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ABstrAct
Objective MicrornAs (mirnAs) play an important role 
in the pathogenesis of autoimmune diseases such as 
primary Sjögren’s syndrome (pSS). this study is the first 
to investigate mirnA expression patterns in purified t 
and B lymphocytes from patients with pSS using a high-
throughput quantitative pCr (qpCr) approach.
Methods two independent cohorts of both patients 
with pSS and controls, one for discovery and one for 
replication, were included in this study. Cd4+ t cells 
and Cd19+ B cells were isolated from peripheral 
blood mononuclear cells by magnetic microbeads and 
expression of mirnAs was profiled using the Exiqon 
Human mirnome panel I analysing 372 mirnAs. 
A selection of differentially expressed mirnAs was 
replicated in the second cohort using specific qpCr 
assays.
results A major difference in mirnA expression 
patterns was observed between the lymphocyte 
populations from patients with pSS and controls. In 
Cd4 t lymphocytes, hsa-let-7d-3p, hsa-mir-155–5 p, 
hsa-mir-222–3 p, hsa-mir-30c-5p, hsa-mir-146a-5p, 
hsa-mir-378a-3p and hsa-mir-28–5 p were significantly 
differentially expressed in both the discovery and the 
replication cohort. In B lymphocytes, hsa-mir-378a-3p, 
hsa-mir-222–3 p, hsa-mir-26a-5p, hsa-mir-30b-5p 
and hsa-mir-19b-3p were significantly differentially 
expressed. potential target mrnAs were enriched in 
disease relevant pathways. Expression of B-cell activating 
factor (BAFF) mrnA was inversely correlated with the 
expression of hsa-mir-30b-5p in B lymphocytes from 
patients with pSS and functional experiments showed 
increased expression of BAFF after inhibiting hsa-mir-
30b-5p.
conclusions this study demonstrates major mirnAs 
deregulation in t and B cells from patients with pSS in 
two independent cohorts, which might target genes 
known to be involved in the pathogenesis of pSS.

IntrOductIOn
Primary Sjögren’s syndrome (pSS), also referred to 
as autoimmune epithelitis, is a complex systemic 
autoimmune disease affecting 0.01% to 0.3% of 
the general population.1 2 Lymphoid infiltration 
of lacrimal and salivary glands leading to xeroph-
thalmia and xerostomia, as well as enhanced acti-
vation of polyclonal B lymphocytes, represent the 
hallmarks of the disease. In spite of progress in 

the past 10 years, the pathogenesis of the disease 
remains largely to be elucidated.3 

Genome-wide association studies (GWAS) have 
identified genetic variation in and outside the 
major histocompatibility complex/human leukocyte 
antigen (MHC/HLA) region associated with pSS.4–6 
Recent studies also demonstrated the key role of 
epigenetic regulation in the pathogenesis.7–9 Inter-
estingly, a number of the differentially methylated 
regions overlapped with the loci identified in the 
GWAS. Furthermore, many differentially methyl-
ated genes were found in CD19+ B lymphocytes, 
while only few changes were present in CD4+ T 
lymphocytes from patients with pSS,7 emphasising 
the importance of using purified cell population for 
epigenetic studies.

MicroRNAs (miRNAs) are evolutionarily 
conserved key players for cellular and develop-
mental processes in eukaryotic organisms and 
regulate gene expression mainly at the post-tran-
scriptional level.10 The effect of miRNAs on 
gene regulation may occur either through direct 
mRNA degradation or preventing mRNA from 
being translated, depending on the presence of a 
complete or incomplete match between the miRNA 
and the 3′untranslated region (UTR) of the target 
mRNA sequence. MiRNAs play important roles 
in immune tolerance and prevention of autoim-
munity.11 Differential miRNA expression patterns 
have been demonstrated in different autoimmune 
diseases including pSS,11 12 analysing either sali-
vary glands13 or peripheral blood mononuclear 
cells (PBMCs).14–16 However, these results may be 
flawed by the analysis of a heterogeneous popula-
tion of cells that might differ in their composition 
between patients with pSS and controls. So far, 
only one study has been performed investigating 
miRNA expression patterns in purified peripheral 
blood cell population from patients with pSS, 
which has focused on CD14+ monocytes.17

