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Abstract

Whole exome sequencing has been increasingly used in human disease studies. Prioritization based on appropriate
functional annotations has been used as an indispensable step to select candidate variants. Here we present the
latest updates to dbNSFP (version 4.1), a database designed to facilitate this step by providing deleteriousness
prediction and functional annotation for all potential nonsynonymous and splice-site SNVs (a total of 84,013,093) in
the human genome. The current version compiled 36 deleteriousness prediction scores, including 12 transcript-
specific scores, and other variant and gene-level functional annotations. The database is available at http://database.
liulab.science/dbNSFP with a downloadable version and a web-service.
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Background
Whole-exome sequencing (WES) and whole-genome se-
quencing (WGS) have been increasingly used in human
disease studies in the research and clinical setting [1–3].
As a result, we witness a tsunami of DNA sequence data
from both healthy individuals and those with Mendelian
or complex diseases. Identifying variants that cause dis-
eases or are associated with disease risks from a large
number of DNA variants identified in sequencing re-
quires an excessive amount of time and effort. To ac-
complish this daunting task, investigators have relied on
functional annotations to filter or prioritize variants
based on our current knowledge or prediction models.
In more detail, functional annotations can be separated
into general annotation and functional prediction: the

former provides qualitative or descriptive annotation of
a variant indirectly related to its potential function, such
as whether the variant is a nonsynonymous SNV; the lat-
ter typically provides direct quantitative or yes-or-no
deleteriousness prediction of the variant based on a stat-
istical model. Fast and comprehensive functional annota-
tion tools will become even more critical in the near
future because of three intertwined ongoing trends: the
decreasing cost of DNA sequencing, the development
and practice of precision medicine [4], and the adapta-
tion of WES and WGS in small labs [5].
There have been several annotation tools available for

large-scale DNA sequence data, such as UCSC Genome
Browser’s Variant Annotation Integrator [6], Ensembl’s
Variant Effect Predictor (VEP) [7], ANNOVAR [8], and
SnpEff [9]. Most of these focused on general annotations
based on given gene models. Although gene-model
based annotations are handy, there are other important
functional annotation resources used by medical
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geneticists and genetic epidemiologists, including func-
tional prediction of variants, conservation information,
predicted promoters, enhancers, and epigenomic
markers, among others. Another challenge faced by the
investigators is that different gene-model-based annota-
tion tools all have their advantages and disadvantages,
and the results sometimes do not agree with each other
[10]. Therefore, it has been suggested to obtain annota-
tion from tools across multiple databases for a complete
interpretation of the variants. Previously, we developed
dbNSFP version 1 [11], 2 [12], and 3 [13] to provide a
“one-stop-shop” for functional annotations for non-
synonymous SNVs (nsSNVs) and splice site SNVs
(ssSNVs), top candidate variant types for Mendelian dis-
eases. It collected all possible nsSNVs and ssSNVs based
on human reference sequences and multiple deleterious-
ness predictions and annotations for each SNV.
Here we report the major updates of dbNSFP since ver-

sion 3.0 to the current version 4.1. The core SNVs have
been rebuilt based on human reference sequence version
hg38 and GENCODE version 29 [14]. Compared to ver-
sion 3.0 [13], dbNSFP v4.1 added 18 deleteriousness pre-
diction scores (BayesDel_addAF and BayesDel_noAF [15],
CADD_hg19 [16], ClinPred [17], DEOGEN2 [18], Eigen
and Eigen PC [19], FATHMM-XF [20], GenoCanyon [21],
LINSIGHT [22], LIST-S2 [23], M-CAP [24], MPC [25],
MutPred [26], MVP [27], PrimateAI [28], REVEL [29],
SIFT4G [30]), one score for loss of function prediction
(ALoFT [31]), and three conservation scores (phyloP17-
way_primate [32], phastCons17way_primate [33],

