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Abstract

The Puerto Rico population may be modeled as an admixed population with contributions from three continents: Sub-
Saharan Africa, Ancient America, and Europe. Extending the study of the genetics of inflammatory bowel disease (IBD) to an
admixed population such as Puerto Rico has the potential to shed light on IBD genes identified in studies of European
populations, find new genes contributing to IBD susceptibility, and provide basic information on IBD for the care of US
patients of Puerto Rican and Latino descent. In order to study the association between immune-related genes and Crohn’s
disease (CD) and ulcerative colitis (UC) in Puerto Rico, we genotyped 1159 Puerto Rican cases, controls, and family members
with the ImmunoChip. We also genotyped 832 subjects from the Human Genome Diversity Panel to provide data for
estimation of global and local continental ancestry. Association of SNPs was tested by logistic regression corrected for
global continental descent and family structure. We observed the association between Crohn’s disease and NOD2
(rs17313265, 0.28 in CD, 0.19 in controls, OR 1.5, p = 961026) and IL23R (rs11209026, 0.026 in CD, 0.0.071 in controls, OR 0.4,
p = 3.861024). The haplotype structure of both regions resembled that reported for European populations and ‘‘local’’
continental ancestry of the IL23R gene was almost entirely of European descent. We also observed suggestive evidence for
the association of the BAZ1A promoter SNP with CD (rs1200332, 0.45 in CD, 0.35 in controls, OR 1.5, p = 261026). Our
estimate of continental ancestry surrounding this SNP suggested an origin in Ancient America for this putative susceptibility
region. Our observations underscored the great difference between global continental ancestry and local continental
ancestry at the level of the individual gene, particularly for immune-related loci.
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Introduction

Meta-analyses of genome-wide association studies (GWAS) by

an international effort have now identified over 160 genomic

regions contributing to the inflammatory bowel diseases (IBD),

Crohn’s disease (CD) and ulcerative colitis (UC) in populations of

European descent.[1–3] Many of these genes overlap with genes

for other immune-related traits such as psoriasis and ankylosing

spondylitis.

Studies of populations of African and Asian descent suggest that

the study of IBD genetics in non-European populations may show:

1) same gene, same SNPs, but stronger effects than what has been

observed in populations of European descent, for example

TNFSF15; [4,5] 2) same gene, different SNPs than what has

been observed in populations of European descent, for example

NOD2; [6] as well as 3) different gene, different SNPs contributing

to susceptibility. [7] When taken together with the large number of

mouse models of intestinal inflammation, these human results

support the concept that multiple pathways lead to intestinal

inflammation, and that, just as in different mouse strains, different

combinations of susceptibility loci may act in different human

populations. [8,9].

Populations from three continents have contributed to the

current genetic composition of Puerto Rico. Prior to the European

explorations of the 16th century, there were at least four waves of

Native American migration to the island, interspersed with

extensive periods of intermixture across the Caribbean. The last

of these, the Taı́no population, was present on the island at the

time of Spanish colonization. [10] Concomitant with European

colonization, the Taı́no suffered a genetic bottleneck from

extensive deaths by disease, particularly influenza and smallpox,

by the harsh conditions of slavery, and by warfare with the

European colonists. [11] Import of slaves from West Africa began

in 1513 in order to keep the sugar industry economically viable; in

the same year Spanish citizens were granted the right to marry

Taı́no by the Spanish crown. Multiple migrations of both Puerto

Ricans and of Africans have occurred back and forth across the

Caribbean up to the present day. Thus, the population of Puerto
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Rico may be modeled as an admixed population with contribu-

tions from three continental areas: Sub-Saharan Africa, from the

slave trade, America, from the extensive migrations of Native

Americans prior to colonization, and Europe, from the coloniza-

tion of the ‘‘New World’’ by European powers. [12,13].

This admixture affords a unique opportunity for IBD gene

identification. Three continental ancestries undergoing different

selection pressures have the potential to create genomic combi-

nations that may augment or diminish the effect of a given locus.

Since the Puerto Ricans have European ancestry, different

combinations may shed light on loci already identified in the

extensive genetic studies of IBD in populations of European

descent. While discovered in European populations, the effect of

some of these may be easier to study in an admixed population. In

addition, new IBD loci may also be detected; identification of these

is important not only for Puerto Rico, but for all US urban centers

with admixed populations.

