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Abstract

Human serum amyloid A (SAA) has been demonstrated as a chemoattractant and proin-

flammatory mediator of lethal systemic inflammatory diseases. In the circulation, it can be

sequestered by a high-density lipoprotein, HDL, which carries cholesterol, triglycerides,

phospholipids and apolipoproteins (Apo-AI). The capture of SAA by HDL results in the

displacement of Apo-AI, and the consequent inhibition of SAA’s chemoattractant activi-

ties. It was previously unknown whether HDL similarly inhibits SAA-induced sPLA2

expression, as well as the resultant HMGB1 release, nitric oxide (NO) production and

autophagy activation. Here we provided compelling evidence that human SAA effectively

upregulated the expression and secretion of both sPLA2-IIE and sPLA2-V in murine mac-

rophages, which were attenuated by HDL in a dose-dependent fashion. Similarly, HDL

dose-dependently suppressed SAA-induced HMGB1 release, NO production, and autop-

hagy activation. In both RAW 264.7 cells and primary macrophages, HDL inhibited SAA-

induced secretion of several cytokines (e.g., IL-6) and chemokines (e.g., MCP-1 and

RANTES) that were likely dependent on functional TLR4 signaling. Collectively, these

findings suggest that HDL counter-regulates SAA-induced upregulation and secretion of

sPLA2-IIE/V in addition to other TLR4-dependent cytokines and chemokines in macro-

phage cultures.

Introduction

Harboring various fatty acid side chains and phospholipid head groups [e.g., phosphatidylcho-

line (PC), phosphatidylserine (PS), or phosphatidyl ethanolamine (PE)], the heterogeneous

phospholipids serve as the major components of cytoplasmic membranes and lipoprotein
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particles. The A2 group of phospholipases (PLA2s) hydrolyzes the fatty acid at the sn-2 position

of the glycerol backbone of the phospholipids, releasing lysophospholipid as well as free fatty

acids such as arachidonic acid (AA)–a substrate for other signaling lipids including prostaglan-

din E2 (PGE2), leukotrienes, and eicosanoids. Based on their molecular weight, cellular locali-

zation and dependence on calcium, PLA2s are further subdivided into: 1) Ca2+-dependent

cytosolic enzymes (cPLA2s); 2) the low-molecular-weight and Ca2+-dependent secretory

PLA2s (sPLA2); 3) Ca2+-independent enzymes (iPLA2s); 4) lipoprotein-associated PLA2

(Lp-PLA2 or sPLA2-VII); 5) lysosomal enzymes (LPLA2); and 6) adipose-specific enzymes

(AdPLA2s) [1]. In general, different sPLA2s participate in diverse processes ranging from gen-

erating lipid metabolites, promoting membrane remodeling, and modifying extracellular lipid

components (e.g., lipoproteins), to degrading phospholipids in invading pathogens and ingest-

ing dietary components. For instance, the mammalian sPLA2 family contains 10 catalytically

active isoforms (IB, IIA, IIC, IID, IIE, IIF, III, V, X, and XIIA) [1], which predominantly

hydrolyze phospholipids in the extracellular environment.

During inflammation, innate immune cells (macrophages and monocytes) sequentially

release early cytokines (e.g., TNF, IL-1, and IFN-γ) [2] and late proinflammatory mediators

such as sPLA2 [1], nitric oxide (NO) [3] and HMGB1 [4]. As a cascade response, early cyto-

kines can further stimulate innate immune cells to release sPLA2 [5], which potentiates the

subsequent release of NO [6] and HMGB1 [7]. Additionally, early cytokines also alter the

expression of liver-derived acute phase proteins, which then participate in the regulation of

late proinflammatory mediators.

For instance, TNF, IL-1β and IFN-γ induce the expression of serum amyloid A (SAAs) in

both hepatocytes [8] and innate immune cells (e.g., macrophages/monocytes) [9]. Overall,

the human SAA family is comprised of multiple members including the most abundant

SAA1, and other less prominent isoforms such as SAA, SAA2α, SAA2β, and SAA3. Follow-

ing endotoxemia, circulating SAA levels are dramatically elevated (up to 1000-fold) within

16–24 h as a result of the de novo expression of early cytokine inducers and subsequent syn-

thesis of SAAs [10,11]. Upon secretion, extracellular SAA signals via a family of receptors

including the receptor for advanced glycation end products (RAGE) [12], TLR2 [13,14],