bStatistic [34]), making the total number of prediction
scores to 46 (Additional file 1: Table S1). Many other
functional annotation resources have been added or up-
dated. In addition to the previously supported query of
two attached databases, dbscSNV [35] and SPIDEX [36],
for predicting splice interrupting SNVs, the companion
query program for the downloadable version added sup-
port for querying SpliceAI, a third-party database for pre-
dicting splice site gain and loss [37], and dbMTS, a
comprehensive database for microRNA target site SNVs
and their functional predictions [38]. More importantly,
much effort has been made to increase further the usabil-
ity of the functional annotations, including (1) making
functional predictions transcript-specific whenever pos-
sible, (2) providing transcript annotations to help to
choose appropriate transcript from multiple isoforms for
each gene, (3) providing HGVS (Human Genome Vari-
ation Society) c. and p. presentations of the SNVs to facili-
tate the query of candidate mutations reported in medical
genetics literatures, and (4) providing graphic user inter-
face for querying downloadable version as well as web-
service for researchers with minimum bioinformatics
training.

Construction and content
We rebuilt the list of all potential nonsynonymous and
splice-site SNVs based on the GENCODE gene model ver-
sion 29 (Ensembl version 94) with human reference se-
quence GRCh38. Only transcripts with complete protein-
coding annotations were included. A total of 81,782,923

Fig. 1 Violin plots of the dispersal statistic d for 12 transcript-specific deleteriousness prediction scores. d is capped at 10
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nsSNVs and 2,230,170 ssSNVs were collected in the data-
base (Additional file 2: Table S2). The corresponding
chromosomal positions of the SNVs based on human ref-
erence sequences hg19 and hg18 were obtained via the
liftover tool [39] (Additional file 2: Table S2). Accurate
protein ID mapping between GENCODE/Ensembl and
Uniprot [40] was obtained via a comprehensive protein se-
quence matching between all the proteins in GENCODE/
Ensembl and those of the Uniprot database. To facilitate
the choice of the appropriate transcript(s) for each gene,
we collected transcript quality measures including APPR

IS [41], transcript support level (TSL), GENCODE Basic,
and Ensembl canonical transcripts were obtained from the
Ensembl Biomart [42] and Variant Effect Predictor (VEP).
HGVS c. and p. presentations by ANNOVAR, snpEff, and
VEP for each nsSNV and ssSNV were obtained via the
WGSA (WGS Annotator) pipeline [43]. As a core content
of dbNSFP, 36 deleteriousness prediction scores, nine
conservation scores, and one loss of function score for
each nsSNV or ssSNV were compiled (see Additional file
1: Table S1 for a summary). Among them, 13 scores are
transcript-specific (ALoFT, DEOGEN2, FATHMM [44],

Fig. 2 Pearson’s correlation coefficients of rank scores (upper triangle) and agreement ratio of binary predictions (lower triangle) between pairs of
deleteriousness prediction scores or conservation scores
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LIST-S2, MPC, MutationAssessor [45], MVP, Polyphen2
HDIV and Polyphen2 HVAR [46], PROVEAN [47], SIFT
[48], SIFT4G, VEST4 [49]). The full list of annotation re-
sources and the description of all columns in dbNSFP can
be found at http://database.liulab.science/dbNSFP.

Utility and discussion
Query utility
dbNSFP v4.1 can be accessed as either a downloadable
and standalone version, or as a web-service at http://
database.liulab.science/dbNSFP. The standalone version
is suitable for a large-scale query, such as quickly identi-
fying nsSNVs and ssSNVs from exome sequencing stud-
ies. As no internet connection is required, maximum
speed and security can be achieved. The query can be
conducted via the companion Java program, which sup-
ports both the command-line and graphic user interface
(GUI). The query term can be either a genomic position
(chromosome, position), an SNV (chromosome, position,
reference allele, alternative allele), an amino acid (AA)
change (chromosome, position, reference allele, alterna-
tive allele, reference AA, alternative AA), a dbSNP ID (rs
number), an HGVS c. or p. presentation of a mutation,
or a gene name or ID. The companion Java program also
supports searching attached databases along with
dbNSFP, including dbscSNV, SPIDEX, spliceAI, and
dbMTS, which helps to identify candidate disease-
causing SNVs affecting splicing and miRNA binding.
The web-service, which is managed by Microsoft SQL

