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Deterministic analysis of extrinsic and intrinsic noise in an epidemiological model
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We couple a stochastic collocation method with an analytical expansion of the canonical epidemiological
master equation to analyze the effects of both extrinsic and intrinsic noise. It is shown that depending on the
distribution of the extrinsic noise, the master equation yields quantitatively different results compared to using
the expectation of the distribution for the stochastic parameter. This difference is incident to the nonlinear terms
in the master equation, and we show that the deviation away from the expectation of the extrinsic noise scales
nonlinearly with the variance of the distribution. The method presented here converges linearly with respect to
the number of particles in the system and exponentially with respect to the order of the polynomials used in the
stochastic collocation calculation. This makes the method presented here more accurate than standard Monte
Carlo methods, which suffer from slow, nonmonotonic convergence. In epidemiological terms, the results show
that extrinsic fluctuations should be taken into account since they effect the speed of disease breakouts and that
the gamma distribution should be used to model the basic reproductive number.
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I. INTRODUCTION

Stochastic processes are used to model complex physical
phenomena that range from astronomy [1] to epidemiology [2].
An important example is stochastic chemical kinetics, which
describes the time evolution of chemically reacting systems by
taking into account the fact that molecules are discrete entities
that exhibit randomness in their dynamical behavior. A master
equation [3,4] can be used to model this probabilistic process.
The number of variables in this equation is large for all but the
simplest systems, so analytical or direct numerical integration
methods are usually impractical. Alternatively, Monte Carlo
samples of the stochastic process can be numerically generated
via stochastic simulation algorithms (SSAs) [5].

Two different lines of work have provided methods for
overcoming the difficulties of the explicit solution of the
master equation without resorting to Monte Carlo simulations,
namely,(1) truncating a power-series expansion of the master
equation, methods of which include the Kramers-Motyal
expansion [6,7], � expansion [3,8,9], Wentzel-Kramers-
Brillouin (WKB) approximation [10], moment closure meth-
ods [11], and distribution approximations [12], and (2)
truncating the number of states in the master equation [13–15].
Here we have utilized the � expansion so that we can obtain
an analytical expression for the master equation and therefore
analyze the influence of extrinsic noise in model.

The effect of extrinsic noise in biological models has
recently attracted interest in cellular [16,17] and population
[18] scales since the parameters of these models represent the
environment of the underlying system. For example, in cellular
systems, the rate parameters may represent the binding rate of
two proteins in the cytoplasm. At the population level, the
intrinsic and extrinsic noise was recently studied in influenza
[19]. Uncertainty quantification is the process of deterministi-
cally computing the effect of input uncertainty in equations of
interest. The stochastic collocation method [20,21] consists
of an expansion that is related to polynomial chaos [22].
These methods have the desirable property of exponential
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convergence rates and therefore require comparatively few
evaluations of the model equations.

There has not yet been a systematic study of the effect
of both extrinsic and intrinsic fluctuations in the susceptible-
infectious-recovered (SIR) master equation. In a previous
publication [23] we showed that high-order approximations of
the intrinsic noise in the master equation yield quantitatively
different solutions. Here we examine the role of extrinsic noise
on the master equation. We couple a high-order expansion of
the master equation with a stochastic collocation method and
analyze various sources of uncertainty modeled with uniform,
beta, and gamma distributions. We show that depending on
the distribution of the extrinsic noise, the master equation
yields quantitatively different results compared to using the
expectation of the distribution for the parameter. The use of a
gamma distribution is based on an empirical study on the basic
reproductive number in severe acute respiratory syndrome
(SARS) [18]. In epidemiological terms, the results show that
extrinsic fluctuations should be taken into account since they
effect the speed of disease breakouts and that the gamma
distribution should be used to model the basic reproductive
number.

The analysis presented here is notably not based on Monte
Carlo simulations and therefore does not suffer from a slow,
nonmonotonic convergence rate. Rather, the method here
converges linearly with respect to the number of molecules
and exponentially with respect to the order of the polynomials
used in the stochastic collocation calculation. We note that
there are restrictions on the applicability of the method as well
as assumptions in the underlying model. Restrictions on the
applicability of the method are (1) the stochastic process must
be a so-called L2 random variable, meaning that it must have
a finite second moment [22] and (2) the error term incident to
the expansion of the master equation is inversely proportional
to the system size and therefore may be inaccurate for small
systems. For example, a process with extrinsic noise from a
Cauchy distribution would violate the L2 assumption. We also
make assumptions on the validity of the underlying model.
Since the underlying equations rely on a compartmental model
for the species, we assume that the system is well mixed such
that mass action kinetics are valid. Moreover, we assume that
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the system is memoryless and subject to exponential waiting
times between reaction events.

In Sec. II we discuss how to compute the average population
of a stochastic process over time. In Sec. III we show the results
using various distributions for the extrinsic noise. Additionally,
we compare the results of the method presented here to a
classical Monte Carlo simulation. In Sec. IV we conclude
by highlighting the importance of various sources of noise
in epidemiological models and the effect they can have on
simulations.