TLR4 [15], P2X7 receptor [16], and pertussis toxin-sensitive receptors [e.g., formyl peptide

receptor 2 (FPR2)] [17], thereby inducing various cytokines and chemokines (e.g., TNF, IL-

1β, IL-6, G-CSF, IL-8, MCP-1, MIP-1α, and MIP-3α) [18,19]. It also serves as a chemoat-

tractant for inflammatory cells such as macrophages/monocytes [17,20,21] and T cells

[22]. Interestingly, SAA can stimulate smooth muscle cells to release sPLA2-IIA [23], and

induce human THP-1 monocytes to express lipoprotein-associated PLA2 (Lp-PLA2 or

sPLA2-VII) [24].

SAA contains an N-terminal α-helical domain (amino acid 1–28) capable of binding high-

density lipoproteins (HDL) [25,26], the smallest lipoproteins that carry cholesterol, triglycer-

ides, and phospholipids within the water-based blood stream. The capture of SAA by HDL

results in the displacement of apolipoproteins (Apo-AI) and formation of larger HDL particles

(up to 200 kDa) [27,28]. At physiologically relevant concentrations (>100 μg/ml), HDL almost

completely blocks the chemoattractant activities of SAA [20], suggesting HDL as a natural

inhibitor of SAA in the circulation. Although we recently demonstrated that SAA stimulates

macrophages to release HMGB1 (29), it was previously unknown whether SAA also upregu-

lates sPLA2 secretion, an essential prerequisite for NO production [6] and HMGB1 release [7].

In this study, we sought to examine whether human SAA upregulated the expression and

secretion of sPLA2s in macrophage cultures. Furthermore, we determined whether HDL sup-

pressed SAA-induced sPLA2 expression, HMGB1 release, NO production, autophagy activa-

tion, or secretion of other cytokines and chemokines.

HDL Counter-Regulates SAA-Induced sPLA2 Expression
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Materials and Methods

Materials

Dulbecco’s Modified Eagle’s Medium (DMEM, Cat. No. 11995–065), penicillin/streptomycin

(Cat. No. 15140–122), and fetal bovine serum (FBS, Cat. No. 26140079) were obtained from

Invitrogen (Grand Island, New York). OPTI-MEM I reduced serum medium (Cat. No.

31985062), the Trizol reagent (Cat. No. 15596–026), and the RevertAid™ First Strand cDNA

Synthesis Kit (Cat. No. K1621) were obtained from Thermo Fisher Scientific (Springfield, New

Jersey). The RT2 SYBR Green ROX qPCR Mastermix (Cat. No. 330521) was obtained from the

Qiagen (Valencia, CA). Purified high-density lipoprotein (HDL, Cat. No. L8039, >95% purity)

and anti-β-actin antibody (Cat. No. A1978) were obtained from Sigma-Aldrich (St. Louis,

MO). Recombinant human SAA (also called Apo-SAA, Cat. No. 300–13) was obtained from

PeproTech (Rocky Hill, NJ). The apo-SAA is almost identical to human Apo-SAA1α, except

for the presence of an N-terminal methionine, the substitution of asparagine for aspartic acid

at position 60, and arginine for histidine at position 71, the latter two substituted residues are

present in Apo-SAA2β. HRP conjugated donkey anti-rabbit IgG was from GE Healthcare

(Cat. No. NA934). HMGB1-specific polyclonal antibodies were generated in rabbits as previ-

ously described [4]. Two lines of sPLA2-reacting antibodies (Cat. No. ab23709 and Cat. No.

ab139692) were obtained from Abcam (Cambridge, MA). LC3 mouse monoclonal antibody

(Cat. No. SC-16755) was obtained from Santa Cruz Biotechnology. TLR2, TLR4 and RAGE

KO, and TLR2/RAGE and TLR4/RAGE-double KO mice on a C57BL/6 genetic background

were maintained at The Feinstein Institute for Medical Research as previously described [29].

Because the KO mice were derived from C57BL/6 mice, small colonies of wild-type C57BL/6

(Jackson Laboratory) were maintained under the same conditions.