Server 2017, is suitable for a small-scale query such as
obtaining functional annotations for candidate SNVs. By
submitting one or multiple genome coordinates

(chromosome, position, reference allele, and alternate al-
lele), users can easily retrieve all the annotation columns
in dbNSFP. The output will be displayed on the web
page and available as a downloadable TAB-delimited
text file for further filtering.

Comparison of prediction scores
dbNSFP is in a unique position for comparing different
deleteriousness prediction scores and conservation
scores across the whole exome. Among the 36 deleteri-
ousness prediction scores, the average missing rate is
11% (Additional file 2: Table S2). MVP has the lowest
missing rate (0.028%); three scores have missing rates >
20%: ClinPred (21.7%), MutationAssessor (22.2%), LIN-
SIGHT (97.7%). The very high missing rate of LINSIG
HT is due to that it was designed for noncoding variants.
For the 9 conservation scores, the average missing rate is
0.6%, with minimum 0.01% (phyloP100way_vertebrate
and phastCons100way_vertebrate) and maximum 1.8%
(bStatistic) (Additional file 2: Table S2).
We first compare the dispersal of the scores for the

same nsSNV affecting multiple transcripts, for the 12
transcript-specific deleteriousness prediction scores. In
more details, for each nsSNV affecting more than one
transcript, we calculate d ¼ max − min

ave , where max, min,
and ave are the maximum, minimum, and average of all
transcript-specific scores. Of all the scores except
FATHMM, there are sizable proportions of nsSNVs
with a d > 2, suggesting that choosing an appropriate
transcript is essential for predicting the impact of the
SNVs (Fig. 1).

Fig. 3 UPGMA dendrogram of the deleteriousness prediction scores and conservation scores
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Then we compared the distribution of the scores. Be-
cause different score has a different scaling system, we
create a rank score for each score so that it is compar-
able between scores [13]. The rank score has a scale 0 to
1 and represents the percentage of scores that are less
damaging in dbNSFP, e.g., a rank score of 0.9 means the
top 10% most damaging. We calculated the density dis-
tribution of the rank scores of 45 deleteriousness predic-
tion scores and conservation scores (Additional file 3:
Fig. S1, Additional file 2: Table S3). While most scores
are in general evenly distributed, some scores are not-
ably spiky and sparsely distributed, such as LRT [50],
MutationTaster [51], GenoCanyon, phastCons100way_
vertebrate, and phastCons30way_mammalian, among
others.
We also compared the correlation between scores. For

the 45 deleteriousness prediction scores or conservation
scores, we calculated Pearson’s correlation coefficients
(r) of their rank scores (Fig. 2, Additional file 2: Table
S4). About 43.4% of the correlations are strong (> 0.5),
and 26.7% of the correlations are medium (0.3–0.5). It is
noticeable that the fitCons scores have a weak correl-
ation with other scores, except between themselves.
bStatistic has weak correlations with all other scores,
suggesting that the strength of background selection it
measured is quite different from other conservation
scores. Using 1-r as a distance measure, we constructed

a UPGMA (Unweighted Pair Group Method with Arith-
metic Mean) dendrogram of the scores (Fig. 3). Interest-
ingly, the ensemble scores or hybrid ensemble scores in
dbNSFP form two separated clusters: cluster 1 includes
CADD and CADD_hg19, ClinPred, BayesDel_addAF,
BayesDel_noAF, and REVEL; cluster 2 includes MetaLR
and MetaSVM [52], M-CAP, and DEOGEN2. This ob-
servation suggests that they captured different features
of nsSNVs or weighted the features differently.
We also compared the agreement ratio of binary pre-