The ImmunoChip was developed by a consortium of investi-

gators studying the genetics of immune-related disorders, includ-

ing the International IBD Genetics community. Genotyping with

this chip using Illumina technology provided the opportunity to

obtain an initial examination of already identified IBD genes in the

Puerto Rico population as well as to study genes associated with

other immune-related disorders at a cost significantly less than that

for a genome-wide association study (Illumina, San Diego, CA).

[3,14].

Methods

Subjects from Puerto Rico
The subjects in this study were recruited between 2002 and

2011 and are summarized in Table 1. Puerto Ricans with an

established diagnosis of Inflammatory Bowel Disease (IBD;

Crohn’s Disease, CD, 406; Ulcerative Colitis, UC, 244; Indeter-

minate Colitis, 5) were recruited from the University of Puerto

Rico Center for Inflammatory Bowel Diseases as well as IBD

support groups and community gastroenterology practices as part

of the NIDDK IBD Genetics Research Consortium.[15–18]

Recruitment was not focused on any specific clinical features of

IBD. Control samples were also collected from a) both parents of

an IBD patient, without regard to their IBD status (81 CD

families, 39 UC families) or b) spouse or friends of the same age

and geographic area. In order to increase the homogeneity of our

genetic sample, all patients were required to have both parents and

all grandparents with Puerto Rican descent. Data on disease

characteristics were extracted from surgical, endoscopic, radiolog-

ical, and histopathological reports on medical records. Blood

samples of 51 ml were obtained from each subject and sent to the

Cedars-Sinai Medical Center Genetics for isolation of serum,

extraction of DNA, and establishing of EBV-transformed

lymphoblastoid cell lines. This study was approved by the

Institutional Review Boards of the University of Puerto Rico,

the Los Angeles Biomedical Research Institute, and the Cedars-

Sinai Medical Center.

Subjects from the Human Genome Diversity Project
DNA samples for the subjects in the Human Genome Diversity

Project (HGDP) were obtained from CEPH. This project has been

described elsewhere, including the consenting methods and

approvals for the various populations in this panel.[19–21]

Additional DNA samples were obtained from the Coriell

repository: Karitiana-Rondonia and Surui-Rondonia of Brazil (5

samples each); Mayan-Campeche of Yucatan (2 samples); Pima of

Northwest Mexico (5 samples); Quecha of Andes (5 samples); other

Andes (5 samples); Auca of Ecuador (1 sample); and an African

panel (Yoruban, Biaka, Mbuti, Bantu). Overlap with the CEPH-

HGDP was identified upon genotyping and removed. Use of these

DNAs as de-identified population controls in this project was also

approved by the Institutional Review Boards of the University of

Puerto Rico, the Los Angeles Biomedical Research Institute, and

the Cedars-Sinai Medical Center.

Genotyping
DNA was isolated from approximately one million cells from

the EBV-transformed cell lines using Qiagen columns following

the manufacturer’s instructions (Qiagen, Valencia, CA). Genotyp-

ing was performed using the ImmunoChip (Illumina, San Diego,

CA) developed by an international consortium of investigators

studying major immune-related diseases such as Crohn’s disease,

ulcerative colitis, rheumatoid arthritis, ankylosing spondylitis,

systemic lupus erythematosus, autoimmune thyroid disease, celiac

disease, and multiple sclerosis. [14] Because the iChip is a custom

designed chip and the Puerto Rican and HGDP subjects are very

genetically diverse, quality control included testing for overall

intensity of dye reactions, for balance between both dyes in this

two-dye system, for differential missing data across genotyping

runs, for adequate separation between genotype clusters as well as

number of clusters, for Hardy-Weinberg equilibrium, and for

abnormal cluster patterns indicating missing alleles or other assay

problems due to genetic variation across the various populations.

Monomorphic SNPs or SNPs with a minor allele frequency (MAF)

less than 0.005 were also removed. Over 12,000 cluster plots were

manually reviewed for this study, many by more than one

investigator. As a final quality control measure, all SNPs in this

report have been reviewed again prior to publication. A dataset of

1159 Puerto Rican and 832 HGDP samples for 155,868 SNPs was

available to this study.