Due to the previously reported large differences 
of DNA methylation patterns in T and B cells 
from patients with pSS,7 we investigated miRNA 
expression profiles in sorted T and B cells using a 
quantitative PCR (qPCR)-based profiling method, 
which has recently been identified as the most 
accurate and sensitive qPCR-based method for 
the analysis of miRNAs18 and validated differen-
tially expressed miRNAs in a second independent 
cohort in each cell population.
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PAtIents And MetHOds
Patients
Two independent cohorts of female patients with pSS and 
controls were included in this study. Patients with pSS and age 
and ethnicity-matched controls recruited in a tertiary national 
reference centre for pSS in France were included in this study. 
The discovery cohort comprised 17 Caucasian patients with pSS 
(sufficient material available for 17 patients for T cells and 16 
for B cells) and 15 age and ethnicity-matched controls (sufficient 
material available for 15 patients for T cells and 12 for B cells). 
The replication cohort comprised 27 Caucasian patients with 
pSS (sufficient material available for 27 patients for T cells and 
25 for B cells) and 12 age and ethnicity-matched controls (suffi-
cient material available for 12 patients for T cells and 12 for 
B cells). The characteristics and clinical features of the patients 
are shown in table 1. Anti-SSA and SBB autoantibody status was 
assessed in both patients and controls, and controls were all 
negative for these autoantibodies.

All patients with pSS fulfilled the American European 
Consensus Group 2002 criteria for the disease.19 Activity of the 
disease was assessed by the EULAR Sjögren’s Syndrome Disease 
Activity Index (ESSDAI) score.20 Controls were either healthy 
subjects or patients suffering from a mechanical rheumatologic 
condition (back pain, sciatica or osteoarthritis) without any sign 
of autoimmunity nor cancer nor inflammation. The study was 
approved by the local ethics committee (CCP Ile de France VII 
No. CO-10–003), and informed written consent was obtained 
from all patients and controls.

cell isolation and rnA preparation
T and B lymphocytes were purified from PBMCs by direct 
magnetic labelling with CD4 and CD19 microbeads (Miltenyi 
Biotec, Paris, France), and their purity was analysed on a BD 
FACSCanto (BD Biosciences, San Jose, California, USA) and 
confirmed to be higher than 95% in all cases. RNA was extracted 
using the miRNeasy mini kit (Qiagen GmbH, Hilden, Germany) 
according to the manufacturer’s protocol.

Analysis of micrornA and gene expression by real-time qPcr
MicroRNA expression was analysed using the Human miRNome 
panel I (Version 3, Exiqon, Vedbaek, Denmark) in the discovery 

cohort and a custom Pick & Mix panel for the validation cohort. 
MiRNAs with a p value of less than 0.05 (two-tailed t-test) 
between patients with pSS and controls were considered to be 
significantly differentially expressed in each cohort. 

expression of BAFF by real-time qPcr
Amplification primers for BAFF were BAFF, 5’ -  TGA AACA CCAA 
CTAT ACAAAAAG-3’ and 5’ -  TCA ATTC ATCC CCAA AGACAT-
3’. ATP5B, CYC1 and EIF4A2 were used for normalisation. The 
relative expression of hsa-miR-30b-5p and BAFF was calculated 
using the ∆∆Cq method compared with the expression of the 
reference miRNAs or genes, respectively.21 Functional impact of 
hsa-miR30b-5p on BAFF expression was evaluated transfecting 
THP-1 cells (American Type Culture Collection (ATCC)) with 
a 3`-fluorescein labelled miRCURY LNA Power microRNA 
inhibitor (Exiqon) or a fluorescent miRNA inhibitor control 
(scrambled sequence), isolation of transfected cells by fluores-
cence-activated cell sorting (FACS) followed by RNA isolation 
and expression analysis of BAFF.

More details on experimental procedures and data analysis are 
given in online supplementary material material.

results
In this study, we analysed the expression level of 372 miRNAs 
in purified blood cell population from patients with Sjögren’s 
syndrome and controls and validated our findings in an inde-
pendent replication cohort. In T cells from the discovery cohort, 
203±9 miRNAs could be reliably detected, while in B cells 
200±13 miRNAs were detectable.

Following normalisation using the global mean expression 
of all valid miRNAs,22 hierarchical clustering and principal 
component analysis of the miRNA expression patterns in T 
and B lymphocytes of all patients and control samples were 
performed (figure 1). There was a major difference in miRNA 
expression patterns between the two lymphocyte popula-
tions from both patients with pSS and controls separating the 
samples into major clusters. Inside each cell population, no 
clustering of patients with pSS and controls was observed. 
Similar results were also observed using the normalisation 
approach based on reference miRNAs (data not shown).

differentially expressed mirnAs in t and B lymphocytes from 
patients with pss compared with controls
In total, 21 miRNAs including 9 upregulated and 12 down-
regulated miRNAs were found significantly differentially 
expressed in T cells from patients with pSS compared with 
controls by both normalisation methods (table 2). In B 
lymphocytes, 24 differentially expressed miRNAs were identi-
fied reproducibly by the two different normalisation methods, 
of which 11 miRNAs were upregulated and 13 miRNAs were 
downregulated (table 3). Differentially expressed miRNAs 
did not seem to be regulated through DNA methylation at 
the promoters of the miRNAs (online supplementary mate-
rial). To avoid potential confounding through medication, 
we reanalysed the data excluding patients under metho-
trexate or hydroxychloroquine treatment. Results confirmed 
the overall fold changes and significantly expressed miRNAs 
with the exception of miR-22–3 p and let-7i-5p in T cells and 
miR-142–5 p, miR-151a-5p, miR-502–5 p and miR-484 in 
B cells, which were no longer significant.

