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N-methyl-D-aspartate (NMDA) receptors, a family of L-glutamate receptors, play an

important role in learning and memory, and are critical for spatial memory. These

receptors are tetrameric ion channels composed of a family of related subunits. One

of the hallmarks of the aging human population is a decline in cognitive function; studies

in the past couple of years have demonstrated deterioration in NMDA receptor subunit

expression and function with advancing age. However, a direct relationship between

impaired memory function and a decline in NMDA receptors is still ambiguous. Recent

studies indicate a link between an age-associated NMDA receptor hypofunction and

memory impairment and provide evidence that age-associated enhanced oxidative

stress might be contributing to the alterations associated with senescence. However,

clear evidence is still deficient in demonstrating the underlying mechanisms and a

relationship between age-associated impaired cognitive faculties and NMDA receptor

hypofunction. The current review intends to present an overview of the research findings

regarding changes in expression of various NMDA receptor subunits and deficits

in NMDA receptor function during senescence and its implication in age-associated

impaired hippocampal-dependent memory function.
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INTRODUCTION

N-methyl-D-aspartate (NMDA) receptors represent one of the ligand-gated non-selective
ionotropic glutamate receptors (iGluRs), which are present in high density within the hippocampus
and the cerebral cortex and play pivotal physiological and pathophysiological roles in the
central nervous system (Cotman and Monaghan, 1989; Cotman et al., 1989). NMDA receptors
along with other iGluRs, such as α-amino-3-hydroxy-5-methylisoxazole-4-isoxazopropionic acid
(AMPA) and Kainate, are critical for the rapid regulation of synaptic plasticity including long-
term potentiation and long-term depression, which are important cellular correlates for learning
and memory function (Morris et al., 1986; Collingridge, 1987; Mondadori et al., 1989; Morris,
1989; Mondadori and Weiskrantz, 1993; Lisman et al., 1998; Martin et al., 2000). Recently,
the International Union of Pharmacology Committee on Receptor Nomenclature and Drug
Classification has adopted and published new guidelines to standardize the nomenclature and
classification of NMDA receptor subunits (Collingridge et al., 2009). We will use this recent
nomenclature to refer to various NMDA receptor subunits. These receptors are hetero-tetrameric
protein complexes composed of two classes of related subunits from seven homologous genes,
GluN1, GluN2A-GluN2D, and GluN3A-GluN3B (Moriyoshi et al., 1991; Kutsuwada et al., 1992;
Meguro et al., 1992; Monyer et al., 1992; Laube et al., 1998; Dingledine et al., 1999; Cull-Candy
et al., 2001; Figure 1).
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FIGURE 1 | Schematic model of the NMDA receptor and its subunit configuration. NMDA receptors represent one of the inotropic glutamate receptors, which

are composed of assemblies of GluN1 subunits and GluN2 and or GluN3 subunits. Functional NMDA receptors are composed of two GluN1 subunits and two

GluN2A-D subunits; GluN3 subunits (GluN3A and GluN3B), without involving other GluN2 subunits, can assemble with GluN1 subunits to form active receptor. GluN1

subunits carry the co-agonist glycine binding site while glutamate binds to GluN2 subunit. Mg2+ blocks the Ca2+ permeable pore. All of these subunits of NMDA

receptor share a common membrane topology, a large extracellular amino-terminal domain, three transmembrane segments (M1, M3, and M4), a re-entrant pore loop

(M2), and an intracellular cytoplasmic C terminal domain.

The majority of NMDA receptors are assemblies of two
GluN1 subunits, the ubiquitously expressed and obligatory
subunit, and two GluN2A-D subunits, a modulatory subunit.
In addition, GluN3 subunits (GluN3A and GluN3B), without
involving GluN2 subunits, can assemble with GluN1 subunits

to form functional receptors (Sucher et al., 1995; Laube et al.,
1998; Al-Hallaq et al., 2002; Schüler et al., 2008; Low and Wee,
2010). All NMDA receptor subunits share a common membrane
topology: a large extracellular amino-terminal domain, three
transmembrane segments (M1, M3, and M4), a re-entrant
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pore loop (M2), and an intracellular cytoplasmic C terminal
domain. The re-entrant M2 loop is part of the channel
pore, which mediates the magnesium blockade and determines
calcium permeability of the channel (Figure 1; Hollmann and
Heinemann, 1994; Dingledine et al., 1999; Madden, 2002).
For more details about the structure of NMDA receptor
subunits, readers are requested to consult excellent review articles
published recently (Magnusson et al., 2010; Traynelis et al., 2010;
Magnusson, 2012; Monaghan et al., 2012; Flores-Soto et al., 2013;
Sanz-Clemente et al., 2013; Wyllie et al., 2013; Shipton and
Paulsen, 2014; Burnashev and Szepetowski, 2015; Glasgow et al.,
2015; Zhu and Paoletti, 2015).