Estimate of ‘‘global’’ or ‘‘genomic’’ continental ancestry
The SNP dataset was thinned to 20,812 SNPs without pairwise

linkage disequilibrium using PLINK. [22] Principal components

analysis was conducted following standard methods. [23,24] The

proportion of ancestry from populations from Africa, Europe, and

Ancient America (Mexico, Central, and South America) was

determined for each Puerto Rican subject by performing a

supervised analysis using Admixture 1.22. [25,26] We defined

‘‘Africa’’ by subjects from the Bantu, Biaka, Mandenkan, Mbuti,

San, and Yoruban populations (AFR; 126 subjects), ‘‘Europe’’ by

subjects from the Adygei, Basque, French, Italian, Orcadia,

Russia, Sardinia, and Tuscan populations (EUR; 136 subjects),

and ‘‘America’’ by subjects from the Andean, Auca, Karitiana,

Mayan, Piapoco, Pima, Quecha, and Surui populations (AMR; 98

subjects). Note that in this paper, ‘‘America’’ is an abbreviation to

refer to the terms ‘‘Ancient Americans,’’ ‘‘Native Americans’’ or

‘‘Meso-Americans.’’ The estimates for African and American

continental proportions were then used as covariates to correct for

global admixture in the analyses described below.

Association analyses
In order to use as many of the cases, controls, and family

members in this study as possible, association of each SNP with

disease was tested by fitting an additive logistic regression model

via Generalized Estimating Equations (GEE), with correction for

familial correlation and for African and American continental

ancestry. This method has been implemented in R as the GWAF

package. [27] For convenience, Haploview v4.2 [28] was also used

to examine haplotype relationships and linkage disequilibrium,

though this program does not allow for the necessary covariate
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adjustments for this study. We therefore report the p-values from

these studies only for making relative comparisons between

haplotypes. When frequencies of alleles or haplotypes are

reported, the family members were excluded from the determi-

nation.

Estimate of ‘‘locus’’ or ‘‘local’’ continental ancestry
The continental origin of a locus was estimated using a multi-

step, locus-specific ancestry method specifically designed for three-

way admixed populations (LAMP-LD). [29,30] For this analysis,

African (AFR), American (AMR) and European (EUR) continen-

tal groups were defined as above. (1) SNP data for each locus was

extracted from the HGDP+Coriell samples separately for the

European, American, and African continental populations. (2)

Haplotypes for the given locus were reconstructed using

fastPHASE,[31–33] again keeping the three continental groups

separate. (3) SNP data for the locus was extracted separately for

Puerto Rican cases and controls and processed using Perl scripts

for input into LAMPLD. (4) LAMPLD was applied to the case and

control data along with the three continental haplotype sets for

training the algorithm. Window size was set at 50 and number of

states at 15, reflecting the recommendations of the authors in their

paper for the Puerto Rican population. [30] On the whole,

separating cases and controls did not result in major differences in

local ancestry, so these were combined for plotting in the figures.

Results

The Puerto Rican subjects genotyped in this study are

summarized in Table 1. 1159 Puerto Rican subjects and 832

subjects from the Human Genome Diversity Project (HGDP) were

genotyped for 155,868 SNPs with a call rate for each SNP greater

than 98% across all samples. Genotype concordance between

duplicate samples was greater than 99.999%. Extensive manual

review of cluster plots was necessary due to the multiple

populations represented in the subjects.

‘‘Global’’ continental ancestry
The SNP data were pruned for pairwise linkage disequilibrium

and principal components analysis was conducted using 20,812

SNPs. Data from the entire HGDP was included in this analysis.

As expected from previous work and from the history of Puerto

Rico, the subjects in this study had a mixture of African (AFR,

dark blue), European (EUR, red), and American (AMR or green)

ancestry (Figure 1a). HGDP subjects not originating from these

three continents are shown in black. Global continental ancestry

was estimated for each subject using Admixture 1.2 in a supervised

analysis. Haplotypes with African, European, and American

continental ancestry were modeled using data from Sub-Saharan

African, European, and American populations pooled as defined

in Methods (Figure 1b). In addition to the modeled ancestries of

the controls, Figure 1b also shows the proportion of these three

continental ancestries for all of the Puerto Rican subjects, sorted

from left to right by proportion of ancestry from West Africa. The

median ancestries across all Puerto Rican subjects were 14%

African, 74% European, and 12% American. The proportions of

African and American ancestry for each subject were then used as

covariates in the association analyses to correct for population

stratification.

Association with previously identified IBD loci
Because the Puerto Rican subjects included family members,

affected cases, and unrelated controls, we performed a logistic

regression analysis for each SNP, correcting for family structure

and African and American global continental ancestry using

GWAF. This method makes use of most of the available data. We

first examined the SNPs that have been previously identified for

CD, UC, or IBD in European GWAS studies (Table 2). [3].