table 1 Characteristics of the analysed cohorts with primary 
Sjögren’s syndrome (pSS) and healthy controls

discovery cohort 1 replication cohort 2

Patients with 
pss (n=17)

controls 
(n=15)

Patients with 
pss (n=27)

controls 
(n=12)

Age, mean±SD years 56.4±16 60.8±16.5 64.2±13.4 65.6±16.9

Female sex (%) 100 100 100 100

Negative anti-SSA and 
anti-SSB (%)

7 (41.2%) 100 6 (22.2%) 100

Positive anti-SSA (%) 10 (58.8%) – 21 (77.8%) –

Positive anti-SSA and 
anti-SSB (%)

5 (29.4%) – 14 (51.9%) –

ESSDAI, mean±SD 
(range)

3.8±8.2 
(0–19)

– 6.4±7.2 (0–29) –

Treatments

Methotrexate (15 mg/
week) (%)

2 (11.7%) – 3 (11.1%) –

Hydroxychloroquine 
(400 mg/day) (%)

5 (29.4%) – 9 (33.3%) –

ESSDAI, EULAR Sjögren's Syndrome Disease Activity Index.

https://dx.doi.org/10.1136/annrheumdis-2017-211417
https://dx.doi.org/10.1136/annrheumdis-2017-211417
https://dx.doi.org/10.1136/annrheumdis-2017-211417
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Pathway analysis
Analysing the differentially expressed miRNAs in T cells from 
patients with pSS identified by both normalisation methods, 
pathway in cancers (p=8.27×10−37), Phosphatidylinosi-
tol-3-kinase - Protein Kinase B (PI3K-Akt) signalling pathway 
(p=1.11×10−36) and transforming growth factor (TGF)-beta 
signalling pathway (p=1.68×10−28) were found as the top 
canonical pathways. In B lymphocytes, the Wnt signalling 
pathway (p=3.24×10−35), pathway in cancers (p=2.41×10−32) 
and PI3K-Akt signalling pathway (p=1.23×10−31) were identi-
fied as the top canonical pathways. MiRNAs contributing to the 
enrichment are shown in online supplementary tables S1 and S2.

expression of mirnAs depending on the presence of anti-ssA 
autoantibodies
As the presence of autoantibodies is a major factor for the pres-
ence of altered DNA methylation profiles in B cells from patients 
with pSS,7 we investigated whether there was a correlation of 
deregulated miRNAs expression with the presence of autoan-
tibodies using the global mean normalised data. Patients were 
divided based on the production of anti-SSA autoantibodies into 
two subgroups: anti-SSA− patients, anti-SSA+ patients. In T 
cells, 22 miRNAs were found differentially expressed in patients 
with anti-SSA+ pSS compared with controls, including 14 down-
regulated and eight upregulated miRNAs; 16 miRNAs were 
found differentially expressed in anti-SSA− patients, among 
which six miRNAs (hsa-let-7d-3p, hsa-miR-378a-3p, hsa-miR-
28–5 p, hsa-miR-425–3 p, hsa-miR-486–5 p and hsa-miR-31–3 p) 
were also found in anti-SSA+ patients with pSS (online supple-
mentary table S3). However, in B cells 3.5 times more dereg-
ulated miRNAs were found in seropositive patients with pSS 
(41 miRNAs) compared with controls than those in seronega-
tive patients with pSS (12 miRNAs), including hsa-miR-30b-5p, 
hsa-miR-222–3 p, hsa-miR-151a-3p, hsa-miR-18a-3p, hsa-miR-
107, hsa-miR-324–3 p and hsa-miR-582–5 p that were found in 
both anti-SSA− and anti-SSA+ patients (online supplementary 
table S4). When anti-SSA-positive and negative patients with pSS 
were directly compared, 10 miRNAs were found downregulated 

and 15 miRNAs were found upregulated in B cells from patients 
with anti-SSA+ pSS  (online supplementary table S5).

