting affine transformation for each video was then applied to all its frames. For more exam-
ples, see Extended Data Figure 3-1. B, Manual definition of upper face and lower face ROIs on the mean of all neutral frames.
Magenta, Upper face ROI; green, lower face ROI. The “All neutral frames mean” image in this scheme was calculated from all RD
videos. C, Cropping of all the frames according to upper face and lower face ROIs. D, Generation of d -images by subtracting the
optimal neutral frame of each video from all its frames. The contrast and the color map of the grayscale images were adjusted for a
better representation. E, Construction of lower face and upper face d -images databases, consisting of two-dimensional matrices
where each row corresponds to one image. F, Eigenface extraction from the training images and projection of the training and test
images onto the eigenspace (following the desired training and test sets construction). WPC1 and WPC2 denote the weights of PC1
and PC2, correspondingly. G, Classification of the testing images to upper face and lower face AUs. KNN (and SVM) classification
was applied based on the distances between the testing and the training images in the eigenspace.
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Data undersampling. The training sets in this study
were composed of RD frames from AU11 2, AU43_5, and
UpperNone categories in the upper face, and AU251 26,
AU251261 16, and AU251 261 18i in the lower face (in
a nonoverlapping manner relative to each ROI). For the
training purposes, for both ROIs, the RD frames were ran-
domly undersampled 3–10 times (depending on the data
volume), producing the “balanced training sets.” The
main reason for this procedure was to balance the frame
quantity of the different AUs in the training sets (He and
Garcia, 2009). For each dataset, the size of the balanced
training set was defined based on the smallest category
size (Table 1). As a result, for the training processes in our
experiments, we used upper face and lower face bal-
anced training sets of size 3639 and 930 frames each,
correspondingly.
It should be noted that the undersampling procedure in-

fluences only the composition of the training sets but not
of the test sets (only the frames for training are selected
from the balanced training sets). The test set composition
depends on the subjects and the videos selected for the
testing, and considers all the available frames that fit the
task criteria (consequently, they are the same across all
the balanced training sets).

Validation and model evaluation. We tested three types
of generalization. For each type of generalization, the per-
formance was evaluated independently for upper face and
lower face, using holdout validation for the Fascicularis data
(Geisser, 1975) and leave-one-out cross-validation (CV) for
the Rhesus data (Tukey, 1958). The leave-one-out technique
is advantageous for small datasets because it maximizes
the available information for training, removing only a
small amount of training data in each iteration. Applying
the leave-one-out CV, data from all subjects (or videos)
but one, were used for the system training, and the test-
ing was performed on the one remaining subject (or
video). We designed the CV partitions constraining an
equal number of frames in each class of the training
sets. In both the leave-one-out CV and the holdout vali-
dation, images of the test sets were not part of the cor-
responding training sets, and only the training frames
were retrieved from the balanced training sets. To en-
sure the data sufficiency for training and testing, a sub-
ject (or video) was included in the partition for CV only if
it had enough frames of the three AU classes (sepa-
rately for upper face and lower face).

For each generalization type, the training and the test-
ing sets were constructed as follows. (1) Within-subject
(Rhesus): for each CV partition, frames from all videos but
one, from the same Rhesus subject, were used for train-
ing. Frames of the remaining video were used for testing.
Performed on RD, on three balanced training sets. To be
included in a CV partition for testing, the training and the
test sets for a video had to consist of at least 20 and 5
frames/class, correspondingly. Some subjects did not
meet the condition, and this elimination process resulted
with three subjects for upper face and four subjects for
lower face CV. (2) Across subjects (Rhesus): for each CV
partition, frames from all videos of all Rhesus monkeys
but one were used for training. Each test set was com-
posed of frames from videos of the one remaining mon-
key. Performed on RD, on three balanced training sets. To
be included for testing in the CV, the training and the test
sets for a subject had to contain at least 150 and 50
frames of each class, correspondingly. In total, four sub-
jects were included in the upper face testing and three
subjects were included in the lower face testing. (3)
Across species: frames from all videos of the five Rhesus
monkeys were used for training. Frames from the two
Fascicularis monkeys were used for validation and test-
ing. In this case, a holdout model validation was per-
formed independently for each Fascicularis monkey (each
subject had a different set of model parameters selected).
For this matter, each Fascicularis monkey’s dataset was
randomly split 100 times in a stratified manner (so the sets
will have approximately the same class proportions as in
the original dataset) to create two sets: a validation set
with 80% of the data; and a test set with 20% of the data.
Overall, the training sets were constructed from 10 bal-
anced training sets of the Rhesus dataset. Validation and
test sets (produced by 100 splits in total) included 80%
and 20% of the Fascicularis dataset, correspondingly.
The best model parameters were selected according to
the mean performance in validation set (over 100 splits),
and the final model evaluation was calculated based on
the test set mean performance (over the 100 splits, as
well).

