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Abstract
Background: The metazoan taxon Syndermata comprising Rotifera (in the classical sense of
Monogononta+Bdelloidea+Seisonidea) and Acanthocephala has raised several hypotheses connected to
the phylogeny of these animal groups and the included subtaxa. While the monophyletic origin of
Syndermata and Acanthocephala is well established based on morphological and molecular data, the
phylogenetic position of Syndermata within Spiralia, the monophyletic origin of Monogononta, Bdelloidea,
and Seisonidea and the acanthocephalan sister group are still a matter of debate. The comparison of the
alternative hypotheses suggests that testing the phylogenetic validity of Eurotatoria
(Monogononta+Bdelloidea) is the key to unravel the phylogenetic relations within Syndermata. The
syndermatan phylogeny in turn is a prerequisite for reconstructing the evolution of the acanthocephalan
endoparasitism.

Results: Here we present our results from a phylogenomic approach studying i) the phylogenetic position
of Syndermata within Spiralia, ii) the monophyletic origin of monogononts and bdelloids and iii) the
phylogenetic relations of the latter two taxa to acanthocephalans. For this analysis we have generated EST
libraries of Pomphorhynchus laevis, Echinorhynchus truttae (Acanthocephala) and Brachionus plicatilis
(Monogononta). By extending these data with database entries of B. plicatilis, Philodina roseola (Bdelloidea)
and 25 additional metazoan species, we conducted phylogenetic reconstructions based on 79 ribosomal
proteins using maximum likelihood and bayesian approaches. Our findings suggest that the phylogenetic
position of Syndermata within Spiralia is close to Platyhelminthes, that Eurotatoria are not monophyletic
and that bdelloids are more closely related to acanthocephalans than monogononts.

Conclusion: Mapping morphological character evolution onto molecular phylogeny suggests the (partial
or complete) reduction of the corona and the emergence of a retractable anterior end (rostrum,
proboscis) before the separation of Acanthocephala. In particular, the evolution of a rostrum might have
been a key event leading to the later evolution of the acanthocephalan endoparasitism, given the enormous
relevance of the proboscis for anchoring of the adults to the definitive hosts' intestinal wall.
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Background
The animal taxon Rotifera comprises free-living and com-
mensalic microscopic species of aquatic habitats that are
traditionally grouped into the three subtaxa Bdelloidea,
Monogononta and Seisonidea [1-3]. Bdelloids (about 460
species) inhabit freshwater, are capable of anhydrobiosis
and reproduce strictly by parthenogenesis. Monogononts
(about 1,570 species) live in limnic, brackish and marine
waters and have a lifecycle with alternating phases of par-
thenogenetic and sexual reproduction. Thirdly, at least
two of the hitherto three described species belonging to
Seisonidea are epibionts on marine crustaceans of the
genus Nebalia [3,4]. Though Bdelloidea, Monogononta
and Seisonidea are subsumed as Rotifera or Rotatoria, the
eponymous rotatory organ or corona, a seemingly rotat-
ing assembly of cilia at the anterior end of the animal, is
absent in Seisonidea. For this and other reasons Bdelloi-
dea and Monogononta are often regarded as sistergroups
of a taxon named Eurotatoria [2,5,6]. In contrast to Bdel-
loidea, Monogononta and Seisonidea, the Acan-
thocephala are obligatory endoparasites with a
complicated lifecycle. Their definite hosts are vertebrates,
while their intermediate hosts are insects, chilopods and
crustaceans (e.g., Meyer [7]). Along with the endoparasitic
life cycle, the acanthocephalan subtaxa share a plethora of
derived morphological characters (e.g., [8-11]) so that the
monophyly of Acanthocephala as a whole has never been
debated. Moreover, the grouping of Acanthocephala,
Bdelloidea, Monogononta and Seisonidea into the taxon
Syndermata is widely accepted due to special features in
epidermal and sperm ultrastructure (e.g., syncytial epider-
mis, spermatozoon with anteriorly inserted cilium; see
[5,8,9,12,13]), as well as congruent results from molecu-
lar approaches [14-20]. It is further undisputed that Syn-
dermata are part of a more comprehensive monophylum
called Gnathifera [9,21,22]. On the other hand, the phyl-
ogenetic position of Syndermata beyond Gnathifera as
well as the relationships among the syndermatan subtaxa
Acanthocephala, Bdelloidea, Monogononta and Seisoni-
dea are still unresolved. So far, five competing hypotheses
on the internal phylogeny of Syndermata have been sug-
gested (Fig. 1A–E). The Lemniscea hypothesis goes back to
Lorenzen [23] and favors a sister group relationship of
bdelloids and acanthocephalans, with the Monogononta
and Seisonidea placed basally to the Lemniscea (Fig. 1A).
Morphological evidence for such grouping has been
inferred from two lateral intrusions in the neck region and
a retractable anterior body section in Acanthocephala and
Bdelloidea [23]. The Lemniscea hypothesis received addi-
tional support from 16S rRNA, 18S rRNA, 28S rRNA, cyto-
chrome c oxidase subunit 1 (cox 1) and histone H3 data
[14-17,19]. The second hypothesis suggests a sistergroup
relationship of Monogononta and Bdelloidea (Eurotato-
ria) and of Seisonidea and Acanthocephala (Pararotato-
ria) and is herein called Eurotatoria+Pararotatoria