As among the 17 patients with pSS included in the discovery 
cohort of this study, only 3 patients with pSS had a moderate 
or high ESSDAI score (≥5), we could not reliably investigate 
in this cohort any association between miRNA expression and 
disease activity. Similarly only four patients were positive for 
anti-SSB+ antibodies precluding a statistical analysis on the 
influence of SSB autoantibodies on miRNA expression profiles.

replication of differentially expressed mirnAs
Eleven and nine differentially expressed miRNAs in T cells and 
B cells, respectively (online supplementary table S6) identified by 
the screen using the human panel I in the discovery cohort were 
tested in a new independent replication cohort of 27 patients 
and 12 controls as well as in the samples of the discovery cohort 
using a custom-designed Pick-&-Mix microRNA PCR Panel. We 
added in the replication hsa-miR-146a-5p, which was close to 
statistical significance in the discovery cohort (p=0.07), since it 
has been reported as deregulated in other pSS studies analysing 
mainly PBMCs.14–16 23 As shown in table 4, hsa-let-7d-3p, 
hsa-miR-155–5 p, hsa-miR-222–3 p, hsa-miR-30c-5p, hsa-miR-
146a-5p, hsa-miR-378a-3p and hsa-miR-28–5 p were confirmed 
to be differentially expressed in T cells from both the discovery 
and the replication cohort (online supplementary figure S1). 
Hsa-miR-378a-3p, hsa-miR-222–3 p, hsa-miR-26a-5p, hsa-miR-
30b-5p and hsa-miR-19b-3p were confirmed to be significantly 
deregulated in the B cells in both cohorts (online supplemen-
tary figure S2). When performing a combined analysis on 
both cohorts, all miRNAs except one for B and one for T cells 
showed significant expression differences when compared with 
controls (table 4). When focusing only on differences between 
anti-SSA-positive patients and controls, the statistical signifi-
cance of the six validated miRNAs in B cells increased by at least 
on order of magnitude for all six miRNAs, but none of the other 
miRNAs included in the validation step reached statistical signifi-
cance (data not shown). Restricting the analyses to anti-SSA-pos-
itive patients had little impact on the results in T cells.

Figure 1 Hierarchical clustering analysis (A) and principal component analysis (B) of microRNAs detected by quantitative PCR (Cq <37). pSS: patient 
with primary Sjögren’s syndrome, C: control, TL: CD4+ T lymphocytes, BL: CD19+ B lymphocytes, light blue: control T cells; green: pSS T cells; red: 
control B cells; dark blue: pSS B cells.

https://dx.doi.org/10.1136/annrheumdis-2017-211417
https://dx.doi.org/10.1136/annrheumdis-2017-211417
https://dx.doi.org/10.1136/annrheumdis-2017-211417
https://dx.doi.org/10.1136/annrheumdis-2017-211417
https://dx.doi.org/10.1136/annrheumdis-2017-211417
https://dx.doi.org/10.1136/annrheumdis-2017-211417
https://dx.doi.org/10.1136/annrheumdis-2017-211417
https://dx.doi.org/10.1136/annrheumdis-2017-211417
https://dx.doi.org/10.1136/annrheumdis-2017-211417
https://dx.doi.org/10.1136/annrheumdis-2017-211417
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expression of BAFF is inversely correlated with the expression 
of hsa-mir-30b-5p in B cells from patients with pss
The BAFF has been reported upregulated in B lymphocytes infil-
trating the salivary glands of patients with pSS24 and hsa-miR-
30a-3p, another member of the hsa-miR-30 family, has been 
reported to negatively regulate BAFF expression in systemic scle-
rosis and fibroblasts from patients with rheumatoid arthritis.25 As 
we identified hsa-miR-30b-5p to be significantly downregulated 
in our study and a potential binding site for hsa-miR-30b-5p 
in the 3′UTR of BAFF was identified (online supplementary 
figure S3), we further investigated the expression of BAFF and a 
possible correlation between the expression of hsa-miR-30b-5p 
and BAFF in B cells from patients with pSS. The expression of 
BAFF was increased in peripheral B cells from patients with pSS 
compared with controls (figure 2A). In contrast to controls, in 
which no correlation between the expression of hsa-miR-30b-5p 
and BAFF was observed, there was a significant inverse correla-
tion between the expression of hsa-miR-30b-5p and BAFF in B 
cells from patients with pSS (figure 2B). Transfection of THP-1 

cells with an antagomir (miRNA inhibitor) for hsa-miR-30b-5p 
led to a strong increase in BAFF expression compared with a 
fluorescent miRNA inhibitor control (scrambled sequence) 
(figure 2C), providing further evidence that the loss of hsa-miR-
30b-5p could contribute to the increased expression of BAFF in 
patients with pSS.

dIscussIOn
In this study, large-scale profiling of miRNAs by qPCR showed 
highly divergent miRNAs expression patterns between T and B 
lymphocytes from both patients with pSS and controls. These 
results are in concordance with our previous study of genome-
wide DNA methylation patterns.7 In contrast to the DNA methyl-
ation data, however, deregulation of miRNAs was not restricted 
to B cells, but was also present to a similar extent in CD4+ T 
cells. Several of the miRNAs found in our study overexpressed 
in T cells have previously been shown to be overexpressed 
in salivary glands of patients with pSS such as hsa-miR-16, 

table 2 Differentially expressed miRNAs with p value less than 0.05 in T cells from patients with pSS compared with the controls in the discovery 
cohort (two different normalisation ways were used: global mean and reference miRNAs)