Performance measures. Although the balanced training
sets and the CV partitions were constructed to maintain
the total number of actions as even as possible, the sub-
jects and their videos in these sets possessed different
quantities of actions. In addition, while we constrained the

Table 1: Data undersampling (RD)

AU11 2 AU43_5 UpperNone Undersampled per class Total balanced training set
Upper face
frames, n 1213 ;19,500 ;150,000 1213 3639

AU251 26116 AU251 26118i AU251 26 Undersampled per class Total balanced training set
Lower face
frames, n 310 ;15,000 ;15,000 310 930

In the upper face, the smallest category was AU112 with only 1213 frames (in total, from all RD subjects). On the contrary, AU43_5 category had ;19,500
frames (after eliminating RD AU45 frames because of time synchronization errors), and UpperNone class included .150,000 images. Consequently, balanced
training sets were generated with each including all of the AU112 frames, and randomly selected 1213 frames from AU43_5 along with 1213 randomly selected
UpperNone frames. Therefore, the upper face balanced training sets were each composed of 3639 frames. The same was done for the lower face, where the
smallest category was AU251 261 16 with only 310 frames. Categories AU251 261 18i and AU251 26 contained .15,000 images each. Accordingly, each
lower face balanced training set included 930 frames.
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sizes of the classes within each training set to be equal,
we used the complete available data for the test sets.
Since the overall classification correct rate (accuracy)
may be an unreliable performance measure because of its
dependence on the proportion of targets to nontargets
(Pantic and Bartlett, 2007), we also applied a sensitivity
measure (Benitez-Quiroz et al., 2017) for each AU (where
the target is the particular AU and the nontargets are the
two remaining AUs).
We used the average sensitivity measure [average true

positive rate (TPR)] to select the best parameter set. To
compare the performance of the classifiers, we present
the generalization results on a subject (i.e., individual
monkey) level (rather than video) for each classification
type. Performance on Fascicularis dataset is reported as
the mean performance of two parameter sets (one set per
subject).

Single-neuron activity analysis. We analyzed a subset
of neurons that was previously reported in the study by
Pryluk et al. (2020) and corresponded to the relevant
blocks of monkey–monkey interactions. The neural analy-
sis was performed with respect to facial AUs, focusing on
400–700ms before and after the start of AU elicitation by
the subject monkey.
Neural activity was normalized according to the base-

line activity before the relevant block, using the same win-
dow length (300ms) to calculate the mean and SD of the
firing rate (FR).
Therefore, the normalized (z-scored) FR was calculated

as follows:

FRnormalized ¼ FR�meanbaseline

SDbaseline
:

Data availability. A custom code for automatic
MaqFACS recognition and data analysis was written in
MATLAB R2017b (https://www.mathworks.com/). The code
described in the article is freely available online at https://
github.com/annamorozov/autoMaqFACS. The code is avail-
able as in Extended Data 1.

Results
Eigenfaces—unraveling the hidden space of facial
expressions
Intuitively, light and dark pixels in the eigenfaces (Fig.

4A,B) reveal the variation of facial features across the
dataset. To further interpret their putative meaning, we
varied the eigenface weights to demonstrate their range
in the training set, producing an image sequence for
each PC (Fig. 4C,D). This suggests that PC1 of this
upper face set (Fig. 4C, top, left to right) codes brows
raising (AU112) and eyes opening (AU43_5). In con-
trast, PC2 resembles eye closure (Fig. 4C, bottom, bot-
tom-up). Similarly, PC1 of the lower face set (Fig. 4D,
top, left to right) probably describes nose and jaw
movement. Finally, PC2 for the lower face (Fig. 4D, bot-
tom, bottom-up) plausibly corresponds to nose, jaw,
and lip movements, reminding the transition from lips
pushed forward (AU251 26118i) to depressed lower
lip (AU251 261 16).

