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Abstract

Deciphering the potential of noncoding loci to influence gene regulation has been the

subject of intense research, with important implications in understanding genetic

underpinnings of human diseases. Massively parallel reporter assays (MPRAs) can

measure regulatory activity of thousands of DNA sequences and their variants in a

single experiment. With increasing number of publically available MPRA data sets,

one can now develop data‐driven models which, given a DNA sequence, predict its

regulatory activity. Here, we performed a comprehensive meta‐analysis of several

MPRA data sets in a variety of cellular contexts. We first applied an ensemble of

methods to predict MPRA output in each context and observed that the most

predictive features are consistent across data sets. We then demonstrate that

predictive models trained in one cellular context can be used to predict MPRA output

in another, with loss of accuracy attributed to cell‐type‐specific features. Finally, we

show that our approach achieves top performance in the Fifth Critical Assessment of

Genome Interpretation “Regulation Saturation” Challenge for predicting effects of

single‐nucleotide variants. Overall, our analysis provides insights into how MPRA

data can be leveraged to highlight functional regulatory regions throughout the

genome and can guide effective design of future experiments by better prioritizing

regions of interest.
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1 | INTRODUCTION

Massively parallel reporter assays (MPRA; Weingarten‐Gabbay &

Segal, 2014) provide cost‐effective, high‐throughput activity

screening of thousands of sequences and their variants for regulatory

activity (Kheradpour et al., 2013; Melnikov et al., 2012; Mogno,

Kwasnieski, & Cohen, 2013; Patwardhan et al., 2012; Sharon et al.,

2012; Smith et al., 2013). In these assays, a library of putative

regulatory elements is cloned and then transfected or infected into

cells of interest. Each element is either associated with a unique

barcode or can serve as a unique barcode itself (Arnold et al., 2013).

The activity associated with each given regulatory element (i.e.,

MPRA output) is assessed by sequencing the transcribed barcodes

and estimating the ratio between the transcribed RNA and the

construct’s DNA. As MPRA is still a nascent technology, the

development of computational tools that take advantage of existing

MPRA data sets could help improve future MPRA candidate

sequence selection, enhance our ability to predict functional
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regulatory sequences, and increase our understanding of the

regulatory code and how its alteration can lead to phenotypic

consequences.

Previous work have used single MPRA data sets to better identify

functional DNA sequences and then study the features that make a

sequence regulatory active (Grossman et al., 2017; Lee et al., 2015;

Sharon et al., 2012). For example, in the expression quantitative trait

loci (eQTL) causal SNP challenge of the Fourth Critical Assessment of

Genome Interpretation (CAGI4) community experiment, participants

developed methods for predicting regulatory activity of candidate

genomic regions and the effect of minor variants on their regulatory

potential in MPRA (Beer, 2017; Kreimer et al., 2017; Zeng, Edwards,

Guo, & Gifford, 2017). The main lessons learned from this community

effort highlighted the effectiveness of ensembles of nonlinear

methods, especially when used on features related to transcription

factor (TF) binding and chromatin accessibility. Interestingly, epige-

netic properties predicted from DNA sequence (Alipanahi, Delong,

Weirauch, & Frey, 2015; Zeng, Hashimoto, Kang, & Gifford, 2016; J.

Zhou & Troyanskaya, 2015) were shown to be more predictive

features than experimentally measured epigenetic properties.

Although these efforts provided an important first step, each of

them focused on a single MPRA data set in a specific cellular context.

Critical questions, therefore, remain as to how generalizable the

insights from MPRA experiments are to other data sets or other

cellular contexts. Here, we present a first comprehensive analysis of

several MPRA data sets collected by different labs and in various

cellular systems; these data sets explore the effect of endogenous

loci in several different cell‐types. We derive a large set of properties

to characterize each putative regulatory region and compare the

performance of different methods and features for predicting MPRA

output. We show that MPRA activity is predictable and that

prediction methods tend to perform consistently well when tested

on different data sets, with better performance for nonlinear

methods and favorable results when using an ensemble approach.

Consistently, the predictive capacity of individual features is

comparable across data sets, with TF binding and epigenetic

properties being the top predictors.

We next turned to investigate the generalizability of our models

across data sets, which allowed us to distinguish between determi-

nants of MPRA activity that are dependent on the cellular context

(e.g., protein milieu in the cell) versus ones that are intrinsic to the

DNA sequence. Here, we demonstrate that predictive models trained

in one cellular context can be used to predict the MPRA output in

another with reduced prediction power and that, as expected,

regions whose activity is cell‐type specific are harder to predict in

this cross‐ data set setting. We also observe that gene expression of

TFs is overall consistent with the predictive ability of their binding

instances, with highly expressed TFs being generally more predictive

of MPRA activity. When comparing pairs of data sets for TFs that are

predictive of MPRA activity, we notice that in some cases, TFs with

cell‐type‐specific functionality are better predictors in that cell‐type.
In addition, we wanted to evaluate the applicability of our

predictive models in studying the function of naturally occurring

mutations. We, therefore, tested the ability of our framework to

detect the effects of small variants—single‐nucleotide variants (SNV)

or short insertions or deletions (indels)—on MPRA activity and

achieved similar accuracy to the state of the art methods (Zeng et al.,

2017). Finally, we applied our approach to the Regulation Saturation

challenge of the Fifth Critical Assessment of Genome Interpretation

(CAGI5), and demonstrate that it achieves top performance in

identifying functional effects of SNVs in supervised settings.

2 | METHODS

2.1 | MPRA data sets

We used five publicly available MPRA data sets and one unpublished

data set. (a) K562—putative regulatory regions (Kwasnieski et al., 2014)

selected from ENCODE‐based annotated regions in K562 cells (Encode‐
Project‐Consortium, 2012; Ernst & Kellis, 2010; Hoffman et al., 2013).