hypothesis (Fig. 1B). Besides presumed eurotatorian apo-
morphies such as the already mentioned corona, the
Eurotatoria+Pararotatoria hypothesis is based on
ultrastructural peculiarities that have been interpreted as
synapomorphies of Seisonidea and Acanthocepahala
(spermatozoa with "dense bodies" and epidermis with
special filaments [5,9,12]). Additional support for the
monophyly of Pararotatoria came from partial 18S rRNA
data [24] as well as from a combined dataset of 18S rRNA
sequences, heat shock gene sequences (hsp82), and mor-
phological characters [25]. The third hypothesis reflects
the classical view of monophyletic Rotifera
(Monogononta+Bdelloidea+Seisonidea) and Eurotatoria
(Monogononta+Bdelloidea) and proposes Acan-

Competing phylogenetic hypotheses amongst SyndermataFigure 1
Competing phylogenetic hypotheses amongst Syn-
dermata. Cladograms reflecting the competing hypotheses 
on the phylogenetic relations among Monogononta, Bdelloi-
dea, Acanthocephala and Seisonidea. A Lemniscea hypothesis 
[23]. B Eurotatoria+Pararotatoria hypothesis [5,9,12]. C 
Rotifera+Acanthocephala [8,26]. D Eurotatoria+Acan-
thocephala [28]. E Hemirotifera [29].
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thocephala as the sistergroup of Rotifera ("classical Rotif-
era+Acanthocephala hypothesis", see Fig. 1C). This
classical concept has been formulated based on specific
features of toe morphology, sensory and masticatory
apparatus in Rotifera and Eurotatoria, respectively
[13,26], and was supported by 18S rRNA data [27]. The
fourth hypothesis has been proposed on the basis of hsp82
sequences, and groups Acanthocephala and Eurotatoria
with exclusion of Seisonidea [28] ("Eurotatoria+Acan-
thocephala", see Fig. 1D). Underlying the fourth hypoth-
esis, the absence of acrosomal structures might represent
a synapomorphy of Eurotatoria and Acanthocephala [21].
According to the fifth hypothesis, Bdelloidea, Seisonidea,
and Acanthocephala form a monophylum for which the
name Hemirotifera has been proposed (Fig. 1E). The
Hemirotifera hypothesis has been inferred from a com-
bined dataset of molecular (18S rRNA, 28S rRNA, histone
H3, cox 1) and morphological characters [29]. This survey
of competing hypotheses demonstrates that the question
of phylogenetic relationships within Syndermata and
therewith of the evolution of the acanthocephalan
endoparasitism is closely connected to the more basal
question of monophyly of Eurotatoria.

In the present study we analyse the phylogenetic position
of Syndermata within the spiralian clade as well as the
phylogenetic relations among the syndermatan subtaxa.
We particularly focus on the question whether Eurotatoria
are monophyletic and – if not – whether bdelloids or
monogononts are more closely related to acanthocepha-
lans. As ribosomal proteins are favorable tools for meta-
zoan molecular phylogenetic analyses [18,30-32] and
easy to obtain from EST libraries, we compiled a phyloge-
nomic dataset comprising 79 ribosomal proteins. To this
end, we generated EST libraries for one monogonont (B.
plicatilis) and two acanthocephalans (P. laevis and E. trut-
tae; both Echinorhynchida) and sequenced 1,000–2,000
ESTs per library. The new sequences were complemented
with ortholog data from public databases for the
monogonont B. plicatilis, the bdelloid P. roseola and 25
additional metazoan taxa. Data of Seisonidea have not
been included in the present analysis as it is extremely dif-
ficult to obtain sufficient material for the preparation of a

cDNA library. As a beneficial side effect, the present tree
reconstruction cannot be disturbed by the observed long
branch leading to representatives of Seisonidea (see, e.g.,
[19,24]).