To illustrate the eigenspace concept, we present deci-
sion surfaces of two trained classifiers (Fig. 4E,F), along
their first two dimensions (the weights of PC1 and PC2)
that account for changes in facial appearance in Figure 4,
C and D. We show several training and test samples
along with their locations following the projection onto the
eigenspace. The projection of the samples is performed
to estimate their weights, which are then used by the clas-
sifier as predictors.

Parameter selection
Example of parameter selection (see Materials and

Methods) for a Fascicularis subject is shown in Figure
5A. Interestingly, this upper face classification required
much larger pcExplVar (93% vs 60% in the lower face;
the difference observed in both Fascicularis subjects).
Specifically, this upper face classifier achieved its best
performance with 264 PCs, opposed to the lower face
classifier succeeding with only 15 PCs (Fig. 5B). The
most likely explanation is the large difference between
the training set sizes (upper face, 3639 images; vs lower
face, 930 images). Additionally, the eye movement in
the upper face images may require many PCs to ex-
press its variance.
In contrast, the pcExplVar parameter behaved differ-

ently for generalizations within and across Rhesus sub-
jects: their best upper face classifiers required pcExplVar of
85%, and 83% in the lower face sets. The notable difference
between the parameters of these datasets suggests
that one should tune a different parameter set for each
dataset. Generally, the Rhesus dataset required much
larger pcExplVar to describe the lower face than the
Fascicularis dataset.

Performance analysis
Overall, the best parameter set for generalization to a

new video within subject (Rhesus) using KNN (see
Materials and Methods), performed with 81% accuracy
and 74% TPR per subject for upper face, along with 69%
accuracy and 62% TPR for lower face, where the chance
level is 33% (Fig. 5C, left). The best generalization across
subjects (Rhesus) yielded TPR values of 72% and 53%
for upper and lower face, respectively, with correspond-
ing accuracy of 75% and 43% (Fig. 5C, middle), com-
pared with 33% chance level. The better performance in
the upper face may be explained by its larger number of
subjects in the CV (four in the upper face, only three in the
lower face) and by greater number of examples available
for training. Interestingly, applying the best parameter set
of generalization within subject to classifiers generalizing
across subjects, produced close-to-best performance
(upper face, 71% TPR; lower face, 50% TPR). This finding
suggests that tuning KNN parameters for generalization
within Rhesus subjects, might be enough also for across-
Rhesus-subjects generalization.
The finest results, however, were achieved in general-

ization between species with 84% TPR for upper face and
83% for lower face, with corresponding accuracy of 81%
and 90%, concerning a 33% chance level (Fig. 5C, right).
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To examine whether our findings depend on the particular
classification algorithm, we additionally tested this gener-
alization with a multiclass SVM approach. This improved
the TPR to 89% for both ROIs, indicating the advantage
of using eigenface-based techniques for MaqFACS AUs
classification.
Finally, we have also compared the performance of the

classifier to the human coders to determine whether the al-
gorithm is superior or inferior to the average, the slow and
somewhat subjective human decision. Because of the vari-
ability between raters, we found that that the algorithm was
more accurate for certain AUs, whereas the human raters
were more accurate for other AUs (Extended Data Fig. 5-1,
data). Specifically, for UpperNone AU, the classifier had an
average sensitivity of 84% versus 81% in the human coding,
and for AU 11 2 its average sensitivity was 71% versus a
raters’ sensitivity of 92.3%. For AU 43_5, the classifier per-
formed with an average sensitivity of 96%, which is similar
to the sensitivity of the human coders. For the lower face,
the average sensitivity values of the classifier for AU
251 261 16, AU 251 26118i, and AU 251 26 were 70%,
88%, and 91% as opposed to the 63.6%, 100%, and
87.5% sensitivity of the human coders, respectively. Overall,
our method generalized to Fascicularis monkeys with an av-
erage accuracy of 81% for upper face and 90% for lower,
compared with the human IRR of 88%.
Altogether, the upper face KNN classifiers (Fig. 5D, top)

separated AU43_5 well and had typical confusions be-
tween UpperNone and AU112. Most lower face misclas-
sifications (Fig. 5D, bottom) were between AU251 26116
versus AU251 26 and AU251 26118i versus AU25126.
Characteristic outputs from the system are shown in
Figure 5E.