The activation of NMDA receptor requires binding of a ligand
(glutamate) to the GluN2 subunits, membrane depolarization
to remove the Mg2+ block of the channel, and binding of an
essential co-agonist, glycine to the GluN1 subunits. For maximal
activation of the NMDA receptor, binding of both glutamate and
glycine are thought to be required. Results have demonstrated
that D-serine might represent another physiological co-agonist
of the NMDA receptor as it can bind at the glycine-binding
site (Hood et al., 1989; Priestley et al., 1995; Mothet et al.,
2000; Panatier et al., 2006; Labrie and Roder, 2010). NMDA
receptors have slow gating kinetics (Lester and Jahr, 1990). The
GluN2A-containing NMDA receptors have higher open channel
probability and faster deactivation rate than GluN2B-containing
receptors (Vicini et al., 1998; Chen et al., 1999; Erreger et al., 2005;
Erreger and Traynelis, 2005; Gray et al., 2011). Since NMDA
receptor is a non-selective cation channel, its activation and
opening leads to simultaneous influx of Na+ and Ca2+ ions and
efflux of K+ ions (Dingledine et al., 1999; Chen et al., 2005).
However, between the two predominant ionotropic glutamate
receptors subtypes, AMPA and NMDA, the NMDA receptors
are the most permeable to Ca2+ ions, and the influx of Ca2+

ions contributes to the numerous physiological and pathological
actions of the NMDA receptor (Garaschuk et al., 1996).

NMDA RECEPTORS AND SENESCENCE

NMDA receptors containing GluN2A and GluN2B subunits
are highly expressed in the hippocampus and cerebral cortex
(Watanabe et al., 1993a,b; Laurie and Seeburg, 1994; Monyer
et al., 1994; Laurie et al., 1997; Magnusson, 2000; Magnusson
et al., 2007). There is differential spatiotemporal expression and
distribution of the various NMDA receptor subunits within
the brain suggesting the presence of multiple NMDA receptor
populations. The GluN2B subunit is highly expressed throughout
the brain during early stages of development and declines at the
onset of sexual maturity; GluN2A subunit-containing NMDA
receptors increase across the same life span (Laurie and Seeburg,
1994; Monyer et al., 1994; Laurie et al., 1997; Law et al., 2003a,b;
Liu et al., 2004). Currently, it is not well known how the
multiple subunits of NMDA receptors change with advancing
age and how this change may influence the cognitive function.
However, evidence is mounting to indicate that advanced age
is associated with a decline in NMDA receptor function and
subunit expression within brain regions involved in higher brain
function including synaptic plasticity, learning and memory

(Gonzales et al., 1991; Pittaluga et al., 1993; Barnes et al., 1997;
Magnusson, 1998a; Eckles-Smith et al., 2000; Gore et al., 2002;
Liu et al., 2008a; Zhao et al., 2009). Possibly the strongest
evidence for impairment in NMDA receptor function comes
from physiological studies indicate the NMDA receptormediated
excitatory post-synaptic potentials in the Schaeffer collateral
pathway of the hippocampus are reduced by approximately 50–
60% in aged animals (Figure 2; Barnes et al., 1997; Eckles-Smith
et al., 2000; Billard and Rouaud, 2007; Bodhinathan et al., 2010a;
Brim et al., 2013; Kumar and Foster, 2013; Lee et al., 2014).
Most recently, a robust decrease in NMDA receptor mediated
synaptic function was also reported in the medial prefrontal
cortex of middle aged rats (Guidi et al., 2015a). However, age-
related changes in the amplitude of NMDA-evoked responses
were not observed in dissociated cortical neurons suggesting the
possibility of regional specificity in the loss of NMDA receptor
function over the life span (Kuehl-Kovarik et al., 2003).

A decrease in the level of NMDA receptor protein expression
in the hippocampus during senescence has been observed
(Bonhaus et al., 1990; Kito et al., 1990; Miyoshi et al., 1991;
Tamaru et al., 1991; Wenk et al., 1991; Magnusson, 1995;
Magnusson et al., 2006; Billard and Rouaud, 2007; Das and
Magnusson, 2008; Liu et al., 2008a; Zhao et al., 2009); further,
the decrease has primarily been localized to region CA1 of the
hippocampus (Magnusson and Cotman, 1993; Gazzaley et al.,
1996; Magnusson, 1998a; Wenk and Barnes, 2000). These studies
report reduced binding of [3H] glutamate (agonist site), [3H]
glycine (GluN1 site), [3H] CPP (a competitive antagonist to
the L-glutamate binding site), and [3H] MK-801 (an open
channel blocker) in the hippocampus and cerebral cortex of aged
rats. However, others have reported no age-related change in
antagonist binding (Kito et al., 1990; Miyoshi et al., 1991; Araki
et al., 1997; Shimada et al., 1997) or an increasedMK-801 binding
in animals with learning and retention deficits (Ingram et al.,
1992; Topic et al., 2007). It is interesting to note that MK-801
binds to the hydrophobic channel domain of NMDA receptor,
exclusively labeling open channels. Thus, an apparent increase in
NMDA receptor channel open time may act as a compensatory
mechanism for the decrease in receptor number (Serra et al.,
1994; Kumar et al., 2009). However, the majority of reports,
including our recent findings, indicate that the net function of the
NMDA receptors decreases at CA3-CA1 hippocampal synaptic
contacts during senescence (Bodhinathan et al., 2010a; Brim
et al., 2013; Kumar and Foster, 2013; Lee et al., 2014). Most
recently, we demonstrated a similar decline in NMDA receptor-
mediated synaptic response in the prefrontal cortex of advanced
age animals (Guidi et al., 2015a).