Results
Sequence analyses and ribosomal protein alignment
EST sequencing was performed for three syndermatan
species and complemented by sequences from public
databases (Tab. 1). A dataset containing the coding
sequences of 79 ribosomal proteins was extracted, and
derived amino acid sequences were concatenated. After
cleaning the raw data from ambiguously aligned posi-
tions, the final alignment had a length of 11,276 amino
acids. Fifteen to 29 species were sampled per protein type,
resulting in a taxon coverage ranging from 36 to 100%
outside Syndermata (see Additional files 1 and 2 for the
complete matrix of taxa and ribosomal proteins used and
the amino acid coverage of each ribosomal protein), and
28 to 89% within Syndermata, compared to the vertebrate
reference. Given the length of the complete dataset the
minimum coverage within the syndermatan sample (see
E. truttae in table 2) still represents 3,204 amino acid posi-
tions which is a considerable increase in data compared to
previous analyses of syndermatan phylogeny (e.g.,
[17,24]). The total coverage of Acanthocephala, however,
is much higher than suggested by the E. truttae data alone,
due to the additional 66% sequence coverage in P. laevis
(table 2).

Likelihood mapping analysis determined a strong phylo-
genetic signal in the data. In detail, 99.1% of the quartets
were fully resolved and none of the quartet-trees showed
a star-like topology (Fig. 2). Furthermore, we found no
evidence for horizontal gene transfer in the bdelloid data-
set, applying the test statistics proposed by Gladyshev et
al. [33]: As to be expected for ribosomal genes, the so-
called Alien Index was < 0 for each protein. We therefore
consider our dataset a sound basis for assessing the phyl-
ogenetic position of Syndermata within Spiralia, and for
answering the question of eurotatorian monophyly.

Table 1: List of the syndermatan species for which new data have been collected in the present analysis

Species Taxon Origin # EST # RP

Pomphorhynchus laevis Acanthocephala
(Palaeacanthocephala)

Gravel pit at Gimbsheim, Germany
(from host Barbus fluviatilis)

2.207 65

Echinorhynchus truttae Acanthocephala
(Palaeacanthocephala)

River Leine at Göttingen, Germany
(from host Salmo trutta fario)

1.440 23

Brachionus plicatilis Monogononta Lab culture + public data 2.000 16 (28)
Philodina roseola Bdelloidea Public data None 0 (72)

For Brachionus and Philodina the number of ribosomal proteins found in our EST datasets is shown outside brackets, the number in the combined 
datasets is within brackets. A complete list of taxa and ribosomal proteins used in this analysis can be found in Additional file 2.
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Phylogenetic reconstruction
Maximum likelihood and bayesian phylogenetic infer-
ence consistently support a monophyletic origin of Spi-
ralia, although with partly moderate support values
(PhyML < 50; Treefinder: 91; PhyloBayes: 0.93) (Fig. 3, 4,
5). Interestingly, only the PhyloBayes tree depicts the
widely accepted monophylum Ecdysozoa (e.g., [16]) so
that bayesian inference might provide more reliable
results than the maximum likelihood approaches
employed, given the present data (Fig. 3). Irrespective of
this detail, all three tree reconstruction methods yield
maximum support for a monophyletic origin of B. plicati-
lis, P. roseola, E. truttae and P. laevis and, thus, for the
monophyletic origin of the four syndermatan species cov-
ered by the present dataset (PhyML: 100; Treefinder: 100,
PhyloBayes: 1.00). Within the spiralian clade, Syndermata
either group with Platyhelminthes (PhyML: 59; Treef-
inder: 92) (Fig. 4 and 5) or with a clade comprising Platy-
helminthes, Bryozoa, Mollusca and Annelida