Cell culture

Primary peritoneal macrophages were isolated from Balb/C mice (Taconic, male, 7–8 weeks,

20–25 g), wild-type C57BL/6, or various SAA receptor knockout mice (male, 7–8 weeks, 20–25

g) at 2–3 days after intraperitoneal injection of 2 ml thioglycollate broth (4%) as previously

described [30,31]. Briefly, Balb/C or C57BL/6 mice were sacrificed by CO2 asphyxiation, and

the abdomen region was cleaned with 70% ethanol before making a small excision of the

abdominal skin to expose the abdominal wall, and to insert a catheter into viscera-free pocket

in order to wash out peritoneal macrophages with 7.0 ml of 11.6% sucrose solution. This study

was approved by the Institutional Animal Care and Use Committee (IACUC protocol #: 2008–

033; Approval date: September 28th, 2012), and performed in accordance with the guidelines

for the care and use of laboratory animals at the Feinstein Institute for Medical Research, Man-

hasset, New York. Murine macrophage-like RAW 264.7 cells were obtained from the American

Type Culture Collection (ATCC, Rockville, MD). RAW 264.7 macrophages and primary mac-

rophages were cultured in DMEM supplemented with 1% penicillin/streptomycin and 10%

FBS. When reaching 70–80% confluence, adherent macrophages were gently washed with, and

cultured in, OPTI-MEM I before stimulating with human SAA, in the absence or presence of

HDL for 16 h. Subsequently, the cell-conditioned culture media were analyzed respectively for

the levels of sPLA2, HMGB1, nitric oxide (NO), and other cytokines by Western blotting analy-

sis, the Griess Reaction, and Cytokine Antibodies Arrays as previously described [32,33].

Western blotting

The levels of sPLA2 and HMGB1 in the culture medium were determined by Western blotting

analysis as previously described [4,34]. Briefly, an equal volume of culture medium (conditioned
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by identical macrophage cell numbers) was harvested, and protein content was concentrated by

ultrafiltration (with a molecular weight cutoff of 3.0 kDa), and then normalized to the same vol-

ume with a sample buffer. Proteins in equal sample volume were resolved on sodium dodecyl

sulfate (SDS)-polyacrylamide gels, and then transferred to polyvinylidene difluoride (PVDF)

membranes. After blocking with 5% non-fat milk, the membrane was incubated with respective

antibodies (anti-sPLA2, 1:500; anti-HMGB1, 1:1000) overnight. Subsequently, the membrane

was incubated with the appropriate secondary antibodies, and the immunoreactive bands were

visualized by chemiluminescence technique.

The basic principle of autophagy assay was to measure the biochemical conversion of the

endogenous LC3-I to phosphatidylethanolamine (PE)-conjugated LC3-II by Western blotting

analysis [35]. Although the actual molecular weight of PE-conjugated-LC3-II (16 kDa) is larger

than that of LC3-I (14 kDa), LC3-II migrates faster than LC3-I in SDS-PAGE because of its

higher hydrophobicity. The ratio between the 16-kD lipidated LC3-II and a house-keeping

protein, β-actin, was determined by Western blotting analysis as previously described [33].

Real-time RT-PCR

Total RNA was isolated from murine macrophages using the Trizol reagent kit as per the

manufacturer’s instructions, and reversely transcribed into the first-strand cDNA using the

RevertAid™ First Strand cDNA Synthesis Kit. Following reverse transcription, a panel of estab-

lished primers for murine pla2g2a (Qiagen, QT00109977), pla2g2d (QT00120638), pla2g2e

(QT01049125), pla2g2f (QT00173838), pla2g5 (QT00197806), and glyceraldehyde 3-phosphate

dehydrogenase gene (Gapdh; QT01658692) was used to quantify the mRNA expression levels

of respective genes using a ABI 7900HT Fast Real-time PCR system (Applied Biosystems, Fos-

ter City, CA). Amplification was performed using the RT SYBR Green ROX qPCR Mastermix

under the following conditions: 95˚C 10’; followed by 40 cycles of 95˚C for 15” and 60˚C for

1’. Immediately following the amplification step, a single cycle of the dissociation (melting)

curve program was run at 95˚C for 15”, then at 60˚C for 15”, and last at 95˚C for 15”. This

cycle was followed by a melting curve analysis, baseline and cycle threshold values (Ct values)

were automatically determined using the ABI 7900HT software. The relative sPLA2 mRNA

expression was calculated using the following formula: ΔΔC expression = 2–Δ ΔCt, where

ΔΔCt = 0394Ct (treated group)– ΔCt (control group), ΔCt = Ct (target gene)–Ct (GAPDH),

and Ct = cycle at which the threshold was reached. The relative abundance of sPLA2 mRNA

expression in control group was set as an arbitrary unit of 1, and the gene expression in treated

groups was presented as folds of controls after normalization to GAPDH.