This set includes 600 regions annotated as enhancers, 600 as weak

enhancers, 300 as repressed in K562 cell line, 600 enhancer predictions

from the H1hESC cell line that are not annotated as weak enhancers or

enhancers in K562 cells, and 1,136 negative controls—random sequences

from each class above were chosen and scrambled while maintaining

dinucleotide content. The regions range from 121 to 130 base pairs and

were tested in episomal context in K562 cells. Data from all sequences

were used to fit MPRAnalyze, although only the 1,500 regions annotated

with the K562 cell line were used in the remaining analyses. (b) LCL‐eQTL

—78,738 regions (Tewhey et al., 2016) that contain an eQTL in LCLs, 150

base pairs, tested in episomal context in LCL. (c) HepG2‐eQTL—the same

set of elements (Tewhey et al., 2016) as above, tested in episomal context

in HepG2 cell line instead of LCL. For both data sets 2 and 3, all of the

78,738 regions were used to fit MPRAnalyze, whereas 3,044 regions

corresponding to the first test group in the CAGI4 challenge (Kreimer

et al., 2017) were used for the remaining analyses. (d) HepG2‐chr—2,236

candidate liver enhancers (Fumitaka Inoue et al., 2017) and 102 positive

and 102 negative control sequences. Each sequence is 171 base pairs and

tested in chromosomal context. (e) HepG2‐epi— the same set of elements

(Inoue et al., 2017) as above, tested in episomal context. For both data

sets 4 and 5, all regions were used to fit MPRAnalyze and the 2,236

candidate enhancer regions were used for the remaining analyses. (f)

hESC—2,464 putative enhancer regions (Inoue et al., 2018) and 200

negative controls. Each region is 171 base pairs and tested in

chromosomal context in hESC cell line. All regions were used to fit

MPRAnalyze, whereas only the 2,268 candidate enhancer regions were

used for the remaining analyses.

2.2 | Quantifying activity of regions using
MPRAnalyze

For each data set, we obtain the RNA and DNA raw counts for each

barcode. We obtain a quantitative measure of enhancer‐induced
transcription using MPRAnalyze (Ashuach et al., 2019). MPRAnalyze

assumes a linear relationship between the RNA and DNA counts,

with the scaling parameter, denoted ɑ, as the transcription rate. The
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method uses a parametric graphical model to incorporate external

covariates and dispersion estimates into quantifying ɑ.

The MPRAnalyze model assumes the DNA counts are

Gamma‐distributed and that given the latent plasmid count, the

RNA counts are Poisson‐distributed centered around the product of

the plasmid count and ɑ. This results in a closed‐form negative‐
binomial likelihood function for the RNA counts. External covariates

such as barcode effect, batch effects and conditions of interest are

then incorporated into the model by constructing a pair of nested

generalized linear models: One using the DNA counts to estimate the

latent plasmid counts, and the other using these latent plasmid

counts along with the RNA raw counts to estimate ɑ.

Classification of active/inactive enhancers is done by using the

fitted ɑ values. If a data set has control regions (K562 and hESC), we

first calculate a robust version of the standard score from the ɑ

values by subtracting the median over the control regions and

dividing by the median absolute deviation (MAD) of the control

regions. If no control region exists for the data set, we perform the

previous step with the median and MAD over all regions instead of

just the control regions. We then compute the survival function for

each standard score and apply the Benjamini–Hochberg (BH)

correction. The active regions are then defined as regions with a

false discovery rate (FDR) of less than 0.05.

2.3 | Features

We assessed the correlation of 56 single features (Table S1) with

MPRA activity.

(a) #GC; #polyA, #polyT—number of G/C in the sequence; length of

longest polyA/T subsequence. (b) #5‐mers—number of distinct 5‐mers in

the sequence. (c) MGW, Roll, ProT, HelT—DNA shape features (T. Zhou

et al., 2013) quantifying minor groove width, roll, propeller twist, and

helix twist. (d) Conservation—evolutionary conservation score of region as

predicted by phastCons (Siepel et al., 2005). (e) Closest Gene Expression—

expression (TPM) of the closest gene from RNA‐seq data in the

corresponding cell‐type. (f) Promoter, Exon, Intron, Distal —binary features

indicating whether the element intersects a promoter, exon, and intron.

Distal is defined to be 1 if the element does not intersect with either

promoter, exon, or intron annotations. (g) #motifs, Motif Density—number

of significant DNA‐binding ENCODE motifs (Encode‐Project‐Consortium,

2012) from simple DNA‐binding motif scoring (Grant et al., 2011),

maximum number of motifs within a 20bp window in the sequence. (h)

#deepsea‐top, #deepbind‐top—number of TFs quantifications above 90th

percentile across all the regions predicted by DeepSEA / DeepBind. (a)

#tf‐high, #tf‐med, #tf‐low—number of TFs that are bound above 90th

percentile by DeepBind and rank in the top, middle, or bottom 100 (out of

515) for RNA‐seq TPM in the relevant cell‐type. Note that for both (h)

and (i), we do not retrain the DeepSEA and DeepBind models with

additional data, but instead use the pre‐trained models to score each

MPRA sequence. (j) <factor>[Cell] Mean, TFBS Shuffled Mean—mean across

subsets of Experimental features. <factor> can be TFBS, DNase, CTCF, Ezh2,

H2az, H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me1, H3K9me3,

H3K27ac3, H3K27me3, H3K36me3, H3K79me2, H4K20me1, P300. For

these factors we take the mean of the binary overlaps over all

corresponding [, cell‐type specific to the data set’s cell‐type,] Experimental

features. TFBS Shuffled Mean is the mean across n non cell‐type specific,

randomly chosen TFBS features, where n is the number of features in

TFBS Cell Mean.

2.4 | Statistical tests

We examine the predictivity of features and accuracy of prediction

models using several statistical tests. For regression task—for example,

predicting quantitative activity—we applied several correlation measures

(Pearson, Spearman, and Kendall) considering either the entire test data

or regions at the top 25% of quantitative activity; we also applied another

Spearman’s correlation test after first binning quantitative activity by

quintiles. We refer to these seven tests as the regression tests. For

classification task—for example, predicting active or not active—we

record the area under receiver operating characteristic curve (AUROC)

and area under precision‐recall curve (AUPRC); we refer to these two

tests as the classification tests. The significance of each regression task was

evaluated by the respective statistical test q‐values, which are obtained

from p‐values via the Benjamini–Hochberg correction. The significance of

classification was evaluated by the q‐values of the Kolmogorov–Smirnov

test on the predictions with positive ground truth labels.

2.5 | Training and testing

We deterministically divide each data set into 10 sections; data sets

with the same regions (LCL‐eQTL and HepG2‐eQTL, and HepG2‐chr

and HepG2‐epi) are divided consistently. For the supervised case, we

perform 10‐fold cross‐validation where each fold trains the model on

nine training sections then evaluating on the remaining section. For

the cross‐data set case, we perform 10‐fold cross‐validation where

each fold trains the model on nine sections from the training data set,

then evaluating on the corresponding remaining section in the last

data set. We use the statistics from each fold to calculate the overall

mean and standard deviation statistics.

When comparing cross‐data set learning performance between

training on chromosomal MPRA data (HepG2‐chr) versus training on

episomal MPRA data (HepG2‐epi), we observe that training on

HepG2‐chr showed better results than HepG2‐epi 37 out of 40 times

(comparing results across different statistical tests; Figure 3 and

Table S4). Same regions were used for training and testing was done

on the other four data sets.