II. METHOD

The objective of the method presented here is to formulate
an efficient way of calculating the expected population of
a stochastic process over time. Here we assume that the
stochastic process has intrinsic noise owing to the discrete
nature of the system and has extrinsic noise that is governed
by a known distribution. We also assume that the distribution
of the extrinsic noise has a finite variance. In this section we
will formulate a way to compute the average of the intrinsic
noise by approximating a master equation. In the next section
we will describe how to compute the expectation of the
extrinsic noise without resorting to Monte Carlo sampling. We
will consider an elementary nonlinear system, the canonical
susceptible-infectious-recovered (SIR) model [24], which is
the foundation of more detailed models that include age-
dependent and spatially dependent processes, namely,

S
βI−→ I, (1)

I
κ−→ R, (2)

where the reproductive number is defined as R0 � β/κ and
S, I , and R denote the susceptible, infectious, and recovered
persons, respectively. This process models the event in which
an infectious person comes into contact with a susceptible
person at a rate β and results in two infectious persons,

i.e., S + I
β−→ 2I = S

βI−→ I . Let n(�,t) be a vector denoting
the number of susceptible, infectious, and recovered persons.
Then, the following differential equations are valid as � ↑ ∞:

dζ1

dt
= −βζ1ζ2, (3)

dζ2

dt
= βζ1ζ2 − κζ2, (4)

dζ3

dt
= κζ2, (5)

where there is convergence to a concentration ζ (t) �
lim�↑∞ �−1n(�,t) and |ζ (t)|1 = 1. The corresponding mul-
tivariate master equation is

∂P (n,t ; β,κ)

∂t
= (

L+1
1 L−1

2 − 1
)
n1n2β�−1P (n,t)︸ ︷︷ ︸

S
βI−→I

+ (L+1
2 L−1

3 − 1)n2κP (n,t)︸ ︷︷ ︸
I

κ−→R

, (6)

where P (n,t) denotes the probability of being in state n at time
t , the discrete shift operator Lμ

i (P ) � P (ni + μ,n\i ,t), n\i
denotes the vector n excluding the ith element, and � � |n|1.

A. � expansion

We follow van Kampen [3,8,9] and define the follow-
ing ansatz: n(t) = �ζ (t) + �1/2ξ , where ξ is an unknown
random variable, and we subsequently define �(ξ ,t ; β,κ) �
P (�ζ (t) + �1/2ξ ,t ; β,κ) = P (n,t ; β,κ). The discrete shift
operators are expanded by means of a power series [3,8,9]:

Lμ

i (�(ξ ,t ; β,κ)) = �(ξi + μ�−1/2,ξ \i ,t ; β,κ) (7)

=
2ρ−1∑
j=0

(
μj �−j (1/2)

j !

∂j

∂ξ
j

i

)
�(ξ ,t ; β,κ) + O(�−ρ), (8)

where μ ∈ {−1, + 1} and ρ is the order of the expansion.
Inserting the ansatz and shift operators [Eq. (8)] into Eq. (6)
and then collecting terms in decreasing powers of � yield
the desired power-series equation. Using the computer algebra
system Mathematica, we expanded Eq. (6) to O(�−2):

∂�(ξ ,t ; β,κ)

∂t
=

∑
j=0

�−j/2F−j/2(�(ξ ,t ; β,κ)) + O(�−2).

(9)

The particular form of the functions F−j/2(·) is provided in
the Supplemental Material [25]. We note that the lowest-order
approximation is the classical Fokker-Planck equation [3],
which also justifies the ansatz. In order to obtain the set
of nonlinear differential equations for the evolution of the
moments of the distribution �(ξ ,t), we first define the mo-
ments, namely, 〈
(ξ ; β,κ)〉t = ∫

R3 
(ξ )�(ξ ,t ; β,κ)dξ , where

(ξ ) = ξ

k1
1 ξ

k2
2 ξ

k3
3 , where the powers k1,k2, and k3 determine

the moments. The equations for the moments are found
by multiplying both sides of the expansion by 
(ξ ) and
integrating over the domain:

d〈θ (ξ ; β,κ)〉t
dt

=
∫
R3


(ξ )
∂�(ξ ,t ; β,κ)

∂t
dξ , (10)

which therefore requires repeated integration by parts on the
terms kept in the expansion. The set of nonlinear equations that
govern the evolution of the moments was derived analytically.
Let 〈ξ〉t � (〈ξ1〉t ,〈ξ2〉t ,〈ξ3〉t )T , i.e., the first moments of the
stochastic process; then the first-moment corrections to the
solution of the continuum reaction rate equations are

〈n〉t = �ζ (t) + �1/2〈ξ 〉t . (11)

We note that in the lowest-order approximation, the Fokker-
Planck equation, 〈ξ〉t ≡ 0 [3].