(PhyloBayes: 0.93) (Fig. 3). Remarkably, none of the tree
reconstruction methods supports a sister group relation-
ship of Monogononta and Bdelloidea. Instead, Bdelloidea
consistently appear more closely related to Acan-
thocephala than to Monogononta (PhyML: 78; Treef-
inder: 76; PhyloBayes: 0.83). The paraphyly of Eurotatoria
is further corroborated by results from hypothesis testing.
Thereafter, a grouping of Bdelloidea+Acanthocephala is
much more likely than the alternatives
Monogononta+Bdelloidea and Monogononta+Acan-
thocephala (Tab. 3). Final evidence for the robustness of
the present analysis comes from testing for the effect of
missing data in the full-length dataset on the results of tree
reconstruction [41]. Thus, the internal syndermatan phyl-
ogeny did not change when tree reconstruction was car-
ried out on the basis of a shorter dataset (24 ribosomal
proteins, 3,535 amino acid positions) in which all ribos-
omal protein sequences had orthologs in acanthocepha-
lans, bdelloids and monogononts. Support for a grouping
of Bdelloidea and Acanthocephala was even higher when
underlying this shorter dataset (PhyML: 83; Treefinder:
85; PhyloBayes: 0.92). Taken together our data suggest i)
Syndermata being Spiralia with a close phylogenetic rela-
tion to Platyhelminthes and ii) the paraphyly of Eurotato-
ria, with iii) Bdelloidea being more closely related to
Acanthocephala than to Monogononta.

Discussion
The phylogenetic position of Syndermata within Spiralia
has been described previously based on molecular data
such as 18S rRNA and 16SrRNA [15], 28S rRNA and 18S
rRNA [20], ribosomal proteins [18] and on morphologi-
cal characters like spiral cleavage, filiform sperm without
accessory centriole and the subepidermal cerebral gan-
glion [5]. Likewise, a close phylogenetic relationship of
Syndermata and Platyhelminthes within the spiralian
clade agrees well with results from previous molecular
and morphological approaches on metazoan phylogeny
(e.g., [15,18,20,34]). On the other hand, conflicting
results from the present tree reconstructions indicate that
even the analysis of up to 79 ribosomal proteins from up
to 29 species cannot settle the question of the definite
phylogenetic relationship of Syndermata and Platy-
helminthes. In agreement with Dunn et al. [34] we recom-
mend an enlarged taxon sampling and the incorporation

Table 2: Syndermatan coverage in the dataset

Species Taxon # amino acids % of coverage

Pomphorhynchus laevis Acanthocephala 7,430 65.89
Echinorhynchus truttae Acanthocephala 3,204 28.41
Brachionus plicatilis Monogononta 4,255 37.74
Philodina roseola Bdelloidea 10,005 88.73

Absolute number of amino acid positions used and relative coverage of the sequence alignment for the four syndermatan representatives analyzed 
in the present study.

Likelihood mapping of the concatenated alignmentFigure 2
Likelihood mapping of the concatenated alignment. 
Results from likelihood mapping of the concatenated ribos-
omal protein sequences from 29 species analysed in the 
present study. Note that 99.1% of all quartets were fully 
resolved and none of the quartets produced a star-like tree.
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of more closely related groups such as gnathostomulids
and micrognathozoans for resolving the question of the
sistergroup relationships of Syndermata and Gnathifera,
respectively.

In contrast to the still contradictory results regarding the
phylogenetic position of Syndermata within Spiralia, our

tree reconstructions consistently depict Bdelloidea as
more closely related to Acanthocephala than to
Monogononta, though with partly moderate support (Fig.
3, 4 and 5). As the moderate support values have been cal-
culated on the basis of the full-length dataset, they might
be due to missing data in one or more of the syndermatan
lineages sampled. This is at least suggested by the higher

Phylogenetic tree reconstruction using bayesian inference (Phylobayes)Figure 3
Phylogenetic tree reconstruction using bayesian inference (Phylobayes). Numbers at internal nodes represent pos-
terior probabilities. Syndermata are shown as a basal spiralian taxon. Moreover, Eurotatoria appear paraphyletic, with Bdelloi-
dea being more closely related to Acanthocephala than to Monogononta.
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statistical support for a clade Bdelloidea+Acanthocephala
that could be inferred from the shorter dataset without
these missing data (PhyML: 83; Treefinder: 85; Phy-
loBayes: 0.92). Regardless of differences in the support,
analyses of both datasets lead to the same topology
among the syndermatan representatives, whichever algo-

rithm was employed. We take this high nodal stability
(reflected also by unambiguous results from hypotheses
testing) as evidence for reliability of the found grouping of
Acanthocephala and Bdelloidea (see [35] for a discussion
of nodal stability in the formulation of phylogenetic
hypothesis). The future incorporation of EST data from