2.6 | Prediction models

We predict the quantitative activity from element features with four

regression models and their ensemble. The four models are a linear

regressor with ElasticNet regularization (Zou & Hastie, 2005) with 0.5 as

the L1 and L2 regularization coefficients and a RandomForest regressor

(Breiman, 2001), an ExtraTrees regressor (Geurts et al., 2006), and a

GradientBoosting regressor (Zhu et al., 2009), each with 1,000
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estimators. The ensemble method is implemented by taking the average

prediction of all four regression models.

For the classification task, we use a RandomForest classifier

(Breiman, 2001) and an ExtraTrees classifier (Geurts et al., 2006),

each with 1,000 estimators, as well as their ensemble. The ensemble

method averages the predicted probability from each classifier.

For both regression and classification, we define a shuffle model

with the same composition as an ensemble model but shuffles the

labels of the training set before training. This allows us to quantify

the probability of producing our ensemble results by chance.

2.7 | CAGI5 data processing

We predicted the variant impacts (positive, zero, negative) of 13,186

SNVs from five enhancers and nine promoters after training on 4,650

different SNVs from the same enhancers and promoters. For each SNV,

we obtained the variant and wild‐type sequence, each of length 187–600,

then featurized both variant and wild‐type with the 4,535 features that

differ between variant and wild‐type: Predicted epigenetic properties, DNA

k‐mer frequencies, #GC, #polyA/T, DNA shape features, and conservation;

we collectively referred to these features as Sequence features.

For the discrete challenge, we concatenate the features from

variant and wild‐type into a feature vector of size 9,070. We trained

one multiclass classifier to predict the discrete impact for all

promoter variants at once, and another classifier for the enhancer

variants. For submitting to the continuous challenge, we used the same

feature processing steps as in the discrete challenge, but trained

regressors to predict the continuous impact.

We retrospectively discovered that concatenating wild‐type/variants
features performs identically to taking their difference; we also

retrospectively discovered that training a classifier for all promoters

(enhancers) together performs better in classification, whereas training a

separate regression per element performs better in regression. As such,

for all analyses of the continuous challenge besides the original submission,

F IGURE 1 Individual feature

correlation with massively parallel reporter
assay output. The within‐data set ranking
is calculated by first ranking each feature

by each test, then taking the median of the
regression and classification test rankings.
The comprehensive ranking is the median

across all the data set rankings. The
heatmaps are ordered according to the
comprehensive ranking and colored
according to (a) the within‐data set rank,

(b) the Spearman correlation coefficient for
regression task, and (c) the area under
receiver operating characteristic curve

value for classification task
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we subtracted the corresponding wild‐type features from each of the

4,535 variant features and used this difference in features to predict the

continuous impact via regression, separately for each element

(enhancer/promoter).

2.8 | CAGI5 models

Each multiclass classification model used in discrete challenge is an

ensemble of five RandomForest classifiers and five ExtraTrees

classifiers, trained to predict the discrete impact class (positive, zero,

negative).

Each regression model used in the continuous challenge for

predicting promoter variants (or predicting all promoter variants at

once) is an ensemble of one RandomForest regressor, one ExtraTrees

regressor, and one GradientBoosting regressor, whereas each

regression models used for predicting enhancer variants (or

predicting all enhancer variants at once) is an ensemble of five

RandomForest regressors and five ExtraTrees regressors.

Each classifier or regressor consists of 1,000 estimators, and each

estimator used in RandomForest or ExtreTrees models considers the

square root of the total number of features when looking for best

split.

3 | RESULTS

We used five publicly available MPRA data sets and one unpublished

data set collected at several labs using a range of experimental

methodologies and cell‐types (Section 2). In all cases, the MPRA

constructs were designed to test endogenous human DNA

sequences, and not in‐silico designed synthetic sequences (Smith

et al., 2013). Thus, each element tested in each data set is associated

with a source genomic region. Each data set consists of approxi-

mately 2,000 sequences with length that varies between 121 and

171 base pairs (Section 2). Unless otherwise noted, the MPRA

experiment was performed in an episomal context. The first data set

(Kwasnieski, Fiore, Chaudhari, & Cohen, 2014), which we refer to as

K562, consists of putative regulatory regions selected from

ENCODE‐based annotated regions in K562 cells (Encode‐Project‐
Consortium, 2012; Ernst & Kellis, 2010; Hoffman et al., 2013). The

second and third data sets, which we refer to as LCL‐eQTL and

HepG2‐eQTL (Tewhey et al., 2016), consist of sequences that contain

F IGURE 2 Performance of (a) regression models and (b) classification models with different feature combinations. The within‐data set

ranking is calculated for each cell by taking the median of the rankings for all the (a) regression or (b) classification tests within a data set. Each
heatmap is colored according to the within‐data set rankings. The statistics are mean ± standard deviation for (a) Spearman and Kendall tests or
(b) area under receiver operating characteristic curve and area under precision‐recall curve tests

F IGURE 3 Performance of cross‐data set learning for (a)

regression task and (b) classification task between cell‐types. All
cross‐ data set learning models are ensemble models with full
features. Each cell is colored according to the median over the ranks

of all (a) regression tests or (b) classification tests. The statistics are
mean ± standard deviation of (a) Spearman and Kendall tests or (b)
area under receiver operating characteristic curve and area under

precision‐recall curve tests
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an eQTL in lymphoblastoid cell lines (LCLs). The same sequences

were tested in LCL and HepG2 cells, thus forming the two data sets.

Notably, the LCL‐eQTL data set was used as the primary source for

the CAGI4 eQTL causal challenge (Kreimer et al., 2017). The fourth

and fifth data sets (Inoue et al., 2017) include candidate liver

enhancers, tested in either episomal or chromosomal context. We

refer to these data sets as HepG2‐epi (for MPRA plasmids) and

HepG2‐chr (for MPRA integrated in the genome). The sixth data set

includes putative enhancer regions (Inoue, Kreimer, Ashuach, Ahituv,

& Yosef, 2018) tested in chromosomal context in human embryonic

stem cells (hESC). We refer to this data set as hESC.

Separately, for each data set, we applied MPRAnalyze (Ashuach,

Fischer, Kreimer, Theis, & Yosef, 2019; Section 2; Figures S1–S3), a

new tool for statistical analysis of MPRA data developed in our

group, to obtain (a) MPRA output: A quantitative measure of

enhancer‐induced transcription, computed as the ratio between the

estimated abundances of transcribed RNA and the construct’s DNA.