Behavioral analysis
To demonstrate the potential applications of our

method, we used it to analyze the facial expressions pro-
duced by subject monkeys when exposed to a real-life
“intruder” (Fig. 2, Extended Data Fig. 2-1, 2-2, 2-3; Pryluk
et al., 2020). The subject monkey was sitting behind a

closed shutter, when the intruder monkey was brought
into the room (the enter period). The shutter opened, al-
lowing the two monkeys to see each other 18 times. After
the last closure of the shutter, the intruder was taken out
from the room (exit period).
As the subject monkey was in head immobilization, the

facial expressions produced under these conditions were
a reduced version of the natural facial expressions that
often include head and body movements. To test the
ethological validity of such reduced, or schematic, facial
expressions, we determined whether they carry signal
value (i.e., whether they are sufficient to elicit a situation-ap-
propriate reciprocation for a social partner). We found that
when monkeys familiar with each other found themselves in
an unusual situation (open shutter), they reassured each
other with reciprocal lip-smacking facial expressions, as
shown in Extended Data Figures 2-1, 2-2, and 2-3. We veri-
fied, therefore, that multiple pairs of monkeys can meaning-
fully communicate with each other when one of the social
partners is in head immobilization.
Statistical analysis of classification results for subject

monkey B (Fig. 6A) revealed that in the presence of an in-
truder, he produced several facial expressions including
UpperNone and AU25126118i, often associated with
cooing behavior. Cooing was more frequent during the
enter–exit and open-shutter periods, than during closed-
shutter periods (Fig. 6B, top, Extended Data Fig. 6-1a,
left; x2 test, p,1e-3). Moreover, subject B produced an
AU11 2 and AU251 26 combination more frequently dur-
ing the enter–exit and closed-shutter periods, than during
the open-shutter periods (Fig. 6B, bottom, Extended Data
Fig. 6-1a, right; x2 test, p, 1e-3). We interpret this pat-
tern as an expression of the alertness and interest of the
monkey in events that were signaled by auditory but not
visual inputs. Similarly, subject monkey D (Fig. 6C) pro-
duced AU112 and AU251 261 18i together most fre-
quently when the intruder was visible and on occasions
when the shutter was closed (intruder behind the shutter),
but infrequently during the enter–exit periods (Fig. 6D, x2

test, Extended Data Fig. 6-1b, x2 test, p, 1e-3). In a

continued
Figure 4. Eigenfaces analysis. A, Example of eigenfaces: six first eigenfaces (PCs) of one of the upper face training sets, containing
all five Rhesus subjects from RD. The grayscale values were normalized to the 0–1 range, and the image contrast and color map
were adjusted for a better representation. The color bar corresponds to pixel grayscale values. B, Same as A, but for lower face. C,
Example of the information coded by the first two eigenfaces. Top, The image sequence demonstrates the first eigenface from A,
added to the mean image (MeanImg) and varied. Middle, Mean image of the training set (described in A), with the first eigenface
added after being weighted by its mean weight (�wPC1). In each sequence, the weights were varied from �3 to 13 SDs from the
mean weight, and the weighted PC was then added to the mean image of the training set. This procedure resulted in a different fa-
cial image for each 1 SD step. The images in the sequence are ordered from left to right: the first image contains the variation by �3
SDs (i.e., PC1 weighted by �3 SDs of its weights and added to the middle image), and the last one is the variation by 13SD.
Bottom, Same as top but for the second eigenface (PC2). The image sequence is ordered from bottom to top. The grayscale values
were normalized to the 0–150 range, and the image contrast and color map were adjusted for a better representation. The color bar
corresponds to pixel grayscale values and is mutual for both the top and bottom schemes. D, Same as C, but for lower face and
with grayscale normalization to a range of 0–100. E, Example of decision surface for upper face KNN classifier, trained for general-
ization across species. The training set is the one described in A, and the test set is Fascicularis monkey D frames from FD. The de-
cision surface is presented along the first two dimensions: weights of PC1 and PC2 (wPC1 and wPC2, correspondingly). Each colored
region denotes one of the three upper face AU classes. The frames in color are training set images, and the grayscale frames are
from the test set. The classification decision is based on the proximity of the test frames to samples of a certain class in this com-
pressed subspace. For better illustration, the images shown here are frames after alignment, but before the neutral frame subtrac-
tion. F, Same as E but for the lower face and Fascicularis monkey B from FD test set.
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Figure 5. Results for parameters selection and model performance. A, Top, Example of parameter selection for upper face KNN
classifier, trained for generalization across species. The training set in the example is the one described in Figure 4A, the test set is
monkey D frames from FD, and the distance metric is set to be Euclidean. The surface represents the performance of KNN classi-
fiers with two parameters varied: k (number of nearest neighbors, varied from 1 to 12), and the percentage of the training set var-
iance explained by the eigenfaces (pcExplVar, varied from 50% to 95%). The z-axis is the average sensitivity value of each model
(i.e., average of the sensitivity values for the classification of three upper face AUs). The red dot denotes the highest point on the
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social context, this pattern is associated with the lip-
smacking behavior (Parr et al., 2010), representing an af-
filiative, appeasing social approach (Hinde and Rowell,
1962).