Nitric oxide (NO) assay

The levels of NO in the culture medium were determined indirectly by measuring the NO2−

production with a colorimetric assay based on the Griess reaction [30,36]. NO2− concentra-

tions were determined with reference to a standard curve generated with sodium nitrite at var-

ious dilutions.

LC3 aggregation

Another basic principle of autophagy assay was to measure the transfer of a soluble and mem-

brane-impermeant LC3 protein from cytosol to autophagic vesicles (autophagosomes) [35].

To visualize LC3-containing cytoplasmic vesicles, GFP-LC3-transfected RAW 264.7 cells were

stimulated with SAA (2.0 μg/ml) in the absence or presence of HDL (100 μg/ml) for 16 h, and

examined for the formation of GFP-LC3 punctate structures under a fluorescence microscope

as previously described [33].

HDL Counter-Regulates SAA-Induced sPLA2 Expression
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Cytokine antibody array

Murine Cytokine Antibody Arrays (Cat. No. M0308003, RayBiotech Inc., Norcross, GA,

USA), which respectively detect 62 cytokines on one membrane, were used to determine

cytokine levels in macrophage-conditioned culture medium as previously described [30,36].

Briefly, the membranes were sequentially incubated with equal volumes cell-conditioned cul-

ture medium (200 μl), primary biotin-conjugated antibodies, and horseradish peroxidase—

conjugated streptavidin. After exposing to X-ray film, the relative signal intensity was deter-

mined using the Scion Image software.

Statistical analysis

Data are expressed as mean ± SD of three independent experiments (n = 3). One-way analyses

of variance (ANOVA) followed by the Tukey’s test for multiple comparisons were used to

compare between different groups. A P value less than 0.05 was considered statistically

significant.

Results

HDL inhibited SAA-induced release of sPLA2 in macrophage cultures

It has been shown that SAA can stimulate smooth muscle cells to release sPLA2 [23], and

human THP-1 monocytes to express lipoprotein-associated PLA2 (Lp-PLA2 or sPLA2-VII)

[24]. To assess whether SAA induces sPLA2 in innate immune cells, murine macrophage-like

RAW 264.7 cells were stimulated with SAA at various concentrations (0.2, 1.0, 2.0 μg/ml) for

16 h, and the extracellular levels of sPLA2 in the macrophage-conditioned medium were deter-

mined by Western blotting using two different antibodies: rabbit polyclonal antibodies against

a sPLA2-V peptide (Fig 1A), and rabbit monoclonal antibody against a peptide in the homolo-

gous C-terminus of sPLA2s (Fig 1B). At pathophysiologically relevant concentrations, SAA

stimulated the secretion of sPLA2 in a dose-dependent fashion (Fig 1A), suggesting SAA as a

positive regulator of sPLA2 in innate immune cells.

It has been shown that HDL, at physiologically relevant concentrations (>100 μg/ml), can

capture SAA [27,28] and attenuate its chemoattractant activities [20]. To test whether HDL

similarly affects SAA-induced sPLA2 secretion, macrophages were stimulated with SAA in the

presence of HDL at various concentrations. As indicated in Fig 1, HDL effectively inhibited

SAA-induced sPLA2 secretion in a dose-dependent manner, with an almost complete abro-

gation when HDL was given at a higher concentration (Fig 1A and 1B).

To assess its physiological relevance, thioglycollate-elicited peritoneal macrophages were

isolated from Balb/C mice, and the experiments were repeated under similar conditions. Con-

sistent with a previous notion that elicited peritoneal macrophages released sPLA2s [37], we

found that thioglycollate-elicited primary murine macrophages also “constitutively” secreted

sPLA2 even in the absence of SAA stimulation (Fig 2). However, SAA could further elevate the

extracellular sPLA2 levels up to 1.5-fold. Similarly, HDL dose-dependently and significantly

prevented SAA-induced sPLA2 secretion. At higher concentrations, HDL even further reduced

extracellular sPLA2 to below basal levels (Fig 2). It remains elusive whether HDL directly binds

and removes sPLA2 or trivial contaminating endotoxins, that could also induce sPLA2 secre-

tion, from the cell-conditioned culture medium through receptor-mediated endocytosis. Thus,

HDL can counter-regulate SAA-induced sPLA2 secretion in both RAW 264.7 cells and pri-

mary macrophage cultures.