These values are estimated by constructing a nested pair of

generalized linear models that extract the ratio RNA/DNA as a

measure of activity while controlling for various confounding factors,

and (b) a binary label that identifies active/inactive enhancers,

namely enhancers whose activity significantly deviates from that of

the negative controls (median‐based z‐score; FDR < 0.05).

The CAGI5 Regulation Saturation challenge, also titled “Predict-

ing individual non‐coding variant effects in disease associated

promoter and enhancer elements,” experimentally assessed the

effects of 17,500 SNVs in 14 regulatory elements that are associated

with human disease. Specifically, nine promoters (F9, GP1BB, HBB,

HBG, HNF4A, LDLR, MSMB, PKLR, and TERT) and five enhancers

(IRF4, IRF6, MYC, SORT1, and ZFAND3) of lengths 187–600 base

pairs (bps) were tested with saturation mutagenesis for MPRA

activity in a relevant cell‐type (HepG2, HEL 92.1.7, HEK293T, K562,

GBM, SK‐MEL‐28, HaCaT, and MIN6; Kircher et al., 2018).

3.1 | Predictive features for MPRA activity are
consistent across data sets

We first defined a set of features that characterize each MPRA

sequence and inspected each feature individually (Section 2; see

Table S1 for a complete description of all features). Overall, we

examined 56 features that can be divided into four categories

(similarly to Kreimer et al. (2017)). (a) Experimentally measured

epigenetic properties: To define these, we mapped each assayed

region to its corresponding position in the reference human genome,

and then queried this position against tracks of epigenetic properties

from ENCODE (Encode‐Project‐Consortium, 2012). These properties

were measured in multiple cell lines and include the overall number

of observed TF binding sites (TFBS), histone marks, binding by

chromatin structure‐associated proteins (e.g., P300), chromatin

accessibility (primarily by identifying DNase‐hypersensitivity sites;

henceforth abbreviated as DHS), and DNA‐ methylation. For all these

features we either aggregate over all available cell‐types, or restrict
the analysis to the same cell‐type in which the MPRA was conducted.

(b) Predicted epigenetic properties: This set of features covers similar

properties as the experimentally derived ones (e.g., TFBS or histone

marks). However, instead of being directly measured, the properties

are inferred based on the DNA sequence of the respective MPRA

construct, using models trained on experimental data (e.g.,

protein‐binding microarrays for TFBS [Newburger & Bulyk, 2009]

or ChIP‐seq for histone marks [Encode‐Project‐Consortium, 2012]).

We use three models for this purpose: scoring of protein‐DNA‐
binding motifs (Grant, Bailey, & Noble, 2011), the more recent

supervised methods DeepBind (Alipanahi et al., 2015), and DeepSEA

(J. Zhou & Troyanskaya, 2015). In all three cases (motif scoring,

DeepBind, and DeepSEA), we do not retrain the models with additional

data, but only use the pre‐trained models to score each MPRA

sequence. Another feature included here is Motif

Density—defined as the maximum number of protein‐DNA‐binding
motifs within a 20 bp window in the MPRA sequence. (c) DNA k‐mer

frequencies using k = 5. And (d) Additional locus specific features: Here

we used the number of G/C in the sequence (#GC) as well as the

length of longest polyA/T subsequence (#polyA/T). We also used DNA

shape features (T. Zhou et al., 2013) quantifying minor groove width,

roll, propeller twist, and helix twist (MGW, Roll, ProT, and HelT

respectively). Additional features in this category include: Conserva-

tion—evolutionary conservation score of region as predicted by

phastCons (Siepel et al., 2005). Closest Gene Expression—expression

(TPM) of the closest gene from RNA‐seq data in the corresponding

cell‐type. Promoter, Exon, Intron, Distal—binary features indicating the

respective location in the endogenous genome.

We use these 56 features (Section 2; Table S1) individually in two

ways: (a) we test how well each feature correlates with the

quantitative MPRA output of each data set using seven regression

tests (Section 2) and (b) we test how well each feature discriminates

between active and inactive regions using two classification tests

(Section 2). We rank each feature for each of the nine tests and then

take the median of these ranks to obtain a data set‐specific feature

ranking. We then take the median across all data set‐specific ranking
to obtain a global ranking of the features and sort them according to

their global rank (Figure 1). Notably, the different statistical tests are

largely consistent with the global rank (Figure 1 and Table S1),

supporting its robustness. This global rank highlights chromatin

accessibility (DNase Mean) and the number of TF binding sites (TFBS

Mean) as the most predictive features for MPRA activity across all

data sets. To gauge the robustness of our results, we repeated the

above feature correlation experiments 100 times, each time sampling

80% of the loci in the data, and report the mean and standard

deviation of the resulting accuracy (Table S1).

To further explore cell‐type specificity in the context of TF

binding, we stratified the TFs into three groups according to their

expression level in the cell‐type of interest (low/intermediate/high)

and sum over the number of binding sites in each group. Although

these three features #tf‐high, #tf‐med, #tf‐low had a strong

correlation (especially #tf‐high) with MPRA activity (Figure 1), they

are still less predictive than TFBS Mean (the simple mean across all

TFBS‐related features). Consistently, we found several cell‐type
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agnostic features such as GC content and #motifs that are predictive

of MPRA activity as well (Figures 1, S4, and S5).

Furthermore, we found that limiting the set of TFs in a manner

specific to the cell‐type under investigation (e.g., for the K562 data

set, TFBS Cell Mean only considers TF ChIP‐seq experiments

conducted in K562 cells) does not improve accuracy (Table S1),

compared with taking all available data regardless of cell‐type of

origin (TFBS Mean). This observation is consistent with previous work

on enhancer annotation, showing that integration of diverse data sets

from different cellular contexts improves developmental enhancer

prediction over approaches based on single context data (Erwin et al.,

2014). As additional control, we randomly subsampled N (the number

of TFs used to calculate TFBS Cell Mean) ChIP‐seq experiments that

were conducted in a cell‐type different from the one used for MPRA,

and computed the mean number of binding sites. Consistent with the

results above, we found that the predictive capacity of this random

set of TFs‐binding scores (considering 100 randomly selected sets for

each of our six data sets; denoted TFBS Shuffled Mean) is not lower

than that of ChIP‐seq experiments conducted in cell‐type in which

MPRA was conducted (empirical p > 0.25).