(pss tl) vs (ctrl tl)/global mean normalisation (pss tl) vs (ctrl tl)/reference mirnAs normalisation common mirnAs/global mean 
and reference mirnAsmirnAs Fold change p Value mirnAs Fold change p Value

hsa-let-7d-3p −2.53 5.07E-07 hsa-let-7d-3p −2.58 1.97E-07 hsa-let-7d-3p

hsa-miR-28–5 p 1.36 3.78E-05 hsa-miR-28–5 p 1.34 3.81E-04 hsa-miR-28–5 p

hsa-miR-378a-3p −1.33 7.32E-04 hsa-miR-378a-3p −1.36 1.15E-04 hsa-miR-378a-3p

hsa-miR-26a-5p −1.28 9.50E-04 hsa-miR-26a-5p −1.30 1.23E-03 hsa-miR-26a-5p

hsa-miR-425–3 p −1.33 1.04E-03 hsa-miR-425–3 p −1.36 1.09E-03 hsa-miR-425–3 p

hsa-miR-486–5 p 1.56 6.45E-03 hsa-miR-486–5 p 1.53 0.013 hsa-miR-486–5 p

hsa-miR-181c-5p 1.43 7.33E-03 hsa-miR-181c-5p 1.40 0.022 hsa-miR-181c-5p

hsa-miR-30b-5p −1.17 0.010 hsa-miR-30b-5p −1.19 0.024 hsa-miR-30b-5p

hsa-miR-140–3 p 1.14 0.013 hsa-miR-140–3 p 1.12 0.043 hsa-miR-140–3 p

hsa-miR-296–5 p 1.27 0.013 hsa-miR-296–5 p 1.25 0.044 hsa-miR-296–5 p

hsa-miR-30c-5p −1.12 0.014 hsa-miR-30c-5p −1.14 8.19E-03 hsa-miR-30c-5p

hsa-miR-155–5 p 1.30 0.014 hsa-miR-155–5 p 1.27 0.013 hsa-miR-155–5 p

hsa-miR-31–3 p −1.43 0.015 hsa-miR-31–3 p −1.46 0.017 hsa-miR-31–3 p

hsa-miR-598 −1.31 0.015 hsa-miR-598 −1.34 0.017 hsa-miR-598

hsa-miR-222–3 p 1.22 0.018 hsa-miR-222–3 p 1.19 0.046 hsa-miR-222–3 p

hsa-miR-18a-3p 1.37 0.028 hsa-miR-18a-3p 1.34 0.043 hsa-miR-18a-3p

hsa-let-7e-5p −1.28 0.032 hsa-let-7e-5p −1.30 0.020 hsa-let-7e-5p

hsa-miR-194–5 p 1.13 0.036

hsa-miR-361–3 p 1.32 0.037

hsa-miR-152 1.32 0.037

hsa-miR-374a-5p −1.21 0.037 hsa-miR-374a-5p −1.24 0.041 hsa-miR-374a-5p

hsa-miR-22–3 p 1.34 0.038

hsa-miR-665 −1.42 0.039 hsa-miR-665 −1.44 0.029 hsa-miR-665

hsa-let-7g-5p 1.10 0.039

hsa-let-7i-5p 1.12 0.040

hsa-miR-107 1.18 0.041

hsa-miR-27b-3p −1.27 0.041 hsa-miR-27b-3p −1.30 0.034 hsa-miR-27b-3p

hsa-miR-150–5 p 1.15 0.045

hsa-miR-16–5 p 1.14 0.045 hsa-miR-16–5 p 1.12 0.037 hsa-miR-16–5 p

hsa-miR-454–3 p 1.15 0.045

hsa-miR-324–3 p 1.12 0.047

hsa-miR-23b-3p −1.22 0.038

hsa-miR-505–3 p −1.36 0.044

hsa-miR-766–3 p −1.17 0.029

‘MiRNAs in grey’ represent those found differentially expressed by one way of normalisation only. Nominal p values without correction for multiple comparisons are shown.
miRNA, microRNA; pSS, primary Sjögren’s syndrome; TL, T lymphocytes.

https://dx.doi.org/10.1136/annrheumdis-2017-211417
https://dx.doi.org/10.1136/annrheumdis-2017-211417
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hsa-miR-150, hsa-miR-222, hsa-miR-30b and hsa-miR-324–3 p 
where the expression level correlated positively with a high focus 
score and hsa-miR-181a and hsa-miR-155 overexpressed in T 
cells and associated with reduced salivary flow in the glands.13 
Of note, there was little overlap of the differentially expressed 
miRNAs in the salivary glands and B cells.