Neural analysis
Finally, to validate the concept and strengthen the rele-

vance of automatic MaqFACS for neuroscience applica-
tions, we used our method to determine whether neural
activity recorded from brain regions involved in facial
communication (see Materials and Methods) is related to
specific AUs (Fig. 2). Indeed, neurons in the amygdala
and ACC were previously shown to respond with
changes in firing rate during the production of facial ex-
pression (Livneh et al., 2012). In the interaction block of
monkeys, responses were computed from the time when
the subject monkey started initiating AU251 261 18i
(see Materials and Methods). Reanalyzing the previously
obtained data (Pryluk et al., 2020) showed that neurons
responded before (Fig. 6E, left) or after (Fig. 6E, right) the
production of the socially meaningful AU251261 18i.
This finding supports the hypothesis that these regions
hold neural representations for the production of single
AUs or socially meaningful AU combinations.

Discussion
This work pioneers the development of an automatic

system for the recognition of facial action units in maca-
que monkeys. We based our approach on well estab-
lished methods that were successfully applied in human
studies of facial action units (Donato et al., 1999). Our sys-
tem achieved high accuracy and sensitivity, and the

results are easily interpretable in the framework of facial
communication among macaques. We tested our algo-
rithm using different macaque video datasets in the fol-
lowing three different configurations: within individual
Rhesus monkeys; across individual Rhesus monkeys; and
across Rhesus and Fascicularis monkeys (generalizing
across species). Performance (recognition rates) was ob-
tained for both upper face and lower face using several
classification approaches, indicating that the success of
this method does not depend on a particular algorithm.
We aimed to build on commonly used and well estab-

lished tools to enhance applicability and ease of use. The
pipeline of our system includes (1) alignment to prede-
fined facial landmarks, (2) definition of upper and lower
face ROIs, (3) cropping the images to ROIs, (4) genera-
tion of (difference) d -images, (5) creation of lower and
upper face d -image databases, (6) eigenfaces analysis,
and (7) classification. Our classification algorithm uses
supervised learning, and its main challenge is the need
of a labeled dataset for training. Likewise, to generalize
between species, a parameter fine-tuning should be
performed on the new species dataset. This requires a
sample-labeled set of the new species images. The
other manual operations are rather simple and not time
consuming. They include a choice of neutral frames and
annotation of seven landmark points on a mean neutral
image of a video.
Interestingly, unlike the within-Rhesus classifications,

the generalization between species required a larger num-
ber of components (explained variance) for classification
of upper face AUs than for lower face AUs. This might
suggest that a separate set of parameters should be fine-
tuned for each dataset and ROI (lower and upper face).