The CAGI5 saturation mutagenesis data set consists of a small

number of endogenous genomic regions, selected in large under the

assumption that they play important regulatory role in the respective

cellular context. Indeed, these regions show significant amount of

MPRA activity when tested in their corresponding cell‐types (Kircher
et al., 2018). As such, one would expect that these regions might

exhibit higher than usual values in the aforementioned set of

features. To test this, we featurized these 14 regions as above and

compared the signal of each feature to the distribution of the same

features across regions in LCL‐eQTL data set and reported the

percentile per feature (Figure S6). We chose LCL‐eQTL as the

background distribution since regions tested in this experiment were

selected based on harboring an eQTL variant, which provides a

potentially weaker indication for regulatory activity (Tewhey et al.,

2016; as opposed to experimental designs that selects for regions

that are enriched with regulatory element marks—e.g., H3K27ac

peaks). As CAGI5 regions have varying lengths, we focused our

analysis on 150 bp in the center of each region (corresponding to

sequence lengths of 150 bp in LCL‐eQTL). As expected, for the most

predictive features, we observe a higher than median signal in CAGI5

tested regions comparing with LCL‐eQTL regions (Figure S6).

3.2 | Predictive models of MPRA activity are
similar across data sets

Next, we turned to the construction of supervised models that are

trained to predict the MPRA output either as a quantitative measure

of enhancer activity (i.e., regression task) or as a binary label that

distinguishes between active and inactive enhancers (i.e.,

classification task). To this end, we considered a collection of

regression models (Elastic Net [Zou & Hastie, 2005], Random Forest

[Breiman, 2001], Extra Trees [Geurts, Damien, & Louis, 2006], Gradient

Boosting [Zhu, Zou, Rosset, & Hastie, 2009], and ensemble) and

classification models (Random Forest [Breiman, 2001], Extra Trees

[Geurts et al., 2006], ensemble), which we applied separately for each

data set. We trained these models using a set of features that

extends the one investigated in Figure 1, with the following

categories: (a) Experimentally measured epigenetic properties—1,095

binary features based on ENCODE data (Encode‐Project‐Consortium,

2012). These features indicate whether the genomic region overlaps

with experimentally measured tracks of: TFBS from ChIP‐seq
experiments, histone modifications, and DNase‐hypersensitivity sites

across different cell‐types (Table S1). (b) Predicted epigenetic

properties—This set consists of three sources: (a) DeepBind—515

features, each indicating a binding score of a certain TF, predicted by

a sequence‐based neural network model trained on protein‐binding
microarrays (Alipanahi et al., 2015). (b) DeepSEA—919 binary

features, indicating predictions of various events related to

chromatin structure, namely TF binding, DNA accessibility, and

histone modifications. These events were predicted by a

sequence‐based neural network model trained on ENCODE data (J.

Zhou & Troyanskaya, 2015). (c) Motifs—2,065 binary features

indicating motif hits (Encode‐Project‐Consortium, 2012; Grant

et al., 2011; Kheradpour & Kellis, 2014). (c) DNA k‐mer frequencies

—1,024 binary features, indicating the presence or absence of all

possible nucleotide 5‐mers. (d) Additional locus specific features as in

Figure 1 (Table S1).

We evaluate the accuracy of prediction in each combination of

data set × prediction method × feature category using 10‐fold cross‐
validation. We report the mean and standard deviation of the

resulting scores (Figure 2). Importantly, we do not use our evaluation

of individual features in Figure 1 during model training (e.g., for

feature selection), thus avoiding circularity.

Reassuringly, the accuracies of our top model for predicting

MPRA activity on the LCL‐eQTL data set (regression and

classification: 0.4 Spearman’s correlation and 0.79 AUROC,

respectively) matched that of the top ranking group in the CAGI4

challenge (0.34 Spearman’s correlation and 0.8 AUROC; Zeng et al.,

2017). Consistent with our results for single features, we observe an

overall agreement in our results across data sets, both in terms of the

relative performance of each algorithm, and in terms of the

importance of each feature category. Specifically, we observe that

nonlinear methods perform better (e.g., cf. elastic net to random

forest) and that an ensemble approach (aggregating over all

classifiers or regression methods) tends to have the highest

performance (Figure 2 and Table S2). Among the feature categories,

the predicted TF binding properties according to DeepBind are top

performers, and the union of all feature categories generally yields

the best performance, indicating that even with a large feature set

the various models still do not over‐fit. To further test this, we

trained our models on shuffled labels (Section 2), and observed that

the performance significantly decreases in all cases, including the

more complex ensemble model that uses the complete feature set.

Another result consistent with the ones observed with single

features regards the importance of cell‐type specificity, where we

again noticed that limiting the epigenetic features to be cell‐type
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specific does not increase accuracy (Figure S7 and Table S3). Finally,

it is interesting to note that the accuracy achieved with a

chromosomal MPRA library in HepG2 cells (HepG2‐chr) tends to be

slightly higher than the one obtained with an episomal library

(HepG2‐epi; regression: 0.59 vs. 0.45 Spearman correlation and 0.41

versus 0.31 Kendal correlation; Figure 2). These results are

consistent with a recent comparison between these two

experimental approaches (Inoue et al., 2017) that found chromoso-

mal MPRA to be more reproducible, have higher correlation with

epigenetic marks and work in variety of cell‐types that are harder to

transfect (e.g., hESCs); however, more data sets are required to

substantiate this finding.

3.3 | Transferring knowledge between cell‐types

Using existing MPRA data to build models that can be applied across

different cellular backgrounds and for genome‐wide predictions of

regulatory elements can be useful for prioritizing functional

regulatory regions, which can guide the design of new MPRA panels

and used for analysis purposes. To evaluate how well our models

generalize to a new cellular context where MPRA data is not

available, we tested the extent to which models trained in each data

set can be used to predict the outcome in the remaining data sets.

Based on the results in Figure 2, we take the Full set of features (i.e.,

all feature categories) and use the ensemble model for both the

regression and classification tasks. We avoid training on any genomic

region from one data set (e.g., LCL‐eQTL) that is already in the test set

from another data set (e.g., HepG2‐eQTL).

We observe that performance in the regression task is reduced in

this cross‐data set setting compared with the supervised setting. For

example, for the K562 regression task, the best model trained on

K562 data achieves a cross‐validation Spearman of 0.58 (Figure 2

and Table S2), whereas the best models trained on LCL‐eQTL, HepG2‐

eQTL, HepG2‐chr, HepG2‐epi, hESC data set only achieve Spearman’s

correlations of 0.23, 0.21, 0.44, 0.3, 0.33, respectively (Figure 3 and

Table S4). However, performance in the classification task is

generally robust. For example, for the K562 classification task, the

best model trained on K562 data achieves an AUROC of 0.85 (Figure

2), whereas the best models trained on LCL‐eQTL, HepG2‐eQTL,

HepG2‐chr, HepG2‐epi, hESC achieve AUROCs of 0.7, 0.67, 0.75, 0.74,

0.68, respectively (Figure 3 and Table S4). These results suggest that

MPRA data in one cellular context can be leveraged to distinguish

between regions of regulatory importance in another.