Among validated differentially expressed miRNAs, we iden-
tified hsa-miR-146a-5p, an important negative regulator of 
inflammatory responses and whose loss has been shown to 
cause spontaneous autoimmunity as well as oncogenic trans-
formation.26 Validated targets of this miRNA include IRF5, 
STAT1 and IRAK1, which have also been found associated 
with genetic variation or DNA methylation changes in pSS.4 7 
Previous reports have shown upregulation of hsa-miR-146a-5p 
in PBMCs from patients with pSS14–16 23 preceding clinical 
symptoms.16 Using sorted cell populations, we show that the 
direction of the observed changes differs in function of the cell 
type, with an overexpression in T cells and decreased expression 
in B cells, which has probably previously been masked by the 
greater proportion of T cells in PBMCs compared with B cells. 

Expression of has-miR-146a-5p could thus have different impact 
depending on the cell types in pSS, with the loss promoting the 
interferon expression in B cells,27 while sustaining inflammation 
in the T-cell compartment.28 Lineage-specific modifications of 
the expression level of miR-146a-5p are required to fully under-
stand the effect of this miR on inflammation and the pathogenic 
interferon response.

Hsa-miR-155–5 p was previously shown to be upregulated 
in synovial tissue, macrophages, PBMCs and sera from patients 
with rheumatoid arthritis and in CD4+ cells of mouse models 
for experimental autoimmune encephalomyelitis,29–32 which we 
also confirmed in our study. In contrast, miR-155 was previ-
ously found downregulated in PBMCs from patients with pSS15 
suggesting a confounding effect of cellular composition in the 
PBMC data. Taken together, the results on these two extremely 
well studied miRNAs and our findings of highly divergent 
patterns of miRNAs expression in T and B cells emphasise the 
importance of using purified cells for epigenetics studies. It will 
be desirable in the future to analyse even more specific subpopu-
lation of the B and T cells, which might show a more pronounced 

table 3 Differentially expressed miRNAs (p value<0.05) in B cells from patients with pSS compared with the controls in the discovery cohort (two 
different normalisation ways were used: global mean and reference miRNAs)

(pss Bl) vs (ctrl Bl)/global mean normalisation (pss Bl) vs (ctrl Bl)/reference mirnAs normalisation common mirnAs/
global mean and 
reference mirnAsmirnAs Fold change p Value mirnAs Fold change p Value