continued
surface and hence the parameters yielding the best performance. With the selected parameters k=2 and pcExplVar = 93%, the
model average sensitivity value is 0.86. Bottom, Same as the top but for the lower face. The training set is one of the lower face
training sets, containing all five Rhesus subjects from RD, and the test set is monkey D frames from FD. The distance metric is set
to be Euclidean. The selected model has the average sensitivity of 0.84 with the following parameters: k=9, pcExplVar = 60%. B,
The curves demonstrate the number of eigenfaces that should be used to cumulatively capture a given percentage of the dataset
variance. The red asterisk denotes the pcExplVar parameter value selected in A. Left, The curve corresponds to the dataset de-
scribed in A, top. To express 93% of the dataset variance, at least 264 vectors (eigenfaces) should span the eigenspace. Right,
Same as left but regarding A, bottom. To express 60% of the dataset variance, at least 15 vectors (eigenfaces) should span the ei-
genspace. C, Best performance of KNN classification for each generalization type. Each bar group contains five bars (from left to
right), as follows: three bars describing the classifier’s sensitivity for single AUs; sensitivity averaged for three classified AUs; and
the total accuracy of the classifier. The mean and the error are calculated regarding the recognition performance on a new subject.
The horizontal dashed line denotes the chance level. The first bar group demonstrates the results for generalization of the classifica-
tion within the same Rhesus subject [within subject (Rhesus): training on videos of a subject and testing on a new video of the same
subject]. The second group shows the generalization performance of a classifier to new Rhesus subjects [across subjects (Rhesus):
training on videos from several subjects and testing on videos of a new subject]. The blue lines denote the performance of the clas-
sifier across subjects using the parameters selected in the within-subject (Rhesus) case. The third group displays the generalization
performance to new Fascicularis subjects (across species: training on videos from several Rhesus subjects and testing on videos of
a new Fascicularis subject). In this case, the parameters should be tuned for each Fascicularis subject, and the results are the mean
performance of two parameter sets (for the two Fascicularis subjects). Top, Performance for upper face. Bottom, Performance for
lower face. D, Averaged confusion matrices of the KNN best performance results (of the three cases presented in C). The columns
in each matrix represent the true labels, and the rows stand for the predicted labels. Top, Upper face confusion matrices. Bottom,
Lower face confusion matrices (Extended Data Fig. 5-1, confusion matrix of inter-rater variability). E, Example of the KNN classifica-
tion performance demonstrating correctly recognized frames along with some recognition errors. Each data point denotes a frame
in a video. The classified AUs (magenta and green lines) are shown in comparison with the ground truth labels (black lines). Video
time is displayed in the x-axis. Sample frames of the original video stream (after alignment and ROI cropping) are shown above the
lines. The video for the example is taken from FD. Top, Output example for upper face video. Bottom, Output example for lower
face video.
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Figure 6. Examples of the method applications. A, Example of the final system output for monkey B from FD. Classification labels
are presented on the y-axis, while the frame time of the video stream is on the X. “Other_upper” and “other_lower” labels are for
video frames that were not part of the task of the classifier but exist in the original video and were labeled manually. Frames of the
original video (with no preprocessing) are shown on the bottom, and the dashed lines denote their corresponding timing. The ma-
genta and green lines demonstrate the outputs from the upper face and lower face algorithms, respectively. Images above the out-
put lines exhibit the frames as they were processed in the algorithm, after alignment and ROI cropping. The estimated locations of
the ROIs, comprising the full facial expressions, are illustrated in frames on the bottom by magenta and green rectangles (the posi-
tions are not precise since the original images on the bottom are not aligned). B, Facial expression analysis following classification
of frames. Bars demonstrate the proportion of a specific facial configuration in monkey B (from FD) elicited during one block of the
experiment described in Figure 2. This value is calculated as the ratio between frames containing the combination of AUs and the
total frames per trial. Yellow bars denote the block part when the intruder monkey enters and exists the room, the blue bar is for
phases with the closed shutter (after the first shutter opening and before its last closure), and the orange bars stand for periods of
open shutter. An example image of the analyzed expression is shown on the right (taken from the examples in B). Top, Proportions
of cooing facial expression events composed of UpperNone AU for the upper face and AU251 261 18i for the lower face. Bottom,
Same as in top, but for “alert” facial expression: upper face, AU11 2; lower face, AU251 25 (Extended Data Fig. 6-1a, analysis
following classification by human coders; **p, 1e-2; ***p, 1e-3). C, Same as A but for monkey D from FD. D, Same as B but for
monkey D from FD and lip-smacking facial expression with upper face AU11 2 and lower face AU251261 18i (Extended Data Fig.
6-1b, analysis following classification by human coders). E, PSTHs and raster plots of one neuron in the amygdala and one in the
ACC, temporally locked to the socially associated AU251261 18i, during monkey intruder block.
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On the other hand, our findings show that tuning pa-
rameters for generalization of within-Rhesus subjects
might suffice also for generalization of across-Rhesus
subjects. Further, and somewhat surprisingly, the
across-species generalization performed better than
within-species and across-Rhesus subject generaliza-
tions. One possible explanation is that, unlike in the
Rhesus dataset, the Fascicularis dataset had better
conditions for automatic coding, as its videos were well
controlled for angle, scale, illumination, stabilization,
and occlusion. This finding has an important implica-
tion, as it shows that training on a large natural set of
behaviors in less controlled videos (Extended Data Fig.
3-1) can later be used for studying neural substrates of
facial expressions in more controlled environments dur-
ing electrophysiology (Livneh et al., 2012; Pryluk et al.,
2020).
A direct comparison to the performance of human