MECHANISMS FOR IMPAIRED NMDA
RECEPTOR FUNCTION DURING AGING

Subunit Expression and Composition
Alteration in expression of specific NMDA receptor subunits
might be a potential mechanism for the observed decrease in the
NMDA receptor function (Magnusson, 2000). Developmentally,
the expression of GluN1, GluN2B, and GluN3A decreases with
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FIGURE 2 | Reduced NMDA receptor-mediated synaptic response with

advanced age is associated with impaired cognitive function. (A)

Input-output curves for the NMDA receptor-mediated synaptic potentials

recorded from CA3-CA1 hippocampal synapse in slices obtained from young

(green) and middle age (red) animals. An age-related decrease in the synaptic

response was observed. (B) A significant decrease in NMDA

receptor-mediated synaptic response was observed in impaired animals

(yellow) when compared with unimpaired (lime green). Cognitive performance

was assessed by using Morris swim task. The NMDA receptor-mediated

component of synaptic transmission (NMDAR-fEPSP) was obtained by

incubating slices in artificial cerebrospinal fluid containing low Mg2+ (0.5mM),

6,7-dinitroquinoxaline-2,3-dione (30µM), and picrotoxin (10µM). Input-output

curves for the NMDAR-fEPSP amplitude (mV) were constructed for increasing

stimulation intensities. * indicates significant difference.

age compared to adulthood, while an increase in the expression
of GluN2A and GluN3B is reported during development (Low
and Wee, 2010). A decrease in the expression of GluN1 protein
(Eckles-Smith et al., 2000; Mesches et al., 2004; Liu et al.,
2008b) and GluN1 mRNA (Adams et al., 2001) levels in the
aged hippocampus has been reported. The amount of C2 splice
variants of GluN1 decline in the hippocampus of aged rats
(Clayton et al., 2002a). In contrast, other studies report no
age-related decrease in GluN1 protein expression in the whole
hippocampus (Sonntag et al., 2000; Zhao et al., 2009). Despite the
lack of agreement concerning changes in the expression levels in
the hippocampus, other brain regions exhibit a decline in GluN1
mRNA expression during aging. Indeed, senescence-related

decrease in the GluN1 mRNA expression has been observed in
the medial basal hypothalamus-median eminence (Gore et al.,
2002), in the medial and lateral prefrontal cortices (Magnusson
et al., 2005), and in the insular, orbital, and somatosensory
cortices (Das and Magnusson, 2008).

Results demonstrate age-related changes in the modulatory
GluN2 subunits of the NMDA receptor. A decrease in
the GluN2A protein expression has been observed in the
hippocampus (Sonntag et al., 2000; Liu et al., 2008a), which is not
observed in the frontal cortex (Sonntag et al., 2000). Furthermore,
GluN2AmRNA expression was reported to decline in the ventral
hippocampus (Adams et al., 2001). In contrast, other studies
report no significant change in the GluN2A protein expression
levels in the hippocampus and cortex (Sonntag et al., 2000;
Martínez Villayandre et al., 2004). GluN2B subunit of the NMDA
receptor is most affected by the aging process (Magnusson, 2000;
Ontl et al., 2004; Magnusson et al., 2007; Zhao et al., 2009);
the expression of GluN2B protein (Clayton and Browning, 2001;
Mesches et al., 2004; Zhao et al., 2009) and GluN2B mRNA
(Adams et al., 2001; Clayton and Browning, 2001; Magnusson,
2001) decline in the hippocampus with advanced age. This effect
may be region specific since a decline in GluN2B protein is
not observed in the frontal cortex (Sonntag et al., 2000). In
contrast, GluN2B mRNA decreases in the frontal cortices of
aging macaque monkeys, but not in the hippocampus (Bai et al.,
2004). Age-associated changes in the expression of GluN2C and
GluN2D of the NMDA receptor subunit are not observed in
the mouse hippocampus or cortex (Magnusson, 2012), and there
are few studies performed to detect the influence of aging on
expression of GluN3A and GluN3B subunits of the NMDA
receptor.