HDL Counter-Regulates SAA-Induced sPLA2 Expression
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HDL dose-dependently prevented SAA-induced up-regulation of sPLA2-

IIE and sPLA2-V mRNA

To elucidate the molecular mechanism by which HDL inhibited SAA-induced sPLA2 secre-

tion, we measured their mRNA expression levels by real-time RT-PCR using commercially

available primers specific for several sPLA2s. Surprisingly, SAA did not significantly induce

the gene expression of sPLA2-IIA, sPLA2-IID and sPLA2-IIF in murine macrophage cultures

(data not shown). In a sharp contrast, SAA reproducibly and significantly increased the

mRNA expression levels of sPLA2-IIE and sPLA2-V by 3.5- (Fig 3A) and 12-fold (Fig 3B),

respectively. By itself, HDL did not significantly alter the basal mRNA expression of sPLA2,

but dose-dependently inhibited SAA-induced up-regulation of sPLA2-IIE (Fig 3A) and sPLA2-

V mRNA (Fig 3B). Taken together, these findings suggest that SAA effectively up-regulated

sPLA2-IIE and sPLA2-V in murine macrophage cultures, which can be counter-regulated by

HDL, confirming HDL as an endogenous SAA antagonist.

Fig 1. HDL attenuated SAA-induced sPLA2 secretion in murine macrophage-like RAW 264.7 cells. RAW 264.7

cells were stimulated with SAA in the absence or presence of HDL at indicated concentrations for 16 h, and the

extracellular levels of sPLA2 in the macrophage-conditioned medium were determined by Western blotting using two

different antibodies raised against a sPLA2-V peptide (Panel A) or a unspecified peptide in the homologous C-

terminus of sPLA2s (Panel B). The cross-reactivity of these Abcam antibodies was illustrated. Sample loading was

normalized by equal volume of culture medium conditioned by equal number of cells. Bar graph is a summary of three

experiments. *, P < 0.05 versus “-SAA” controls; #, P < 0.05 versus “+ SAA” control.

doi:10.1371/journal.pone.0167468.g001
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HDL dose-dependently prevented SAA-induced HMGB1 release

It has been suggested that the bacterial endotoxin-induced HMGB1 release is precipitated by

the upregulated secretion of sPLA2 in innate immune cells [7], suggesting that agents capable

of inhibiting sPLA2 secretion may also suppress HMGB1 release. To test this possibility, we

Fig 2. HDL inhibited SAA-induced sPLA2 secretion in thioglycollate-elicited primary peritoneal

macrophages. Thioglycollate-elicited primary macrophages were isolated from Balb/C mice, and stimulated

by SAA (2.0 μg/ml) in the absence or presence of HDL for 16 h, and extracellular levels of sPLA2 were

determined by Western blotting using antibody raised against a unspecified conserved peptide in the C-

terminus of sPLA2s (Abcam, Cat. # ab139692). Bar graph is a summary of three experiments. *, P < 0.05

versus “-SAA” controls; #, P < 0.05 versus “+ SAA” control.

doi:10.1371/journal.pone.0167468.g002

Fig 3. HDL dose-dependently suppressed SAA-induced mRNA up-regulation of pla2g2e and pla2g5 in macrophage

cultures. Murine RAW 264.7 cells were stimulated with SAA in the absence or presence of HDL at indicated concentrations for

16 h, and the cellular levels of pla2g2e and pla2g5 mRNA were determined by real-time RT-PCR, and expressed as mean ± SD

of Gapdh mRNA levels (in arbitrary units, AU) of three independent experiments. *, P < 0.05 versus “-SAA” controls; #, P < 0.05

versus “+ SAA” control.

doi:10.1371/journal.pone.0167468.g003

HDL Counter-Regulates SAA-Induced sPLA2 Expression
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stimulated murine macrophages with SAA in the absence or presence of HDL, and measured

the levels of HMGB1 release by Western blotting analysis. Consistent with our recent report

[29], SAA effectively induced HMGB1 release in murine macrophage cultures (Fig 4). As pre-

dicted, HDL effectively prevented SAA-induced HMGB1 release in a dose-dependent fashion

(Fig 4), supporting a previous notion that active HMGB1 release might be dependent on the

prerequisite sPLA2 secretion in innate immune cells.