We hypothesized that genomic regions that are uniquely active in

a certain cell‐type would be harder to predict in a cross‐data set

setting. To explore this, we took advantage of the LCL‐eQTL and

HepG2‐eQTL data sets, which include the same set of genomic

regions. We first examined the distribution of three region categories

in these two data sets (Figure 4a): common regions (i.e., active

regions in both data sets), cell‐type‐specific regions (i.e. regions

active in one of the data sets), and inactive regions (i.e., regions not

active in both data sets). We then examined prediction performance

for each of the region categories (Figure 4b) in cross‐data set analysis

where we apply the classifier built on one data set to annotate

regions in the other data set as active or not. To assess this, we

defined the “hardness” of the region based on the difference between

the predicted score (in range [0, 1]) and the class label (1 for active

and 0 for not‐active region). Reassuringly, we observe that cell‐type‐
specific regions are harder to predict in cross‐data set learning

(Figure 4b). These results suggest that while the MPRA signal can be

predicted to some extent using cell‐type agnostic components, it also

depends on cell‐type‐specific ones. Interestingly, and consistent with

our cross‐validation (i.e., per‐ data set) analysis, we observe that the

cross‐data set accuracy achieved with models trained on chromoso-

mal MPRA library (HepG2‐chr) is higher (0.33, 0.28, 0.3, 0.31

Spearman’s correlation and 0.53, 0.6, 0.63, 0.63 AUC for K562,

LCL‐eQTL, HepG2‐eQTL, hESC respectively) than the one obtained

with an episomal library (HepG2‐epi; 0.4, 0.32, 0.35, 0.37 Spearman’s

correlation and 0.61, 0.66, 0.72, 0.7 AUC for K562, LCL‐eQTL, HepG2‐

eQTL, hESC, respectively; Section 2; Figure 3 and Table S4).

Finally, we wanted to examine the predicted MPRA signal of the

14 endogenous regions included in the CAGI5 data set, which were

shown to induce transcription by MPRA when tested in their

corresponding cell‐types (Kircher et al., 2018). To this end, we

trained a regression model on LCL‐eQTL regions with the full set of

features and used it to predict the MPRA activity of CAGI5 regions.

As the sequence lengths in the LCL‐eQTL were 150 base pairs, we

refeaturized the center 150 base pairs of the CAGI5 regions. We find

that when comparing the predicted MPRA activity of CAGI5 regions

with the distribution of LCL‐eQTL regions activity, most CAGI5

regions were in the >90th percentile (Figure S4). This is consistent

with our expectation that the CAGI5 regions should be recognized as

having a significant transcriptional activity.

3.4 | Contributions of individual TFs to the
accuracy of predicting MPRA outcome

We wanted to explore which factors in different cells drive the

activity of regulatory regions, and hypothesized that the protein

milieu in the cell might act as one. To this end, we examined the

contribution of individual TFs to MPRA activity. We recorded the

correlation between each TF binding signal (DeepBind prediction) and

the activity of each MPRA region (Alipanahi et al., 2015). Similarly to

our analysis in Figure 1, we then ranked the TFs based on their

predictive ability across data sets, thus revealing several TFs whose

binding is generally informative of regulatory activity of MPRA

constructs in all cellular contexts in this study (Figures 5, S8, and S9

and Table S5). For instance, two TF families with a data set‐wide high

predictive capacity, that is also supported by experimentally‐
evaluated binding from ChIP‐seq ( Figure S9 and Table S5) sites

are JUN and FOS. Proteins of the FOS family dimerize with proteins of

the JUN family, thereby forming the TF complex AP‐1, which has been

implicated in a wide range of cellular processes, including cell growth,

differentiation, and apoptosis across different cell‐types (Ameyar,

Wisniewska, & Weitzman, 2003). More generally, we find that TFs

whose binding is commonly predictive of MPRA activity across data
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sets are also highly expressed across all the three cell‐types, as
indicated by RNA‐seq data (Figure 5). Indeed, the gene expression of

TFs is overall consistent with their predictive capacity, whereby more

predictive factors have overall higher expression as measured by

RNA‐seq (Encode‐Project‐Consortium, 2012; Figure 5—right four

columns) across all cell‐types (the Wilcoxon rank sum test of top vs.

bottom 50 factors: p‐value of 3.9e−6, 1.36e−5, 8.7e−4, and 8.0e−4

for K562, LCL, HepG2, and H1hESC, respectively).

3.5 | Exploring common and distinct TF binding
between data sets

We next proceeded to explore TFs whose binding is predictive of MPRA

activity only in specific cell‐types. To this end, we defined, for each data

set, a set of predictive TFs, as the set of bound TFs (predicted by DeepBind)

that is significantly correlated with MPRA output (Spearman’s FDR

corrected p<0.05). We then compare across pairs of data sets to

determine if there is significant overlap in predictive TFs. To this end, for

each pair of data sets, we calculated the fold enrichment of the overlap

between the predictive TF set, and evaluated the significance of this

overlap using a hypergeometric p‐value (Figure 6a). Overall, we see that

there is significant overlap across every pair of data sets. Interestingly,

the similarity between data sets seem to be dominated by the similarity

between the MPRA sequences and less so by the similarity in cellular

context. Specifically, the HepG2‐chr and HepG2‐epi pair and LCL‐eQTL and

HepG2‐eQTL pair had the strongest overlap, with higher similarity

between experimental versions tested in the same cell‐type
(HepG2‐chr/HepG2‐epi) than same elements tested in different

cell‐types (LCL‐eQTL/HepG2‐eQTL), suggesting that the same genomic

regions tested in different conditions have correlated signals in MPRA.

However, this result may depend on the specific sequences studied, and

further data needs to be collected to substantiate it.

We further examine the predictive TFs that differ between pairs of

data sets (Figure 6b and Table S6), and provide a list of top predictive

TFs in at least one data set. In some cases, we find proteins whose

function is related to the cell‐type under investigation. For instance,

when comparing the two data sets with the lowest similarity score for

predictive TFs, K562 to HepG2‐eQTL, we find that RARG (a retinoic

acid receptor which belongs to the nuclear hormone receptor family

and is associated with liver risk phenotype [Roberts et al., 2010]) is

predictive in HepG2‐eQTL but not K562. When comparing K562 to

LCL‐eQTL, we observed that the genes in the ETS family (ELF1, ELF5,

ELF3, ETV6, ELK3) are predictive only in K562. These genes are

known to be expressed in hematopoietic tissues and cell lines, and

play a role in hematopoietic cell development (Clausen et al., 1997).