Phylogenetic tree reconstruction using maximum likelihood (PhyML)Figure 4
Phylogenetic tree reconstruction using maximum likelihood (PhyML). Numbers at internal nodes represent boot-
strap values. Syndermata are shown as a spiralian taxon, with a sistergroup relationship to Platyhelminthes. Moreover, Eurota-
toria appear paraphyletic, with Bdelloidea being more closely related to Acanthocephala than to Monogononta.
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Gnathostomulida and Micrognathozoa, and especially
their use as outgroup, will be necessary to yield improved
nodal support for the implicit paraphyly of Eurotatoria.

As another note of caution, one has to be aware that the
present results as well as consistent results from more lim-
ited datasets [24-26] could in principle be influenced by

an acceleration of sequence evolution on the branch of
the only monogonont sampled, i.e. B. plicatilis. It is thus
conceivable that a deviating mode of sequence evolution
in B. plicatilis (as described for hsp82 [28]) triggered an
attraction of the bdelloid and acanthocephalan branches.
On the other hand, this is not very likely as the tree recon-
struction methods employed herein (maximum likeli-

Phylogenetic tree reconstruction using maximum likelihood (Treefinder)Figure 5
Phylogenetic tree reconstruction using maximum likelihood (Treefinder). Numbers at internal nodes represent 
expected likelihood weights. Syndermata are shown as a spiralian taxon, with a sistergroup relationship to Platyhelminthes. 
Moreover, Eurotatoria appear paraphyletic, with Bdelloidea being more closely related to Acanthocephala than to 
Monogononta.
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hood and bayesian inference) are relatively robust to
long-branch attraction. Moreover, Eurotatoria appeared
paraphyletic in previous analyses comprising several
monogononts [17,19] which cannot be explained by
long-branch attraction due to an accelerated sequence
evolution in B. plicatilis. We therefore do not believe that
a faster sequence evolution along the B. plicatilis branch is
causative for the found clustering of Bdelloidea and Acan-
thocephala.

The present evidence for a paraphyly of Eurotatoria is in
apparent conflict with three out of the five competing
hypotheses on the intra-syndermatan phylogeny, i.e. the
Eurotatoria+Pararotatoria hypothesis (Fig. 1B), the classi-
cal Rotifera+Acanthocephala hypothesis (Fig. 1C), and
the Eurotatoria+Acanthocephala hypothesis (Fig. 1D). At
first sight, the observed grouping of Bdelloidea and Acan-
thocephala (under exclusion of Monogononta) rather
supports the predictions of the Lemniscea hypothesis of
Lorenzen ([23]). However, considering previous evidence
from morphological [5,9,12] and molecular data [24] as
well as from approaches combining both types of data
[25,29], it is still possible that Seisonidea represent the
true acanthocephalan sister taxon. However, it cannot be
ruled out that Seisonidea are the sistergroup of Bdelloi-
dea, Pararotatoria or Monogononta+Acanthocephala (see
single trees in [19,25]).

Given the uncertain phylogenetic position of Seisonidea
within Syndermata, one has to be cautious when inferring
the evolution of morphological characters. On the other
hand, the well supported closer relation of Bdelloidea to
Acanthocephala, with exclusion of Monogononta ([19],
present study), allows for some conclusions regarding the
evolution of morphological characters that are not bound
to the position of Seisonidea within Syndermata. It is thus
very likely that the rotatory organ or corona underwent a
(partial or total) reduction before the separation of Acan-
thocephala. A likewise reduction of a newly emerged char-
acter (wings) has for example been described in stick
insects (Phasmatodea; [36]). Therefore the reduction of
the rotatory organ only a few splits after its emergence at
the base or within the syndermatan tree is not as unlikely
as it might appear at first sight. Another implication of the
grouping of Acanthocephala and Bdelloidea is that a

retractable anterior end – whether in the shape of a ros-
trum in Bdelloidea or as a hooked proboscis in Acan-
thocephala – probably evolved before the separation of
the acanthocephalan stem lineage as well. The reduction
of the corona as well as the evolution of a retractable ante-
rior end can easily be explained by different life-styles and
patterns of locomotion in the syndermatan subtaxa: free
living/free swimming in Monogononta; leech-like creep-
ing/free living in Bdelloidea; leech-like creeping/epibion-
tic in Seisonidea; reduced motility/endoparasitic in
Acanthocephala (see also [24,37-39]). Particularly the
early evolution of a retractable anterior end might have
represented a key event leading to the later evolution of
the acanthocephalan endoparasitism, given the crucial
role of the proboscis in the anchoring of adult acan-
thocephalans to the definitive hosts' intestinal wall [40].