dictions by 20 deleteriousness prediction scores (Fig. 2,
Additional file 2: Table S5). The median agreement ratio
is 0.65, which is reasonably high. Some of the highest
agreement ratios are using the same training data, such
as MetaLR and MetaSVM (0.96), BayesDel_addAF and
BayesDel_noAF (0.94), Polyphen2_HDIV and Poly-
phen2_HVAR (0.88). On the other hand, some scores
with similar algorithms do not have high agreement ra-
tios: such as fathmm-XF and fathmm-MKL [53] (0.46).
Fathmm-XF does not have a > 0.5 agreement ratio with
any other scores.
Finally, we compare the performance of the 45 delete-

riousness prediction scores and conservation scores. We
first collected a test set with true positive (TP) observa-
tions obtained from ClinVar between date 20200102 to
20200506 and with true negative (TN) observations ob-
tained from gnomAD v2.1.1 hg38 in genomic locations

Fig. 4 AUROC/VUROC scores for the top 5 deleterious prediction scores
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nearby the TP SNVs (Additional file 4: Supplementary
methods). In total, we obtained 3113 missense SNVs as
our TP group, and 55,914 missense SNVs as our TN
group. Because the selection of TN controls is debatable
as to whether to use very rare SNVs or to use common
ones [54], we further divided our 55,914 TN SNVs into
two groups. The first group (CommonTN; n = 1211)
contains SNVs with AF in gnomAD greater than 1%.
The second group (SingletonTN; n = 54,703) contains
singleton SNVs in gnomAD. We then calculated the area
under the receiver operating characteristic (AUROC) for
each score: one using TP vs. CommonTN and the other
using TP vs. SingletonTN (Fig. 4, Additional file 2: Table
S6). The top five performing scores for TP vs. Com-
monTN are ClinPred and BayesDel_addAF, VEST4,
BayesDel_noAF, and MetaLR, while that for TP vs. Sin-
gletonTN are ClinPred, VEST4, REVEL, MutPred, and
BayesDel_addAF. Interestingly, except for VEST4 and
MutPred, all other scores are ensemble scores. As ex-
pected, the best AUROC for SingletonTN as control
(0.8374) is substantially lower than it for CommonTN as
control (0.999), highlighting the importance of future
tools to provide better discriminatory power for rare be-
nign SNVs.
As we expect that the SingletonTN group, in general,

has a higher probability of being mildly deleterious than
the CommonTN group, a score that can correctly distin-
guish the functional impact of CommonTN and Single-
tonTN should be more useful in the context of WES or
WGS studies. Here, we extended the two-class AUROC
to a 3-class volume under the ROC surface (VUROC)
measure, which can simultaneously evaluate TP vs. Sin-
gletonTN vs. CommonTN. The resulting VUROC score
represents the probability of correctly ranking the three
test groups. A complete random guess (noninformative
score) will have a VUROC of 0.167. Using a custom Py-
thon script, we calculated the VUROC for each of the 45
deleterious scores (Fig. 4, Additional file 2: Table S6).
The top five performing scores are BayesDel_addAF
(VUROC = 0.7443), ClinPred (VUROC = 0.7322), VEST4
(VUROC = 0.6525), BayesDel_noAF (VUROC = 0.5905),
and MetaLR (VUROC = 0.5722). Again, except for
VEST4, all other scores are ensemble scores.

Conclusions
In conclusion, we present dbNSFP v4, a significant im-
provement over v3 over the past 4 years, as to support-
ing transcript-specific predictions and annotations,
convenience to use (GUI support, joint-query of at-
tached databases, and web-service), and double the num-
ber of deleteriousness prediction scores as to nsSNV.
dbNSFP will continue to serve the community of med-
ical geneticists as to providing comprehensive and
easily-accessible tools for functional annotations and

predictions for SNVs that cause amino acid changes and
splicing changes.
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