When comparing hESC to the other data sets, we observe a known

pluripotent factor‐ POU5F1 (Boyer et al., 2005) to be predictive only

in hESC for most of the comparisons (Table S6).

F IGURE 4 (a) LCL‐eQTL versus HepG2‐eQTL MPRA activity by log2 ɑ values. The points are colored according to activity in each of the data
sets (active/inactive is defined as above/below 1.5 cutoff, respectively). (b) We define hardness as the rank‐normalized absolute difference

between the ground truth binary activity label (0 or 1) and predicted probability. The cumulative distribution function of the hardness for each
of the four activity groups when training the ensemble, full feature cross‐data set model on HepG2‐eQTL (Left subfigure) and LCL‐eQTL (Right
subfigure), and testing on LCL‐eQTL and HepG2‐eQTL, respectively
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Overall, these results support the notion that both sequence‐
intrinsic (i.e. derived solely from the sequence tested in MPRA)

and cell‐type‐specific (i.e., derived from the cell‐type where

MPRA was tested) properties are determining MPRA activity. We

also find that the cell‐type‐specific component may be captured

by the activity of TFs whose function is associated with the

cell‐type under investigation.

3.6 | Studying the effects of small genetic variants
on MPRA output in CAGI5

MPRA can be used to study the transcriptional effects of small

variants that commonly occur in regulatory regions, namely SNVs

and small indels (Tewhey et al., 2016). We wanted to examine if we

can predict these effects using our framework. To test this, we used

the data from the CAGI5 challenge, which consisted of saturation

mutagenesis analysis of 14 regions, overall testing the effects of

17,500 SNVs. The training data consisted of 25% of the saturation

mutagenesis results in each of the 14 regions.

The participants in the CAGI5 challenge were asked to use the

training data to predict the impact of SNVs on the MPRA signal in the

held‐ out parts of the experiment. The challenge was divided in two.

In the discrete challenge part, the goal was to predict the category of

impact (negative effect, no effect, positive effect). The CAGI5

evaluators later (post submission) requested that the top performing

groups each provide a prediction of the continuous impact of each

SNV (namely, fold change of the MPRA signal); we refer to this as the

continuous challenge (Shigaki et al., 2019).

For both the discrete and the continuous challenge, we featurized

the wild‐type and variant sequences with all features that depend on

the raw sequence, including DeepSEA, DeepBind, DNA kmer‐frequen-

cies, and so forth (Section 2)—we call this collection of features the

Sequence features; we excluded the features that depend on the

genome coordinate, such as Experimental features, because those are

the same for all variants of the same element. The inputs to our

prediction problem are therefore pairs of sequences—a wild‐type
feature and a mutated feature. To train a predictive model, we

examined two ways to featurize each pair—either concatenate the

feature vectors of the wild‐type and alternative allele, or subtract the

values of the alternative allele from those of the wild‐type allele. We

found that concatenation versus subtraction made very little

difference in accuracy (data not shown) and thus focus our discussion

on the latter.

For the discrete challenge, we trained a single multiclass (−1, 0, +1;

denoting negative effect, no effect, and positive effect respectively)

classification model to predict the discretized impacts of genomic

variation. We trained a separate model for the effects of variants in

promoter sequences and in gene‐ distal sequences (Section 2). The

assessors of this challenge (Shigaki et al., 2019) evaluated accuracy

using Pearson correlation of the predicted labels (−1, 0, 1) with the

continuous MPRA expression impact scores. They also calculated the

AUROC treating this as a discretized classification task (e.g., 1 vs. [0

and −1]).

Our analysis yielded the highest average accuracy across all the

elements. Specifically, (0.318 Pearson and 0.249 Spearman;

correlations are between the predicted scores and the −1, 0, 1

F IGURE 5 Contribution of individual DeepBind transcription factor
(TF) binding for predicting regulatory activity of massively parallel
reporter assay constructs. The within‐data set ranking is calculated by
taking the per feature median rank across all classification and

regression tests. The comprehensive ranking is the per feature median
overall within‐data set rankings. TFs are sorted from best (smallest) to
worst comprehensive rank. (Left) Heatmap of the within‐data set

rankings. (Right) The per TF ranking of its messenger RNA levels
measured by RNA‐seq in each of the four cell lines. Names of the
common top/bottom 10 factors are indicated on the left
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labels), as well as competitive average AUROCs (0.762 for positive

vs. negative, 0.706 for positive vs. rest, 0.776 for negative vs. rest;

Table S7).

For the continuous challenge, we used the aggregated features and

trained one regression model to predict the continuous impacts of all

promoter variants and one regression model to predict the impacts

of all enhancer variants (Section 2). Across all the submissions, our

continuous impact submission tied for the best average Pearson’s

correlation across all the elements (0.451 for ours vs. 0.452 for

submission G3/cont1), and achieve best Pearson’s correlation scores

in 10 of the 14 elements (Table 1).

3.7 | Post submission analysis on CAGI5 training
data

We examined the correlation between the continuous variant impact and

the difference between variant and wild‐type Sequence features (Figure 7

and Table S8). We observe that some of the strongest features are the

ones highly correlated with MPRA activity as found in previous data sets

(Figure 1). We conclude that predictive feature differences for variant

impact are consistent with predictive features for MPRA activity.

Following the assessors recommendations (Shigaki et al., 2019),

we focused the rest of our analysis on the continuous challenge, as the

discrete challenge did not provide enough data for more in‐depth
analysis. The reason for this is that several (3 out of the 14 elements)

of the mutagenesis experiments contained as few as three variants

exhibiting what was deemed by the organizers as significantly

positive or negative impact.

We retrospectively discovered that training one regression model per

reference genomic region (14 altogether) to predict variant impact

outperforms training one regression model per type (promoter or

enhancer), so we proceeded with the former strategy. We observed that

the full set of Sequence features resulted in the best performance in all of

the enhancer and promoter elements, compared with specific feature

sets (Figure 8 and Table S9). We do not observe any significant

differences between cell‐types in terms of model performance (e.g.,

changes in activity of perturbing the DNA element telomerase reverse

transcriptase [TERT] in HEK293T cells can be predicted with high

performance [0.61 Pearson] whereas MYC tested in the same cell line

has lower performance ([0.2 Pearson]).