From a physiological point of view, the alterations in the
expression of specific GluN2 subunits could have dramatic
influences on NMDA receptor function through the regulation
of mean channel open time and conductance of the NMDA
receptors. Studies on recombinant NMDA receptor expressed in
Xenopus oocytes demonstrate that NMDA receptors containing
the GluN2A subunit (GluN2A-NMDA receptors) have faster
deactivation kinetics and higher open probability relative
to GluN2B containing NMDA receptors (GluN2B-NMDA
receptors) (Vicini et al., 1998; Cull-Candy et al., 2001; Erreger
et al., 2005; Gray et al., 2011), such that smaller ion flux
is observed for the GluN2A-NMDA receptors, relative to
the GluN2B-NMDA receptors. Thus, a shift in the level of
GluN2 subunit expression could modulate the time course
and magnitude of the Ca2+ signal leading to reduced Ca2+

influx associated with the loss of GluN2B subunits. A shift
in GluN2A and GluN2B expression is thought to contribute
to developmental changes in cognition and synaptic function
(Dumas, 2005). Overview of literature suggests that an adequate
balance between GluN2A and GluN2B might be a key
mechanism for the optimal functioning of the NMDA receptor.

Location
Alternatively, alterations in the NMDA receptor localization,
through the insertion of receptors into the membrane or
recruitment of extra-synaptic receptors into the synapse, may
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influence NMDA receptor function with advanced aging. Results
suggested that GluN2B containing receptors may be more
prevalent at extra-synaptic sites (Massey et al., 2004), which could
temporarily house the NMDA receptors before being internalized
into the cytoplasm (Blanpied et al., 2002; Lau and Zukin, 2007).
In the frontal cortex, the expression of the GluN2B subunit is
reduced in the synaptic membrane fraction, but not in the whole
homogenate of brain tissue from senescent mice suggesting that
GluN2B containing receptor sequestration at the extra-synaptic
sites may be the mechanism by which the GluN2B levels decline
during aging (Zhao et al., 2009). Finally, results indicate that
extra-synaptic NMDA receptors couple to different signaling
cascades, initiate mechanisms that oppose synaptic potentiation,
by shutting off the activity of cAMP response element binding
protein and decreasing expression of brain-derived neurotropic
factor (Hardingham et al., 2002; Vanhoutte and Bading, 2003).
However, it remains to be determined whether alteration in
NMDA receptor location, specifically extra-synaptic localization,
is a contributing mechanism to NMDA receptor hypofunction
during senescence.

Translational Modifications
An additional probable candidate mechanism for regulating
NMDA receptor function during aging is post-translational
modification of the receptor. In particular, the function of the
NMDA receptor is influenced by its phosphorylation state.
Activation of the tyrosine kinase (Wang et al., 1994; Heidinger
et al., 2002), protein kinase C (Ben-Ari et al., 1992; Chen
and Huang, 1992) and protein kinase A (Raman et al., 1996)
increases NMDA receptormediated currents. In contrast, protein
phosphatases, including calcineurin and protein phosphatase 1,
decrease NMDA receptor currents (Lieberman and Mody, 1994;
Wang et al., 1994; Raman et al., 1996). Phosphorylation state of
GluN1, GluN2A, or GluN2B subunits can rapidly regulate surface
expression and localization of the NMDA receptors (Gardoni
et al., 2001; Chung et al., 2004; Hallett et al., 2006; Lin et al.,
2006). For example, phosphorylation of serine residues within
the alternatively spliced cassettes of the C-terminal tail of GluN1
promotes receptor trafficking from the endoplasmic reticulum
and insertion into the post-synaptic membrane (Scott et al.,
2001; Carroll and Zukin, 2002). Finally, increased phosphatase
activity has been linked to the internalization of NMDA receptors
(Snyder et al., 2005). Thus, the kinases and phosphatases act like
molecular switches that increase or decrease NMDA receptor
function, respectively. Interestingly, aging is associated with a
shift in the balance of kinase/phosphatase activity, favoring
an increase in the phosphatase activity (Norris et al., 1998;
Foster et al., 2001; Foster, 2007). Thus, age-associated alterations
in the phosphorylation state of the NMDA receptor might
contribute to the decrease in the NMDA receptor function
during aging (Coultrap et al., 2008). Future research is desired to
delineate the direct interaction between the age-induced altered
kinase/phosphatase activity and NMDA receptor function.

Oxidative Stress
Age-associated augmented oxidative stress might influence
the subunit composition, expression, trafficking, and NMDA