hsa-miR-30b-5p −1.52 4.08E-04 hsa-miR-30b-5p −1.56 5.01E-03 hsa-miR-30b-5p

hsa-miR-222–3 p 1.46 4.16E-04 hsa-miR-222–3 p 1.43 2.29E-04 hsa-miR-222–3 p

hsa-miR-107 1.35 1.07E-03 hsa-miR-107 1.32 2.35E-03 hsa-miR-107

hsa-miR-18a-3p 1.94 1.79E-03 hsa-miR-18a-3p 1.89 3.51E-03 hsa-miR-18a-3p

hsa-miR-324–5 p 1.64 1.81E-03 hsa-miR-324–5 p 1.6 2.60E-03 hsa-miR-324–5 p

hsa-miR-151a-3p 1.4 1.96E-03 hsa-miR-151a-3p 1.37 4.71E-03 hsa-miR-151a-3p

hsa-miR-324–3 p 1.22 2.21E-03 hsa-miR-324–3 p 1.19 0.026 hsa-miR-324–3 p

hsa-miR-19b-3p −1.39 3.35E-03 hsa-miR-19b-3p −1.43 0.014 hsa-miR-19b-3p

hsa-miR-26a-5p −1.34 5.38E-03 hsa-miR-26a-5p −1.37 0.016 hsa-miR-26a-5p

hsa-miR-20a-5p −1.17 5.81E-03 hsa-miR-20a-5p −1.2 0.014 hsa-miR-20a-5p

hsa-miR-141–3 p −1.86 6.54E-03 hsa-miR-141–3 p −1.9 5.64E-03 hsa-miR-141–3 p

hsa-miR-29b-2–5 p 1.39 7.51E-03 hsa-miR-29b-2–5 p 1.35 0.010 hsa-miR-29b-2–5 p

hsa-miR-374a-5p −1.54 8.90E-03 hsa-miR-374a-5p −1.58 0.017 hsa-miR-374a-5p

hsa-miR-484 1.45 0.012 hsa-miR-484 1.41 0.019 hsa-miR-484

hsa-miR-195–5 p −1.57 0.012 hsa-miR-195–5 p −1.61 0.019 hsa-miR-195–5 p

hsa-miR-210 1.33 0.012 hsa-miR-210 1.3 0.039 hsa-miR-210

hsa-miR-32–5 p −1.63 0.013 hsa-miR-32–5 p −1.67 0.027 hsa-miR-32–5 p

hsa-miR-582–5 p −1.67 0.014 hsa-miR-582–5 p −1.72 0.018 hsa-miR-582–5 p

hsa-let-7d-3p −1.65 0.022 hsa-let-7d-3p −1.7 8.83E-03 hsa-let-7d-3p

hsa-miR-378a-3p −1.35 0.027 hsa-miR-378a-3p −1.38 0.020 hsa-miR-378a-3p

hsa-miR-505–3 p −1.59 0.027 hsa-miR-505–3 p −1.63 0.020 hsa-miR-505–3 p

hsa-miR-30c-5p −1.17 0.028

hsa-miR-491–5 p 1.57 0.029 hsa-miR-491–5 p 1.53 0.036 hsa-miR-491–5 p

hsa-miR-502–5 p 1.74 0.029 hsa-miR-502–5 p 1.69 0.048 hsa-miR-502–5 p

hsa-miR-151a-5p 1.2 0.035

hsa-miR-148b-3p −1.23 0.038 hsa-miR-148b-3p −1.26 0.012 hsa-miR-148b-3p

hsa-miR-130b-3p 1.47 0.041

hsa-miR-15a-5p −1.21 0.043

hsa-miR-29b-3p −1.48 0.044

hsa-miR-296–5 p 1.64 0.044

hsa-miR-142–5 p −1.53 0.046

hsa-miR-192–5 p −1.28 0.048

hsa-miR-374b-5p −1.38 0.049

‘MiRNAs in grey’ represents those found differentially expressed by one way of normalisation only. Nominal p-values without correction for multiple comparisons are shown.
BL, B lymphocytes; miRNA, microRNA; pSS, primary Sjögren’s syndrome.



138 Wang-Renault S-F, et al. Ann Rheum Dis 2018;77:133–140. doi:10.1136/annrheumdis-2017-211417

Basic and translational research

deregulation of such as naïve or memory B/T cells, plasmablasts 
or T helper subsets such as follicular T helper cells, which have 
shown altered distribution in pSS.33 34 Recent analyses highlight 
the importance of cytotoxic CD8+ cells,35 which have so far not 
been analysed for changes in miRNA expression or other epigen-
etic modifications in pSS. Furthermore, while the number of 
patients treated with hydroxychloroquine or methotrexate was 
too small in our discovery cohort to make definite conclusions, 
we identified some miRNAs that were no longer significant after 
including only treatment-naïve patients suggesting effects of the 
medication on miRNA expression, which has previously been 
reported for both hydroxychloroquine36 or methotrexate.37 38

The significantly differentially expressed miRNAs in our study 
were enriched for several pathways including the PI3K-Akt 
signalling pathway. The miRNA-17–92 cluster promotes the 
survival of B lymphocytes, at least partly through its ability to 
regulate PI3K signalling and genes expressed downstream of 
this pathway.39 40 Preliminary evidence suggested a downregu-
lation of this cluster in the salivary glands from patients with 
pSS,41 which was confirmed in our study. Furthermore, hsa-miR-
32–5 p, another validated negative regulator of PTEN (phospha-
tase and tensin homolog gene),42 was also found downregulated 
in the B cells in our study. Although further functional experi-
ments are required to confirm the targets of the miRNAs in a 
cell-type specific manner, the PI3K-AKT pathway has recently 
attracted interest as a therapeutic target in pSS with multicentric 
randomised phase 2 studies evaluating a PI3 kinase delta inhib-
itor in pSS (NCT02610543, NCT02775916) ongoing. Modu-
lating miRNA levels might be an additional tool to change the 
activity of key components of this signalling pathway.

Among the differentially expressed miRNAs, hsa-miR-
30b-5p draw our attention as it has been previously reported as 
among the most significantly differentially expressed miRNAs 
in minor salivary glands from patients with pSS.13 Further-
more, hsa-miR-30a-3p, an miR of the same family, negatively 
regulates the expression of BAFF in systemic sclerosis and rheu-
matoid arthritis fibroblasts.25 BAFF, produced by monocytes, 
activated T lymphocytes, dendritic cells and epithelial cells in 
patients with pSS promotes B-cell maturation, proliferation and 
survival.3 43 44 BAFF levels have been found to be increased in the 
serum and salivary gland B, T and epithelial cells of patients with 
pSS compared with controls and correlate with autoantibody 
production.24 43 45 In the presence of excess levels of BAFF, mice 
develop manifestations of autoimmune disease with features of 
SLE and Sjögren’s syndrome and have an increased risk to develop 
lymphoma at later age.46 On the other hand, blocking of both 
BAFF and C-X-C motif chemokine ligand (CXCL13) improves 
salivary gland function.47 The 3′UTR of BAFF is targeted by 
several miRNAs and genetic variation in the 3′UTR plays a major 
role in the potential of miRNAs to regulate BAFF expression.48 
We confirmed the overexpression of BAFF in the B cells of our 
cohorts correlating inversely with the expression of hsa-miR-
30b-5p. This might be caused by the binding of hsa-miR-30b-5p 
to the 3′-UTR of BAFF mRNA. This hypothesis was substan-
tiated by our transfection experiments with an inhibitor of 
hsa-miR-30b-5p leading to a greatly increased BAFF expression. 
Further studies will be required to confirm the specific binding 
sites of hsa-miR-30b on the BAFF mRNA as well as to determine 
the relative importance of hsa-miR-30b compared with the other 
miRNAs binding to BAFF, as hsa-miR-30b was not tested in a 