To examine whether predictions of SNV effect can be generalized

from one data set (here, perturbations of a single DNA element) to

F IGURE 6 Similarities and differences in transcription factors (TFs) whose binding is predictive of Massively parallel reporter assay (MPRA)

activity between data sets. For each data set, we define a set of predictive TFs, as the set of bound TFs (predicted by DeepBind) that is
significantly correlated with MPRA output (Spearman’s q < 0.05). (a) Similarity of predictive TFs between data sets. For each pair of data sets, a
hypergeometric test is performed on the sets of predictive TFs of both data sets, resulting in a q‐value indicating the likelihood of the overlap

occurring by chance (color scale). We also calculate the enrichment ratios of predictive TFs for each pair of data sets (cell text). (b) Differences in
predictive TFs between data sets. For each data set, we only plot high confidence predictive TFs (i.e., significant TFs) that have Spearman’s
q‐values of less than 0.01, and nonpredictive TFs (i.e., nonsignificant TFs) have q‐values of greater than 0.1
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the next, we applied the same procedure as before—namely training

a regression model on one data set and testing it on the remaining

ones (keeping promoters and distal elements separate). We found

that the accuracy of the predictions from cross‐data set models were

mostly weaker than the predictions from the supervised models

(Figure 9 and Table S10). We note that cross‐data set prediction

between TERT‐GBM and TERT‐HEK293T, which was trained on the

same region but tested in different cell‐types, exhibited moderate

strength compared with the supervised predictions. We observe poor

performance for cross‐element predictions in the same cell‐type, for
example, training on LDLR and testing on F9 (both promoters tested

in HepG2 cells) or training on GP1BB and testing on HBG1 (both

promoters tested in HEL 92.1.7 cells). These results suggest that for

saturation mutagenesis data, supervised prediction models using

both the same element and same cell‐type work generally better than

cross‐data sets models, highlighting the specificity of local variation

presented in this data. However, more data sets are required to

substantiate this claim. Generally, the absolute performance for

predicting variant effects is substantially lower than that achieved in

the task of predicting the transcription of individual sequences, which

can be expected as this task relates to a much more nuanced signal.

4 | DISCUSSION

MPRA holds a great promise to be a key functional tool that will

increase our understanding of gene regulatory elements and the

consequences of nucleotide changes on their activity. Although

previous studies already used MPRA to construct predictive models

of transcriptional regulation, its generalizability across cellular

contexts and its applicability for studying the endogenous genome

have not yet been systematically evaluated. Here, we study MPRA

data from a number of cellular systems to determine which features

are reflective of the cellular context (e.g., protein milieu in the cell),

and which are intrinsic to DNA sequence. We aimed to incorporate

the most recently produced MPRA data sets of endogenous

sequences in this study, but had to exclude several data sets after

quality control analysis (e.g., The data in Maricque, Dougherty, &

Cohen (2017)) consisted of few barcodes per candidate enhancer and

had significant inconsistency across replicates. The experimental

design in Ulirsch et al. (2016) included three genomic regions per

TABLE 1 Performance comparison for the CAGI5 Regulation Saturation continuous challenge for the nine promoters and five enhancers,
sorted by average Pearson’s correlation

Submission/regulatory

element G3/cont1 G7/cont (Ours) δSVM/cont (published method) G3/cont2 G5/cont

F9 0.6242 0.3906 0.4889 0.4279 0.5642

GP1BB 0.5559 0.5661 0.4206 0.3565 0.3484

HBB 0.4458 0.4156 0.3931 0.4394 0.3916

HBG1 0.571 0.5914 0.3423 0.459 0.4787

HNF4A 0.3393 0.3967 0.1335 0.2936 0.1906

LDLR 0.5025 0.4922 0.3399 0.2299 0.351

MSMB −0.0399 0.1391 0.1648 0.0819 0.0628

PKLR 0.6116 0.6667 0.4912 0.4927 0.0246

TERT(GBM) 0.5942 0.6653 0.4881 0.561 0.5224

TERT(HEK293T) 0.5283 0.5919 0.4137 0.4686 0.3609

IRF4 0.3707 0.527 0.5023 0.2639 0.0246

IRF6 0.387 0.444 0.2641 0.3566 0.2363

MYC 0.4278 0.1636 0.3366 0.2847 0.1356

SORT1 0.4743 0.4982 0.4471 0.3497 0.2363

ZFAND3 0.3872 0.2145 0.477 0.4029 0.2223

Average 0.451993 0.45086 0.380213 0.364553 0.276687

F IGURE 7 Pearson correlation between variant effect and the
difference between variant and wild‐type feature across the relevant
individual features for the nine promoters and five enhancers tested

in CAGI5. *Cells whose correlation’s p < 0.05
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enhancer, in overlapping windows. Activity measurements were

highly variable between windows of the same enhancer, while many

of the features we use were shared among the overlapping windows.

We explore the extent by which knowledge of regulatory activity in

one cellular context can be used to make predictions in a held out

cellular context. Finally, we examine the ability of our framework to

detect the effects of small variants on MPRA activity. Our results

represent, to the best of our knowledge, the first such comprehensive

analysis.

Our work highlights genome accessibility and TF binding as the

strongest predictors of regulatory activity, with no observed advantage to

cell‐type‐specific features. When applying prediction models, we observe

that performance is improved when using an ensemble of all features,

with no significant prediction improvement when using cell‐type‐specific
features. These results imply that part of the signal observed in MPRA

studies is not cell‐type specific. Interestingly, models trained with

chromosomal MPRA data yield better predictions across data sets than

those trained on episomal MPRA data, stressing the importance of this

experimental approach that conveys a more reliable representation of

the endogenous settings.

When training on one cell‐type and predicting on another cell‐
type, we observe overall lower but robust results, with regions

enriched in cell‐type‐specific signal being harder to predict. Notably,

we detect a communal component across data sets with a group of

TFs being top predictors, as well as some cell‐specific factors that

seem to be involved in phenotypes associated with the corresponding

cell‐type. In the MPRA setting the cis environment (e.g., chromatin) is

altered, thus generally not cell‐type specific, and the trans environ-

ment (e.g., TF binding) remains similar, hence we can still observe

predictive factors that are cell‐type specific.

As seen through its performance in the CAGI5 Regulation Saturation

challenge, our approach is competitive in the high‐resolution task of

predicting the functional effects of SNVs in a supervised setting.

Our work provides a comprehensive resource of annotation for

thousands of endogenous sequences across the genome. Further-

more, we demonstrate the performance of different machine learning

models for MPRA activity prediction on features generated by

publicly available tools. Our approach can highlight functionally

important regulatory regions across the genome in a cell‐type
agnostic fashion and can be leveraged for an efficient design of

future MPRA experiments by prioritizing regions of interest.
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