AU recognition systems is not straightforward. The
systems designed for humans are highly variable be-
cause of differences in subjects, validation methods,
the number of test samples, and the targeted AUs
(Sariyanidi et al., 2015). In addition, some human data-
sets are posed, possibly exaggerating some AUs,
while our macaque datasets are the results of sponta-
neous behavior. Automatic FACS achieve great accu-
racy (.90%) in well controlled conditions, where the
facial view is strictly frontal and not occluded, the face
is well illuminated, and AUs are posed in a controlled
manner (for review, see Barrett et al., 2019). When the
recordings are less choreographed and the facial ex-
pressions are more spontaneous, the performance
drops (Benitez-Quiroz et al., 2017, drop to below
83%). Our MaqFACS recognition system performed
comparably with the human automated FACS systems
despite the spontaneous nature of the macaque ex-
pressions and lack of controlled settings for the filming
of the Rhesus dataset.
We showed that our method can be used to add detail

and depth to the analysis of neural data recorded during
real-life social interactions between two macaques. This
approach might pave the way toward experimental de-
signs that capture spontaneous behaviors that may be
variable across trials rather than rely on perfectly repeat-
able evoked responses (Krakauer et al., 2017). A depar-
ture from paradigms that dedicate less attention to the
ongoing brain activity (Pryluk et al., 2019) or internal state
patterns (Mitz et al., 2017) will increase our ability to trans-
late experimental finding in macaques to similar finding in
humans that target real-life human behavior in health
and disease (Adolphs, 2017). Specifically, this will allow
internal emotional states and the associated neural ac-
tivity that gives rise to observable behaviors to be mod-
eled and studied across phylogeny (Anderson and
Adolphs, 2014). Indeed, a novel study in mice reported
neural correlates of automatically classified emotional
facial expressions (Dolensek et al., 2020). Finally, this
system could become useful for animal welfare assess-
ment and monitoring (Descovich et al., 2017; Carvalho
et al., 2019; Descovich, 2019; for review, see McLennan

et al., 2019) and in aiding the 3R framework for the re-
finement of experimental procedures involving all ani-
mals (Russell and Burch, 1959).
Given that macaques are the most commonly used

nonhuman primate species in neuroscience, an auto-
mated system that is based on facial action units is
highly desirable and will effectively complement the fa-
cial recognition systems (Loos and Ernst, 2013; Freytag
et al., 2016; Crouse et al., 2017; Witham, 2018) that ad-
dress only the identity of the animal, but not the behav-
ioral state. Compared with the recently introduced
method for recognition of facial expressions in Rhesus
macaques (Blumrosen et al., 2017), our system does
not rely on complete stereotypical and frequent facial
expressions; rather, it classifies even partial, incom-
plete, or ambiguous (mixed) and infrequent facial ex-
pressions given by a combination of action units.
Although our system requires several manual opera-
tions, its main potential lies in automatic annotation of
large datasets after tagging an example set and tuning
the parameters for the relevant species or individuals.
We prototyped our system on six action units in two fa-
cial regions (upper and lower face) but more advanced
versions are expected to classify additional action unit
combinations, spanning multiple regions of interest and
tracking action units as temporal events. Further refine-
ment of our work will likely include additional image-
processing procedures, such as object tracking and
segmentation, image stabilization, artifact removal, and
more advanced feature extraction and classification meth-
ods. These efforts will be greatly aided by large, labeled da-
tasets, which are emerging (Murphy and Leopold, 2019) to
assist ongoing efforts of taking cross-species and transla-
tional neuroscience research to the next step.
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