NOD2. Puerto Rican CD was associated with NOD2 SNP

rs17313265 (Table 2). The haplotype structure of NOD2 (dbGene

64127) in Puerto Rico was similar to that in European populations

in that three disease predisposing variants, SNP8 (rs2066844),

SNP12 (rs2066845), and SNP13 (rs5743293), are each in linkage

disequilibrium with either SNP5 (rs2066842) or SNP6 (rs2066843;

Table 3). [34] The association was mainly in NOD2 (Figure S1A,

upper, in File S1); a conditional analysis demonstrated that all of

the association observed at this locus in Puerto Ricans was

explained by the European SNPs (data not shown). None of the

three European IBD susceptibility haplotypes were present in

HGDP Africans, and only one was observed in HGDP Americans

(Table 3). The local continental ancestry at NOD2 in Puerto

Ricans was mostly European with very little African ancestry

(Figure S1A, lower, in File S1).

IL23R. CD in Puerto Rico was associated with the previously

reported non-synonymous IL23R R381Q SNP (dbGene 149233;

rs11209026, Table 2). A conditional analysis showed that this SNP

accounts for the association in this genomic region in Puerto

Table 1. Description of study subjects.

Category Crohn’s Disease Ulcerative Colitis Indeterminate Colitis Not Affected

CASE CONTROL ANALYSES 403 240 5 274

GWAF ANALYSES 406 244 5 504

DETAILS OF SUBJECTS

Number of families 80 39

Number index cases in families 80 39

Number of additional affecteds in families 3 4

Number of unaffected in families 230

Number of affecteds not in families 323 201 5

Number of unaffecteds not in families 274

Proportion of females 0.48 0.55

Mean age at diagnosis (yr) 26 31

doi:10.1371/journal.pone.0108204.t001
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Figure 1. ‘‘Global’’ continental ancestry in Puerto Rican subjects. A. Principal components analysis of the combined Puerto Rican and HGDP
subjects. B. ‘‘Global’’ continental ancestry was estimated using Admixture 1.2 in an analysis supervised by data from HGDP populations as described
in Methods (AFR, sub-Saharan African continent, dark blue; EUR, European continent, red; and AMR, Mexico, Central and South America continents,
green). HGDP subjects not originating from these three continents are black. Puerto Rican subjects were sorted left-to-right based on ancestry from
the African continent.
doi:10.1371/journal.pone.0108204.g001
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Ricans (data not shown). The association was confined to the

IL23R gene (Figure S1B, upper, in File S1) and the local

continental ancestry was entirely European (Figure S1B, lower, in

File S1).

Major Histocompatibility Complex (MHC). CD was

associated with rs9501161 located in the NELFE gene (also

known as RDBP, dbGene 7936). The complicated linkage

disequilibrium structure of the MHC is well-known such that the

association is not localized by this observation.

GALC/GPR65. An association with UC was also observed in

the GALC/GPR65 region (Table 2; Figure S1C, upper, in File

S1). The association was observed in a region with increased

American and decreased European ancestry (Figure S1C, lower, in

File S1).

Association with other loci included on the ImmunoChip
There were additional associations with SNPs on the Immu-

noChip contributed by consortia representing diseases other than

IBD.

LCE complex. Multiple associations with IBD combined

were observed in part of a complex of ‘‘late cornified envelope’’

genes with a peak at LCE1E (dbGene 353135; Table 4; Figure

S2A, upper, in File S1). This association was located in a region of

predominantly African continental ancestry (Figure S2A, lower, in

File S1).

DENND1A. A peak association with UC was observed at

rs677987 in DENND1A (dbGene 57706; Table 4) with additional

associations at rs2041545 and rs677987 (beta 0.56, p = 1.261025).

However, there were not enough SNPs on the ImmunoChip to

perform the continental ancestry analysis for this gene.

BAZ1A. An association with CD was observed for the

promoter of BAZ1A at a level of significance of 2.361026 in the

GWAF (dbGene 11177; Table 4; Figure S2B, upper, in File S1).

When corrected for multiple comparisons, this level is not genome-

wide significant (1028), nor significant after correction for the

number of SNPs studied (0.05/155,868 = 3.261027), nor after

correction for the number of independent signals in the SNP data

(0.05/approximately 25,000 when pruned for linkage disequilib-

rium times 3 phenotypes = 6.761027). However, the GWAF qq-

plot suggested some deviation from the null for rs1200332 (red

point, Figure S3, in File S1). The continental origin of this

genomic region was predominantly American (Figure S2B, lower,

in File S1).