HDL inhibited SAA-induced NO production and autophagy activation

Given the important role of sPLA2-II in potentiating the expression of the inducible NO

synthase (iNOS) and the production of NO [6], we tested whether HDL similarly inhibited

SAA-induced NO production. Although at a relative low concentration (10 μg/ml), HDL did

not significantly reduce SAA-induced NO production, it promoted a significant inhibition

(>75%) when given at a relative higher concentration (Fig 5A).

Previous studies have suggested NO as a signaling molecule for autophagy induction [38],

because an iNOS inhibitor, L-NMMA, effectively inhibited LPS/IFN-γ-induced autophagy.

We thus tested whether HDL can inhibit SAA-induced autophagy in macrophage cultures.

For the first time, we found that SAA dose-dependently and significantly elevated LC3-II pro-

duction (Fig 5B), which was significantly inhibited by HDL even when given at a relative lower

concentration (10 μg/ml). When given at a higher concentration (100 μg/ml), HDL almost

completely abrogated SAA (2.0 μg/ml)-induced LC3-II production (data not shown), suggest-

ing that HDL similarly attenuated SAA-induced autophagy. Indeed, the SAA-induced

GFP-LC3 aggregation was almost completely abrogated by HDL when given at a higher con-

centration (100 μg/ml, Fig 5C), further supporting the possibility that HDL effectively inhib-

ited SAA-induced autophagy in macrophage cultures.

Fig 4. HDL dose-dependently prevented SAA-induced HMGB1 release. Murine macrophages were

stimulated with SAA in the absence or presence of HDL for 16 h, and extracellular HMGB1 levels were

determined by Western blotting analysis. Shown in the bar graph is a summary of three independent

experiments. *, P < 0.05 versus “-SAA” controls; #, P < 0.05 versus “+ SAA” control.

doi:10.1371/journal.pone.0167468.g004
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HDL inhibited SAA-induced secretion of several cytokines and

chemokines

To gain a comprehensive understanding of the HDL-mediated counter-regulation of SAA-

induced inflammatory response, we examined the effect of HDL on SAA-induced cytokine

and chemokine secretion using both primary macrophages and RAW 264.7 cells. As predicted,

SAA induced a similar profile of cytokine and chemokine secretion in both types of macro-

phage cultures (Fig 6A and 6B). Interestingly, HDL conferred a similar inhibition of several

cytokines (e.g., IL-6) and chemokines (e.g., MCP-1, MIP-1α, RANTES) in both SAA-stimu-

lated primary macrophages (Fig 6A) and RAW 264.7 cells (Fig 6B). Even when given at a high

concentration (100 μg/ml), HDL did not affect the SAA-induced secretion of LIX and MIP-2

in primary macrophages (Fig 6A) or G-CSF and MIP-2 in RAW 264.7 cells (Fig 6B), suggest-

ing that HDL may differentially counter-regulate SAA-induced secretion of various cytokines/

chemokines.

Fig 5. HDL dose-dependently inhibited SAA-induced NO production and autophagy induction. A). HDL inhibited

SAA-induced NO production. RAW 264.7 cells were stimulated with SAA in the absence or presence of HDL for 16 h,

and extracellular NO levels were determined by Griess reaction. Shown in the bar graph is a summary of three

independent experiments. *, P < 0.05 versus “-SAA” controls; #, P < 0.05 versus “+ SAA” control. B, C). HDL inhibited

SAA-induced LC3-II production and aggregation. GFP-LC3-transfected RAW 264.7 cells were stimulated with SAA in

the absence or presence of HDL for 16 h, and cellular LC3-II levels were determined by Western blotting (Panel B).

*, P < 0.05 versus “-SAA” controls; #, P < 0.05 versus “+ SAA” control. In parallel, the formation of LC3 punctuates were

examined under fluorescent microscopy (Panel C).

doi:10.1371/journal.pone.0167468.g005

HDL Counter-Regulates SAA-Induced sPLA2 Expression
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Role of various receptors in SAA-induced cytokines/chemokines

SAAs may employ multiple receptors including RAGE [12], TLR2 [13,14], TLR4 [15], P2X7

receptor [16], and FPR2 [17] to induce various cytokines and chemokines. To identify the

receptor(s) responsible for SAA-mediated various cytokines and chemokines, we compared

their levels of secretion between primary macrophages of wild-type and mutant mice respec-

tively deficient in TLR2, TLR4, RAGE, and TLR2/RAGE or TLR4/RAGE. The disruption of