table 4 Validation of the differentially expressed miRNAs in T and B cells by quantitative PCR

discovery cohort replication cohort combined analysis

mirnAs Fold change p Value mirnAs p Value mirnAs p Value

T cells

hsa-let-7d-3p −2.36 5.58×10−7 hsa-let-7d-3p 0.008 hsa-let-7d-3p 1.32×10−8

hsa-miR-28-5p 1.14 0.014 hsa-miR-28-5p 0.030 hsa-miR-28-5p 6.23×10−4

hsa-miR-378a-3p −1.50 9.93×10−5 hsa-miR-378a-3p 0.029 hsa-miR-378a-3p 9.94×10−6

hsa-miR-26a-5p −1.15 0.075 hsa-miR-26a-5p 0.046 hsa-miR-26a-5p 0.008

hsa-miR-30b-5p −1.19 0.036 hsa-miR-30b-5p 0.378 hsa-miR-30b-5p 0.026

hsa-miR-140-3p 1.13 0.018 hsa-miR-140-3p 0.389 hsa-miR-140-3p 0.018

hsa-miR-30c-5p −1.10 0.019 hsa-miR-30c-5p 0.019 hsa-miR-30c-5p 0.006

hsa-miR-155-5p 1.31 0.004 hsa-miR-155-5p 0.009 hsa-miR-155-5p 2.17×10−4

hsa-miR-31-3p −1.44 0.043 hsa-miR-31-3p 0.312 hsa-miR-31-3p 0.011

hsa-miR-222-3p 1.22 0.025 hsa-miR-222-3p 0.009 hsa-miR-222-3p 6.60×10−4

hsa-miR-16-5p 1.18 7.26×10−4 hsa-miR-16-5p 0.829 hsa-miR-16-5p 0.669

hsa-miR-146a-5p 1.30 0.017 hsa-miR-146a-5p 0.021 hsa-miR-146a-5p 0.001

B cells

hsa-miR-30b-5p −1.59 0.003 hsa-miR-30b-5p 0.012 hsa-miR-30b-5p 4.16×10−5

hsa-miR-222-3p 1.32 0.002 hsa-miR-222-3p 0.005 hsa-miR-222-3p 1.62×10−5

hsa-miR-18a-3p 1.28 0.027 hsa-miR-18a-3p 0.137 hsa-miR-18a-3p 0.613

hsa-miR-19b-3p −1.38 0.012 hsa-miR-19b-3p 0.028 hsa-miR-19b-3p 4.87×10−4

hsa-miR-26a-5p −1.37 0.013 hsa-miR-26a-5p 0.006 hsa-miR-26a-5p 9.85×10−5

hsa-miR-20a-5p −1.14 0.082 hsa-miR-20a-5p 0.019 hsa-miR-20a-5p 0.002

hsa-miR-32-5p −1.75 0.014 hsa-miR-32-5p 0.416 hsa-miR-32-5p 0.038

hsa-let-7d-3p −2.03 2.12×10−4 hsa-let-7d-3p 0.452 hsa-let-7d-3p 0.024

hsa-miR-378a-3p −1.29 0.062 hsa-miR-378a-3p 3.11×10−4 hsa-miR-378a-3p 5.49×10−6

hsa-miR-146a-5p −1.35 0.024 hsa-miR-146a-5p 0.157 hsa-miR-146a-5p 0.008

Differentially expressed miRNAs found in the discovery cohort and in the replication cohort are shown. MiRNAs in black depict those with a p value<0.05 and miRNAs in grey 
depict those with p value>0.05. Nominal p values without correction for multiple comparisons are shown.
miRNA, microRNA; pSS, primary Sjögren’s syndrome.
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recent study having shown the importance of miRNAs for regu-
lating BAFF expression.48

In summary, we have performed a large-scale analysis of 
miRNAs in patients with pSS in sorted blood-derived T and 
B cells and demonstrated cell-type specific miRNA expres-
sion patterns, potentially related to the pathophysiology of the 
disease. Being one of the key molecular changes that initiate 
pSS development, BAFF was induced by one of the identified 
miRNAs, hsa-miR-30b-5p.
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