Conclusion
Based on a dataset comprising sequences from up to 79
ribosomal proteins of up to 29 species, we provide evi-
dence for the paraphyly of Eurotatoria. Irrespective of the
tree reconstruction method and dataset used (and addi-
tionally supported by hypothesis testing) we found Bdel-
loidea to be more closely related to Acanthocephala than
to Monogononta. Although data for Seisonidea have not
been included in the dataset, the present findings allow
for the rejection of three (Eurotatoria+Pararotatoria, Euro-
tatoria+Seisonidea, Eurotatoria+Acanthocephala) out of
the presently five competing hypothesis regarding the
phylogeny within Syndermata. On the other hand, addi-
tional data are needed to determine the actual acan-
thocephalan sistergroup (Seisonidea or Bdelloidea).
Irrespective of these limitations it is very likely that a (par-
tial or complete) reduction of the rotatory organ or corona
occurred before the separation of Acanthocephala. Like-
wise, a retractable anterior end most likely emerged before
the separation of the acanthocephalan stem lineage. Con-
sidering the importance of the proboscis for the attach-
ment of acanthocephalans to the definite host's intestinal
wall, the latter step can be regarded as a key event towards
the evolution of acanthocephalan endoparasitism.

Methods
Isolation of RNA and cDNA library construction
Total RNA was extracted from frozen pooled specimen
using column-based methods (Qiagen RNeasy Plant Mini
Kit, Qiagen, Hilden, Germany). Quality of RNA was visu-
ally checked on agarose gels and mRNA was subsequently
captured using the NucleoTrap mRNA kit (Macherey-
Nagel, Düren, Germany) for B. plicatilis and the polyAT-
ract mRNA Isolation System III (Promega, Mannheim,
Germany) for P. laevis and E. truttae. cDNA libraries were
constructed at the Max Planck Institute for Molecular
Genetics in Berlin (P. laevis) and the Institute of Molecular
Genetics, University of Mainz (E. truttae, B. plicatilis) by

Table 3: Results from hypotheses testing

Hypothesis ELW

Bdelloidea + Acanthocephala 1
Bdelloidea + Monogononta (Eurotatoria) 0
Monogononta + Acanthocephala 0

Results from hypotheses testing based on the three alternative 
Acanthocephala-sistergroup relationships covered by the present 
approach using the Expected Likelihood Weight (ELW) test.
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primer extension (P. laevis, B. plicatilis) or LD-PCR (E. trut-
tae), size fractionation and directional cloning applying
the Creator SMART cDNA Libraries Kit (Clontech, Heidel-
berg, Germany) with the vectors pDNR-LIB or a modified
pSPORT [41]. Clones containing cDNA inserts were
sequenced from the 5' end on ABI 3730 capillary
sequencer systems using BigDye chemistry (Applied Bio-
systems, Darmstadt, Germany).

EST processing
EST processing for P. laevis was accomplished at the
Center for Integrative Bioinformatics in Vienna. Sequence
chromatograms were first base-called and evaluated using
the Phred application [42]. Vector, adaptor, poly-A tract
and bacterial sequences were removed employing the
software tools Lucy http://www.tigr.org, SeqClean http://
compbio.dfci.harvard.edu/tgi/software, and CrossMatch
http://www.phrap.org, respectively. Clustering and
assembly of the clipped sequences was performed using
the TIGCL program package http://compbio.dfci.har
vard.edu/tgi/software by performing pairwise compari-
sons (MGIBlast) and a subsequent clustering step (CAP3).
Low quality regions were then removed by Lucy. Finally,
contigs were tentatively annotated by aligning them pair-
wise with the 25 best hits retrieved from NCBI's non-
redundant protein database using the BlastX algorithm
http://www.ncbi.nlm.nih.gov. Alignment and computa-
tion of the resulting match scores, on which the annota-
tion was based, were conducted by GeneWise [43] in
order to account for frame shift errors.