TLR2, RAGE (data not shown), or TLR2/RAGE did not obviously impair SAA-induced

Fig 6. HDL attenuated SAA-induced release of similar cytokines and chemokines in primary macrophages and

RAW 264.7 cell line. Thioglycollate-elicited primary macrophages and RAW 264.7 cells were stimulated with recombinant

SAA (2.0 μg/ml) in the absence or presence of HDL (100 μg/ml) for 16 h, and the extracellular levels of cytokines and

chemokines were determined by Cytokine Antibody Arrays.

doi:10.1371/journal.pone.0167468.g006
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secretion of any cytokines or chemokines (Fig 7). In contrast, the knockout of TLR4 signifi-

cantly impaired SAA-induced secretion of IL-6, IL-12, MCP-1 and RANTES (Fig 7), but not

other chemokines (e.g., MIP-2 and LIX, Fig 7). Likewise, the knockout of both TLR4 and

RAGE similarly impaired SAA-induced secretion of IL-6, IL-12, MCP-1 and RANTES, but not

other chemokines (e.g., MIP-2 and LIX, data not shown). It suggested that HDL may readily

impair SAA-TLR4 signaling to counter-regulate a subset of cytokines and chemokines in mac-

rophage cultures.

Discussion

In patients with various inflammatory diseases, there are multiple elevated SAA isoforms such

as the most abundant SAA1, as well as several scarce variants including SAA, SAA2α, SAA2β,

and SAA3 [39]. Despite the high homology between these SAA isomers, their capacities in

inducing late proinflammatory mediators (e.g., HMGB1) are dramatically different. We

recently discovered that human SAA isomer might be specifically expressed in a subset of sep-

tic patients [29], but was capable of inducing HMGB1 release in macrophage and monocyte

Fig 7. Distinct roles of various receptors in SAA-induced secretion of cytokines/chemokines. Thioglycollate-elicited primary

macrophages were isolated from wild-type C56BL/6 or mutant mice respectively deficient in TLR2, TLR4, TLR2/RAGE, or TLR4/RAGE.

Following stimulation with SAA (0.5 μg/ml) for 16 h, the extracellular levels of cytokines and chemokines were determined by Cytokine Antibody

Arrays. Because the SAA-induced cytokine profiles were superimposable between TLR4- and TLR4/RAGE-deficient macrophages, we only

provided results for TLR4 KO macrophages. The experiment was repeated twice. *, P < 0.05 versus “-SAA” controls; #, P < 0.05 versus “WT

+ SAA”.

doi:10.1371/journal.pone.0167468.g007
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cultures [29]. In the present study, we provided the first evidence that human SAA also upre-

gulated the expression and secretion of sPLA2-IIE and sPLA2-V in macrophage cultures.

Among ten members of the sPLA2 family, only sPLA2-IIE and sPLA2-V have been referred

to as the “inflammatory” and “metabolic” enzymes for their involvement in regulating innate

immune responses and metabolism. Although sPLA2-IIE is constitutively expressed in mouse

skin hair follicles [40], its expression in adipocytes is upregulated by high-fat diet consumption

[41]. Likewise, sPLA2-V is also up-regulated in adipocytes of obese mice [41], functioning as

another integrated regulator of immune and metabolic responses. Although both enzymes can

alter lipoprotein lipid composition, their substrate preference seems to be different. Whereas

the sPLA2-IIE may hydrolyze PS- or PE-containing lipoproteins; sPLA2-V predominantly acts

on PC-containing substrates to release lysophospholipid as well as arachidonic acid (AA)–a

substrate for other signaling lipids such as prostaglandins, leukotrienes, and eicosanoids.

Although sPLA2-IIE was not inducible by LPS in P388D1 and RAW 264.7 macrophage cell

lines [42,43], it could be upregulated by IL-1β and HMGB1 in smooth muscle cells [44]. In

contrast, sPLA2-V could be upregulated by LPS in P388D1 and RAW 264.7 macrophage cell

lines [42,43], and even be inducible by anti-inflammatory cytokines (e.g., IL-4) in human mac-

rophages [45]. In the present study, we demonstrated that human SAA effectively upregulated

sPLA2-IIE and sPLA2-V in murine RAW 264.7 cells. Despite the technical difficulty due to

paradoxical secretion of sPLA2-II from elicited peritoneal macrophages [37], we found that