BCAR1/CFDP1/TMEM170A. Multiple associations with

UC were observed across the region spanning BCAR1 to

TMEM170A (gene (BCAR1, dbGene 9564; CFDP1, dbGene

10428; TMEM170A, dbGene 124491; Table 4; Figure S2C,

upper, in File S1). The continental origin of this genomic region

was predominantly European (Figure S2C, lower, in File S1).

Discussion

In this study we have genotyped a cohort of subjects from

Puerto Rico comprising Crohn’s disease (CD), ulcerative colitis

(UC), and ‘‘No IBD’’ controls with the Illumina ImmunoChip

(iChip, Illumina, San Diego, CA). In order to provide data for

estimating the continental ancestry of interesting regions, we

genotyped 832 subjects of the Human Genome Diversity Panel

(HGDP) with the same chip at the same time. The design of the

iChip has allowed the testing of the association between

inflammatory bowel disease (IBD) and genes previously associated

with IBD in European populations. [3] In addition, we have been

able to test other immune-related genes contributed by consortia

studying other immune-related diseases. [14] Since ascertainment
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of subjects has followed both a case/control design and a family

design, we have employed logistic regression corrected for family

structure in order to make use of most of the available data

(GWAF). Furthermore, we have trained our estimates of

continental ancestry using the HGDP data. These estimates are

a first step to understanding the additional genetic association in a

three-way admixed population and our observations underscore

the concept that ‘‘local’’ continental ancestry at a given locus may

be very different from ‘‘global’’ continental ancestry across a

population, particularly for genes related to the human immune

system.

We observed the association of genes originally identified in

European populations in Puerto Rican CD: NOD2, IL23R, the

MHC, and GALC/GPR65. The NOD2 haplotype structure of

Puerto Ricans resembled that of Europeans previously reported

(Tables 2 and 3).[34–36] The continental origin of the IL23R

gene in Puerto Ricans was almost entirely of European origin.

These results may indicate that NOD2 and IL23R segments of

European ancestry contribute to CD in Puerto Ricans. In contrast,

we also observed an association with the GALC/GPR65 genes in

a region with an excess contribution from the American continent

in Puerto Ricans. The significance of this association in Puerto Rican

UC was of the same order of magnitude as that of IL23R for CD, but

association in European populations is far lower for GALC/GPR65

than for IL23R (www.broadinstitute.org/mpg/ricopili). [3] This

difference may be due to Ancient American-derived GALC/GPR65

variation or to European-derived variation in a Puerto Rican

‘‘genetic background.’’

In addition, we observed some evidence consistent with an

association between CD and a SNP in the promoter of the BAZ1A

gene, at the end of a region included on the ImmunoChip in order

to fine-map a psoriasis susceptibility locus. [37] The observed p-

value was not significant when corrected for multiple comparisons

but showed some deviation from the null on the qq-plot. The

association was located in a region almost completely of American

ancestry. Expression studies have demonstrated that BAZ1A is

expressed in intestinal tissue (GDS559, GDS2642, GDS3119) as

well as altered expression in response to zymosan and to

lipopolysaccharide (dbGEO GDS310, GDS2216, GDS2686).

The SNP itself alters a binding site for the transcription factors

Sp1 (Transfac M000008) and MZF1 (Transfac M00083). This

evidence, along with our result, raise the possibility that BAZ1A of

American origin contributes to IBD when admixed with European

and African continental ancestry. Testing this hypothesis with a

more complete fine-mapping study of this gene in populations with

American ancestry is therefore warranted.

In conclusion, we have observed that NOD2 and IL23R

genomic regions of European descent contribute to CD in Puerto

Rico. In addition, our observations suggest that the promise of the

study of IBD in non-European populations is realizable: that the

study of different genes with different continental ancestries

admixed in different proportions will contribute to the under-

standing of the genetics of IBD in all populations.

Supporting Information

File S1 File S1 contains Supplemental Figures, includ-
ing regional plots of associations and regional plots of
local continental ancestry for NOD2, IL23R, GPR65,
LCE complex, BAZ1A, and BCAR1/CFDP1, as well as a
‘‘qqplot’’ for BAZ1A.

(PDF)
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