receptor function. Oxidation and reduction of sulfhydryl
moieties alter NMDA receptor function. Three pairs of cysteine
residues located within the N-terminal regulatory domain of the
receptor (two pairs reside in GluN1 and one pair resides in
GluN2A subunit) are involved in oxidation-reduction (redox)
modulation of NMDA receptor (Choi and Lipton, 2000; Choi
et al., 2001; Lipton et al., 2002). Previous research demonstrates
that oxidizing agents such as 5,5′-dithiobis-(2-nitrobenzoic
acid) (Aizenman et al., 1989), hydroxyl radicals generated
by xanthine/xanthine oxidase (Aizenman, 1995) and oxidized
glutathione (Sucher and Lipton, 1991) decrease NMDA receptor
function in the neuronal cell cultures. The decrease in NMDA
receptor function under oxidizing conditions is thought to
result from the formation of disulfide bonds on the sulfhydryl
group-containing amino acid residues in the NMDA receptor
(Aizenman et al., 1990; Sullivan et al., 1994; Choi et al., 2001).
The aging brain is associated with an increase in oxidative stress
and/or a decrease in redox buffering capacity (Foster, 2006; Poon
et al., 2006; Parihar et al., 2008), conditions that promote a
decrease in NMDA receptor function. Results demonstrate that
an age-related decrease in NMDA receptor function is related
to oxidative stress and a post-synaptic shift in the intracellular
redox environment (Bodhinathan et al., 2010a,b; Robillard et al.,
2011; Haxaire et al., 2012; Lee et al., 2014). Our recent results
provide evidence for a link between the redox-mediated decline
in NMDA receptor function and the emergence of an age-related
cognitive phenotype with impairment in the rapid acquisition
and retention of novel spatial information (Figure 3; Kumar and
Foster, 2013; Lee et al., 2014).

Microglia Interaction
Local supporting cells, astrocytes and microglia, can regulate
NMDA receptor function in neurons and may provide additional
possible mechanisms for the age-related changes to NMDA
receptor function. Astrocytes are a major source of D-serine,
an endogenous co-agonist for the NMDA receptor that binds
to the glycine binding site (Schell et al., 1995). An age-related
loss of D-serine is observed in the hippocampus and cortex of
rats (Williams et al., 2006). Microglia contributes to the brain’s
immune system and activated microglia can release D-serine
(Wu and Barger, 2004; Wu et al., 2004). In accordance with
this idea, recent reports suggest that microglia can potentiate
the NMDA receptor-mediated synaptic responses in cortical
neurons (Moriguchi et al., 2003; Hayashi et al., 2006). Markers
of neuroinflammation increase with advancing age and in certain
neurodegenerative disorders. Finally, there is evidence for a
feedback reduction in NMDA receptors due to excess synaptic
glutamate activity during microglial activation (Rosi et al., 2004,
2006).

In light of the interaction of NMDA receptors and
microglia, it is imperative to consider the probability that
the reduction in NMDA receptor function might represent
a compensatory neuroprotective mechanism associated with
inappropriate receptor activity or increased Ca2+ due to
other mechanisms. Thus, impaired NMDA receptor-dependent
synaptic plasticity and memory decline may be epiphenomena
due to processes for cell preservation (Foster, 1999). Indeed,
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FIGURE 3 | Redox environment contributes to a decline in NMDA

receptor function associated with cognitive aging. (A) Time course of

changes in the slope of NMDAR-fEPSP obtained from hippocampal slices

10min before and 60min after bath application of a reducing agent,

dithiothreitol (DTT, 0.5mM, solid line) for young (green circles), unimpaired (lime

green circles), and impaired (red circles) animals. (B) Bar diagram

demonstrating percent change in NMDAR-mediated synaptic response

following DTT application (5min of last 60min) in slices obtained from young

(green), unimpaired (lime green), and impaired (red) animals. DTT induced an

increase in NMDAR-mediated synaptic response was significantly higher in

slices obtained from impaired animals compared to young and unimpaired

animals. * indicates significant difference.

over expression of GluN2B subunits improves synaptic plasticity
and memory in aged mice (Cao et al., 2007; Brim et al., 2013)
indicating that increased NMDA receptor function can rescue
physiological symptoms of cognitive aging. However, cognition
and synaptic plasticity are also improved by treating with the
low-affinity voltage-dependent NMDA receptor channel blocker,
memantine (Barnes et al., 1996; Pietá Dias et al., 2007), possibly
by reducing inappropriate NMDA receptor activity (Rosi et al.,
2006; Matute, 2007; Chang and Gold, 2008). Memantine, a
non-competitive moderate and partial NMDA receptor channel
blocker, can attenuate the over activation of the NMDA receptor
by preventing influx of excessive Ca2+ without influencing
physiological activity of NMDA receptor (Scarpini et al., 2003;
Gardoni and Di Luca, 2006; Pallàs and Camins, 2006). In
clinical studies, memantine has been demonstrated to have

beneficial effects for patients with moderate to severe Alzheimer’s
disease, while has no effect in mild AD patients (Reisberg et al.,
2003). Initial studies described positive effects of memnatine
on cognition in demented patients (Ditzler, 1991), neuronal
plasticity and learning in senescent animals (Barnes et al., 1996),
water maze performance in adult male rats (Zoladz et al.,
2006), and spatial learning in transgenic mice (Minkeviciene
et al., 2004). However, results for the efficacy of memantine’s
beneficial influence on cognition are controversial. Memantine
reduces agitation and delusions in severe AD cases and yet has
little or no cognitive benefit for mild AD, including impaired
executive function (Reisberg et al., 2003; Parsons et al., 2007;
Schneider et al., 2011; Huang et al., 2012). Furthermore, a recent
study demonstrated that memantine fail to improve significant
agitation in people with moderate to severe AD (Fox et al.,
2012). Future studies are required to clearly examine the efficacy
of memantine for cognitive benefits and other neuropsychiatric
symptoms.