SAA significantly elevated PLA2 secretion as revealed by immunoblotting analysis using

sPLA2-IIE- and sPLA2-V-reacting antibodies. It is known that aged thioglycollate broth pro-

duces abundant advanced glycation end products (AGEs) via non-enzymatic reactions

between proteins and reducing sugars. However, it is not yet known whether these AGEs simi-

larly stimulate peritoneal macrophages to express sPLA2-IIE or sPLA2-V through RAGE, a

receptor shared by SAA [12] and other proinflammatory ligands (such as HMGB1). In light of

SAA’s capacity in upregulating Lp-PLA2 (sPLA2-VII) in human THP-1 monocytes [24] and

sPLA2-IIA in smooth muscle cells [23], it now appears that SAA may participate in the regula-

tion of distinct sPLA2s in different types of cells.

Consistent with HDL’s capacity in capturing SAA [27] and blocking its chemokine activi-

ties [20], we found that HDL also dose-dependently attenuated SAA-induced sPLA2-IIE/V

expression, HMGB1 release and NO production. These findings further support the possibility

that sPLA2 may potentiate the release of other late mediators including HMGB1 [7] and NO

[6]. Notably, the SAA-induced NO production was entirely dependent on functional TLR4 sig-

naling [15,29], because it was almost completely abolished in TLR4-deficient macrophages. In

agreement with the notion that NO serves as a signaling molecule for autophagy induction

[38], we found for the first time, that SAA effectively induced LC3-II production and aggrega-

tion—two markers of autophagy. Similarly, this SAA-induced LC3-II production and aggrega-

tion was attenuated by HDL, particularly when given at relative high concentrations (100 μg/

ml), suggesting that HDL similarly counter-regulated SAA-induced autophagy.

In addition, HDL also prevented SAA-induced secretion of several cytokines (e.g., IL-6)

and chemokines (e.g., MCP-1 and RANTES) in both RAW 264.7 cells and primary macro-

phages, confirming that RAW 264.7 cells and primary peritoneal macrophages do share simi-

lar cytokine responses. Interestingly, these HDL-inhibitable cytokines/chemokines may be

similarly dependent on functional TLR4 signaling, since TLR4 disruption resulted in a marked

reduction of SAA-induced secretion of IL-6, MCP-1 and RANTES [29]. In a sharp contrast,

HDL did not markedly inhibit SAA-induced secretion of LIX, MIP-2 or G-CSF, which might

depend on other receptor-dependent signaling pathways. Indeed, it has been shown that SAA

induces G-CSF production via TLR2 activation in both primary macrophages and RAW 264.7

cells [14]. It is possible that HDL exerts its inhibitory effects via binding to the N-terminal α-
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helical domain (amino acid 1–28) of SAA, thereby possibly preventing its engagement with

TLR4, but not TLR2 or other cell surface receptors. Because SAA may utilize distinct receptors

to induce different cytokines, it may be possible to use HDL to impair distinct receptor path-

ways to counter-regulate specific inflammatory mediators.

At present, HDL and Apo-AI mimetic peptide have been proven protective against experi-

mental sepsis [46–48] or human endotoxemia [49], and should be tested for patients with

other inflammatory diseases [50]. Despite its remarkable anti-inflammatory properties, circu-

lating HDL levels are often reduced in septic patients, and the magnitude of this reduction is

positively correlated with the severity of the illness [51]. It is thus important to elucidate how

HDL counter-regulates SAA and other proinflammatory mediators in order to provide guid-

ance to future development of novel therapeutic strategies for inflammatory diseases.

In summary, we provided the first evidence that human SAA dramatically upregulates the

expression and secretion of sPLA2-IIE and sPLA2-V in murine macrophage cultures. Further-

more, HDL dose-dependently attenuated SAA-induced secretion of sPLA2-IIE, sPLA2-V,

HMGB1 and NO, reinforcing the notion that sPLA2 may potentiate the production of various

late proinflammatory mediators. In addition, HDL attenuated SAA-induced secretion of a few

TLR4-dependent cytokines (e.g., IL-6) and chemokines (e.g., MCP-1 and RANTES). It now

appears that HDL counter-regulates SAA action by impairing its engagement with various

receptors with different efficiencies. It is thus important to continue to elucidate how HDL

counter-regulates SAA and other proinflammatory mediators in order to develop novel thera-

peutic strategy for various inflammatory diseases.
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