ESTs for E. truttae and B. plicatilis were processed semi-
automatically: removal of vector parts, polyA tails and bad
quality sequence from sequence traces was performed by
the SeqMan option of the DNASTAR program suite (Laser-
gene). Overlapping EST sequences were clustered using
SeqMan (Lasergene). For B. plicatilis publicly available
data from dbEST and the trace archives were included into
the clustering process, and public data for Philodina roseola
was clustered the same way. For annotation, EST cluster
consensus sequences and EST singletons were subjected to
BLASTX comparison against the SWISS-PROT protein
database at NCBI http://www.ncbi.nlm.nih.gov/, using a
BLAST client tool (Blastcl3, Blast software package, NCBI)
setting the cut-off to 1*e-10. The EST data used in our anal-
yses have been deposited in Genbank under the accession
numbers [GenBank: AM849482 – AM849546 (P. laevis),
AM980962 – AM980984 (E. truttae) and AM980946 –
AM980961 (B. plicatilis)].

Sequence analysis and ribosomal proteins alignment
Ribosomal protein sequences were extracted from the
newly obtained and publicly available EST data by their
annotation. EST sequence contigs were checked for assem-
bly errors by visual inspection and by comparison with

corresponding sequences of related taxa, and translated
into amino acid sequences. Gladyshev et al. [33] recently
reported evidence for gene aquisition by horizontal gene
transfer in two bdelloid species. Although it is unlikely
that ribosomal proteins are subject to horizontal gene
transfer, but as a precaution, we checked whether our data
are influenced by horizontal gene transfer or not. There-
fore we performed Blastp searches with our amino acid
sequences and calculated the 'Alien Index' as introduced
by Gladyshev et al. [33]. This index represents a measure
of the orders of magnitude by which the BLAST E-value for
the best metazoan hit differs from that for the best non-
metazoan hit [33]. Additional ribosomal protein data
were retrieved from the alignments compiled by Hausdorf
et al. [18]. All ribosomal protein sequences obtained were
aligned by the ClustalW algorithm using default parame-
ters [44]. The resulting ribosomal protein alignments were
inspected and adjusted manually for obviously mis-
aligned positions using GeneDoc [45]. Questionably
aligned positions were eliminated with GBlocks [46]
using less stringent parameters. To test for the effect of
missing data on present results [47], we assembled an
additional dataset (24 ribosomal proteins, 3,535 amino
acids) from which ribosomal protein sequences without
acanthocephalan, bdelloid and/or monogonont
orthologs were removed.

Phylogenetic reconstruction
The content of phylogenetic information of the align-
ments was estimated by the likelihood mapping approach
as implemented in Tree-Puzzle 5.2 [48,49], testing all
23,751 possible quartets with exact parameter estimation.

Bayesian inference analyses based on the site-heteroge-
nous CAT model (which allows the amino-acid replace-
ment pattern to vary across a protein alignment; [50])
were performed using PhyloBayes v2.1c [51]. Two inde-
pendent chains were run simultaneously for 11,210
points each. Chain equilibrium was estimated by plotting
the log-likelihood and the alpha parameter as a function
of the generation number. The first 500 points were sub-
sequently discarded as burn-in. According to the diver-
gence of bipartition frequencies, both chains reached
convergence (maximal difference <0.08, mean difference
<0.003), supported by the fact that both chains produced
the same consensus tree topology. Taking every 10th sam-
pled tree, a 50% majority rule consensus tree was finally
computed using both chains.

ProtTest [52] was used to assess the appropriate model of
sequence evolution for maximum likelihood-based tree
reconstruction. As ribosomal proteins are likely to evolve
similarly, the model was determined for the concatenated
dataset, instead of for each single protein. Analyses were
then conducted using PhyML [53] and Treefinder [54,55]
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with the rtREV+I+G+F substitution model [56] and 500
bootstrap replicates. Confidence values for the edges of
the maximum likelihood tree (Treefinder) were computed
by applying expected likelihood weights (ELWs) [57] to
all local rearrangements of tree topology around an edge
(1,000 replications). Trees produced in the course of the
analysis were further edited using TreeView [58].

To test predefined phylogenetic hypotheses, we used con-
strained trees and the 'resolve multifurcations' option of
Treefinder to obtain the maximum likelihood tree for a
specified hypothesis. Thereafter we investigated whether
the maximum likelihood trees for these hypotheses are
part of the confidence set of trees applying the expected
likelihood weights method [57].
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