NMDA RECEPTOR HYPOFUNCTION AND
ITS INFLUENCE ON COGNITIVE
PERFORMANCE

NMDA receptors play an important role in learning and
memory, and are critical for spatial memory (Morris et al.,
1986; Collingridge, 1987; Mondadori et al., 1989; Morris, 1989;
Mondadori and Weiskrantz, 1993; Lisman et al., 1998; Martin
et al., 2000; Foster, 2012; Guidi et al., 2015b); NMDA receptor-
mediated synaptic plasticity and its hypofunction is thought
to play a vital role in age-associated cognitive impairments
(Foster and Norris, 1997; Foster, 2012; Kumar and Foster, 2013).
Advanced age is associated with a decrease in subunit expression
and a decline in NMDA receptor function. Mounting evidence
suggests that an age-associated deficiency in NMDA receptor
contributes to impairment in spatial learning andmemory (Davis
et al., 1993; Magnusson, 1998b, 2001; Clayton et al., 2002b;
Magnusson et al., 2007; Das and Magnusson, 2008, 2011; Zhao
et al., 2009; Das et al., 2012; Foster, 2012; Zamzow et al.,
2013). The age-associated decrease in the GluN2B subunit of the
NMDA receptor contributes to some forms of memory decline
during senescence (Zamzow et al., 2013). Prior work regarding
the NMDA receptor and its functional state during aging has
been largely focused on the hippocampus (Barnes et al., 1997;
Magnusson, 1998a; Eckles-Smith et al., 2000; Zhao et al., 2009;
Kumar and Foster, 2013). Our results also provide evidence by
showing blunted NMDA receptor mediated synaptic potentials
in memory impaired animals when compared with unimpaired
animals (Figure 2B; Kumar and Foster, 2013). These results
demonstrate that NMDA receptor-mediated synaptic responses
at CA3-CA1 hippocampal synapses are significantly decreased
with advanced age. Examination of synaptic transmission,
according to behavioral classification, revealed that animals
classified as impaired exhibited a decrease in the NMDA receptor
component of the synaptic response relative to young and
unimpaired animals. Recent results successfully demonstrate
that viral vector mediated upregulation of the GluN2B subunit
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of NMDA receptor in aged animals enhances hippocampal-
dependent memory and synaptic transmission (Brim et al., 2013).
Furthermore, we provide evidence for a link between the redox-
mediated decline in NMDA receptor function and the emergence
of age-related memory impairment (Kumar and Foster, 2013).
These results demonstrate that bath application of the reducing
agent dithiothreitol enhanced the NMDA receptor component
of the synaptic response to a greater extent in impaired animals
relative to unimpaired and young rats (Figure 3).

In addition to the hippocampus, there are studies that
indicate an age-associated decrease in NMDA receptor-mediated
synaptic plasticity in other brain regions that might contribute
to impairments in cognitive function (Bourne and Harris,
2007; Morrison and Baxter, 2012). Our most recent results
demonstrate a robust decrease in NMDA receptor mediated
synaptic responses in the medial prefrontal cortex, and the
decrease in NMDA receptor function was due in part to an
altered redox state, which was associated with several measures of
prefrontal cortex-dependent behavior (Guidi et al., 2015a). These
results indicate that redoxmediated changes contribute to altered
NMDA receptor function and provide possible mechanisms that
may underlie impairment in cognitive performance associated
with advanced age. However, a clear understanding, in regards
to how alterations in NMDA receptor function associated with
either advanced age or with neurodegenerative diseases that
contribute to cognitive impairment, is essential.

RESTORING NMDA RECEPTOR
FUNCTION WITH ADVANCED AGE

One simple notion is that augmenting the NMDA receptor
subunit expression and function should ameliorate cognitive
function. The challenge is how to restore or prevent the
diminishing NMDA receptor function over the course of a
life span and in neurodegenerative diseases. Pharmacological
agents such as N-acetylcysteine (NAC) and D-cycloserine have
provided an avenue to enhance NMDA receptor function and
reverse negative consequences associated with NMDA receptor
hypofunction. NAC is a derivative of the amino acid L-
cysteine with an added acetyl group attached to the nitrogen
atom, which serves as a precursor for the formation of the
antioxidant glutathione (γ-glutamylcysteinylglycine; GSH) in
the body (Ziment, 1988). The tripeptide GSH is a potent
endogenous antioxidant produced by cells and is important
for the maintenance of redox potential in the brain (Reid
and Jahoor, 2001; Cruz et al., 2003). The thiol (sulfhydryl)
group confers the antioxidant properties. Previous research
examining the ability of reducing and oxidizing (redox) agents
to modulate NMDA receptor activity in cell cultures and in
tissue from neonates suggests that redox state is an imperative
determinant of NMDA receptor function possibly through
oxidation of extracellular cysteine residues on the NMDA
receptor subunits; NMDA receptors are redox sensitive protein
that requires a healthy redox balance (Aizenman et al., 1989,
1990; Tang and Aizenman, 1993; Bernard et al., 1997; Choi
and Lipton, 2000; Lipton et al., 2002). The redox sensitive

intracellular molecules affect NMDA receptor function and the
aged brain exhibits augmented oxidative damage and a decrease
in redox buffering capacity (Foster, 2006; Poon et al., 2006;
Parihar et al., 2008). Our published results demonstrate that
age-associated enhanced oxidative stress contributes to NMDA
receptor hypofunction, and the reducing agent significantly
improved the NMDA receptor mediated synaptic response
(Bodhinathan et al., 2010a; Kumar and Foster, 2013; Lee et al.,
2014; Guidi et al., 2015a; Figure 3). NAC, being an antioxidant
and anti-inflammatory agent, has the abilities to modulate
NMDA receptor activity. Long-term dietary treatment with NAC
is beneficial in alleviating age-associated neuronal alterations
induced by an impaired antioxidant defense system (Martínez
et al., 2000; Cocco et al., 2005). Results from a recent study
eloquently demonstrated that long-term dietary supplementation
with NAC prevented age-induced oxidative damage in the
hippocampus and restored NMDA receptor-mediated long-term
potentiation at CA3-CA1 hippocampal synapses. Additionally,
the authors demonstrated that age-associated decrease in levels
of D-serine, a NMDA receptor co-agonist that is required
for receptor activation, and expression of serine racemase, an
enzyme that is responsible for synthesis of D-serine from L-
serine, are rescued by long-term dietary treatment with NAC
(Haxaire et al., 2012). NAC, being a precursor of GSH, can
protect the brain from low levels of GSH and improve cognitive
performance (Fu et al., 2006; Robillard et al., 2011). Results
also demonstrate that long-term dietary supplementation with
NAC can restore age-induced impaired hippocampal synaptic
plasticity close to that of the adult level (Robillard et al., 2011).
An enhancement in NMDA receptor current has also been
observed following acute application of NAC in cortical neurons
(Dukoff et al., 2014). Review of the literature provides abundant
evidence for beneficial influence of NAC on antioxidant balance,
neurotransmission, neurogenesis, and inflammation. Adjunctive
supplementations with NAC improve the symptoms of bipolar
disorder, Alzheimer’s disease, depression, cognitive impairment,
and other psychiatric disorders (Butterfield and Pocernich, 2003;
Jayalakshmi et al., 2007; Lanté et al., 2008; Choy et al., 2010;
Goncalves et al., 2010; Jain et al., 2011; Otte et al., 2011; Dean
et al., 2012; Dhanda et al., 2013; Rodrigues et al., 2013; Carvalho
et al., 2014; Steullet et al., 2014; Thakurta et al., 2014; Soleimani
Asl et al., 2015). For more details about therapeutic potential
of NAC in ameliorating various pathological conditions, readers
are referred to excellent review articles published previously
(Kelly, 1998; Dean et al., 2012). Future studies are needed to
explore the beneficial influence of NAC on NMDA receptor
hypofunction and its consequence on cognitive impairments in
hippocampal dependent spatial memory and prefrontal cortex-
dependent executive function associated with senescence and
other pathological disorders.

Another pharmacological agent, D-cycloserine ((4R)-4-
amino-1,2-oxazolidin-3-one, DCS), a partial agonist and positive
modulator of the NMDA receptor, binds at strychnine-sensitive
glycine modulatory site of the receptor and enhances NMDA
receptor function (Johnson and Ascher, 1987; Reynolds et al.,
1987; Hood et al., 1989; Kemp and Leeson, 1993). DCS acts as
an antagonist by shifting more efficient endogenous agonists like
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D-serine at high dose. A low dose of DCS can act as an agonist
and facilitate NMDA receptor function (Horio et al., 2013).
There are numerous reports suggesting the beneficial influence
of DCS on cognitive performance and other neurodegenerative
diseases (Thompson et al., 1992; Baxter et al., 1994; Ohno
and Watanabe, 1996; Gabriele and Packard, 2007; Yaka et al.,
2007; Curlik and Shors, 2011; Kuriyama et al., 2011; Feld
et al., 2013; Kranjac et al., 2013; Ren et al., 2013). Peripheral
injection of DCS, which crosses the blood-brain barrier, has been
shown to enhance learning rate and rescue impaired memory
consolidation (Thompson et al., 1992; Kranjac et al., 2013). DCS
can modulate NMDA receptor-mediated neurotransmission
and has the potential to restore impaired NMDA receptor
function associated with aging or pathological condition. Results
indicate that age-associated impaired cognition is improved
by DCS treatment (Baxter et al., 1994; Aura and Riekkinen,
2000). In young animals, DCS enhanced NMDA receptor
activation and facilitated hippocampal neurotransmission
(Pitkänen et al., 1994; Rouaud and Billard, 2003; Donzis and
Thompson, 2014). Furthermore, a senescence-induced deficit
in NMDA receptor mediated neurotransmission is restored by
DCS (Billard and Rouaud, 2007). A study by Kochlamazashvili
and colleagues demonstrated that DCS restored learning in
the fear conditioning paradigm and improved long-term
NMDA-mediated synaptic transmission in aged neural cell
adhesion molecule deficient animals by upregulating the
GluN2A subunit of the NMDA receptor (Kochlamazashvili
et al., 2012). Readers interested in details regarding to DCS
influences on cognitive performance and neurotransmission
over the life span and in neuropathological conditions may
consult previously published review articles (Norberg et al.,
2008; Huang et al., 2012; Lin et al., 2014; Hofmann et al., 2015).
Future studies are needed in order to delineate the influence of
DCS on specific NMDA receptor subunit configurations and its
functional outcome in regards to ameliorating age-associated
impaired cognition and NMDA receptor hypofunction over the
life span.

D-serine is a potent endogenous ligand that binds at the
glycine binding site of the NMDA receptor and acts as a
neuronal signaling molecule leading to upregulation of NMDA
receptors. In addition, it is released from astrocytes and is highly
expressed in the brain (Schell et al., 1995; Mothet et al., 2000;
De Miranda et al., 2002; Nishikawa, 2005; Fossat et al., 2012).
D-serine is required for NMDA receptor activation, and may
have preferential affinity/effectiveness for NMDA receptors that
contain GluN2B subunits (Priestley et al., 1995). The levels of D-
serine are dramatically reduced with advanced age (Junjaud et al.,
2006; Mothet et al., 2006; Turpin et al., 2011). One possibility
is a loss of the serine racemase enzyme, which generates D-
serine from L-serine (Wolosker et al., 1999a,b). A decline in
serine racemase mRNA is observed in the prefrontal cortex of
aging humans (Loerch et al., 2008) and the hippocampus of
aged rats (Turpin et al., 2011). The enzyme serine racemase
generates D-serine from L-serine; pharmacological or viral
gene delivery tools could be employed to increase endogenous
levels of D-serine or serine racemase expression. Currently,
there is some debate as to the source of serine racemase,

either neuronal or glial (Wolosker et al., 1999a; Wolosker,
2011; Wolosker and Mori, 2012); however, recent results
provide convincing evidence that serine racemase is primarily
expressed by neurons (Yoshikawa et al., 2007; Miya et al.,
2008; Rosenberg et al., 2010; Ding et al., 2011). There are
reports that oral treatment or intracerebroventricular infusion
of DCS induced a marked increase in extracellular D-serine
levels within the hippocampus of SRR-knockout mice (Horio
et al., 2013). Future studies to upregulate the expression of
serine racemase, in order to enhance the endogenous level of
D-serine, could provide another avenue to restore impaired
NMDA receptor function during aging and under pathological
conditions.

Recent studies, employing genetic tools, provide another
alternative to enhance NMDA receptor function. A great
advantage of this technology is that we can study the effect
of single genes, or gene combinations by injecting mixtures
of viral vectors to upregulate expression of target genes. Dose
response studies, by injecting dilutions of viral vector, to
analyze the effects of different levels of expression/transduction
of the GluN1/GluN2A/B subunits, can also be performed
along with functional significance of enhanced expression of
the receptor. Viral vectors were originally developed as an
alternative to transfection of genetic material (DNA) into cells.
Now the viral vector-mediated gene delivery technique is more
commonly used to upregulate or downregulate a target gene
into living cells. This tool provides an excellent opportunity
to overexpress various subunits of the NMDA receptor and
measure its functional consequence on behavioral performance.
Our results clearly illustrate rescuing age-associated impaired
hippocampal-dependent spatial memory by enhanced expression
of the GluN2B subunit of the NMDA receptor (Brim et al.,
2013). More research in this direction will be essential to
explore the impact of augmenting expression of various
NMDA receptor subunits alone or in combinations on NMDA
receptor function including synaptic transmission and cognitive
performance. In addition to analyzing beneficial influence
of augmented NMDA receptor subunit expression/function,
future research should also investigate possible side effects and
other stipulations associated with enhanced function of NMDA
receptor.

CONCLUSION AND OUTLOOK

Now there is mounting evidence, which suggest that the
subunit expression, configuration, and function of the NMDA
receptor are altered with advancing age. Vista of factors
including subunit expression, topography, oxidative stress,
interaction with scaffolding proteins and glial cells, receptor
trafficking, and translation, tempered by aging might be
contributing to NMDA receptor hypofunction. Due to the
critical importance of NMDA receptors in synaptic transmission
and memory, a selective upregulation of NMDA receptor
subunits in neurons may provide an avenue for treating age-
associated cognitive deficits. Clearly, future research will need to
delineate the contributions of several mechanisms in optimizing
specific subunit contribution and influence of upregulation in
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mediating learning and memory function. Thus, it will be
imperative for future research to determine whether enhancing
or inhibiting NMDA receptor function by upregulating or
downregulating different subunits expression configurations will
be beneficial in preserving cognitive domain during normal
senescence.
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