B. Stochastic collocation

The objective of the stochastic collocation method in this
study is to evaluate the integral

〈〈θ (ξ ,κ)〉〉t �
∫

χ∈ζ

〈θ (ξ ,χ,κ)〉t ρ(χ )dχ, (12)

where the left-hand side represents the average over the
extrinsic and intrinsic noise, ρ(χ ) represents the distribution
of the extrinsic noise, and ζ represents the domain of the
distribution. In a typical Monte Carlo method, χ would be
repeatedly sampled from ρ(χ ), the differential equation solved
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numerically, and then averaged over all of the samples. After
the � expansion the equations for the moments are of the form

d〈θ (ξ ,β,κ)〉t
dt

=
∑
j=0

�−j/2G−j/2(�(ξ ,t ; ,β,κ)), (13)

where β is a random parameter sampled from the distribution
ρ(χ ), κ is a constant, and the functions G−j/2(·) are provided
in the Supplemental Material. Assume that there exists a set of
orthogonal polynomials {i}∞i=0 with respect to the distribution
ρ, where β ∼ ρ(χ ):

〈i(χ )j (χ )〉ρ =
∫

χ∈X

i(χ )j (χ )ρ(χ )dχ=δi,j 〈i(χ )2〉ρ,

(14)

where the Kronecker delta function δi,j = 1 if i = j and δi,j =
0 if i 
= j . The integral weights for the approximation are

wk = AP

AP−1

〈
2

P−1

〉
ρ

P−1(xk)′
P−1(xk)

, (15)

where AP is the coefficient of χP in P (χ ), ′
P = dP

dχ
,

xk denotes the kth root of the polynomial P (x), i.e., x =
(x1, . . . ,xP ) = −1

P (0), and P denotes the order of the polyno-
mial chaos approximation. Then the integration of the random
variable representing the extrinsic noise is approximated to
order P by

〈〈θ (ξ ,κ)〉〉t �
∫

χ∈ζ

〈θ (ξ ,χ,κ)〉t ρ(χ )dχ

=
P∑

k=1

wk〈θ (ξ ,xk,κ)〉t + O(e−CP ), (16)

where C is a constant independent of P (see [26] for the
exponential convergence rate of collocation methods). The
right-hand side of (12) is solved by substituting xk for β

and then solved numerically using NDSOLVE in Mathemat-
ica to obtain 〈θ (ξ ,xk,κ)〉t . Note that the set of orthogonal

polynomials {i}∞i=0 with respect to the distribution ρ(χ )
need not be known a priori and can be determined on
the fly by an orthogonalization procedure. That said, for
certain distributions ρ(χ ) the polynomials are known. For
the uniform, beta, and gamma distributions used here, the
associated orthogonal polynomials are Legendre, Jacobi, and
Laguerre polynomials, respectively [22].

III. RESULTS

Here we analyze the role of a stochastic reproductive
number and its effect on the canonical SIR model. The
distribution that the reproductive number follows will be the
uniform, beta, or gamma distribution. The uniform and beta
distributions were chosen since these distributions are often
used when limited or no information about the parameters is
available. We also use a gamma distribution that is based on
experimental results of the basic reproductive number in SARS
[18]. We compare the results of a model with both extrinsic and
intrinsic noise to both a model with only intrinsic noise and
a model without any noise included. We show that the effect
of the extrinsic noise can be just as large as the intrinsic noise
and quantify this difference by computing a mean-squared
deviation.

A. Uniform distribution

We first analyze the effect of a uniform distribution for the
random parameter β, i.e., β ∼ ρ(χ ), where

ρ(χ ) = ρ(χ ; a,b) = 1

b − a
, (17)

where a = 1 and b = 2 denote the domain of the input
distribution. Throughout the results section we will use
E[ρ(χ )] = 3/2, the total population � = 100, and κ = 1.
Shown in the left panel in Fig. 1 is the result along with
the solution of the deterministic model and the � expansion
without extrinsic noise where a constant is used for the input
parameter, namely, β̃ = E[ρ(χ )] = 3/2. It can be seen that
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FIG. 1. Uniform and beta distributions. (Left) Close-up of an O(�−3/2) expansion (red dashed line, intrinsic noise), continuum equations
(black solid line, no noise), and an O(�−3/2) expansion with extrinsic uniformly distributed noise (blue circles, intrinsic and extrinsic noise).
The infectious population has an initial value of 5%. (Right) Same as in the left panel, except showing the full concentrations over time with
extrinsic noise from a beta distribution with α = β = 100, i.e., a distribution with comparatively small variance. Note that the difference from
extrinsic noise is negligible if the variance of the input distribution is small.
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FIG. 2. The effect of the variance of the input distribution: l2(α̃,β̃)
represents the integration over time, where α̃ = β̃ represent the
parameters used in the beta distribution. Note that the variance of the
beta distribution is inversely proportional to the value of α̃ and β̃. The
integrand of the norm is the squared difference between the infectious
species of a simulation using extrinsic noise and a simulation using
the expectation of the extrinsic noise.

using the expectation of the distribution is insufficient to
capture the time evolution of the system since the progression
of the disease is slower than using a model with extrinsic noise.
We note, however, that the steady state solutions are similar.

B. Beta distribution

We next analyzed the beta distribution for the stochastic
parameter:

ρ(χ ; a,b,α̃,β̃) =
(
1 − −a−b+2χ

b−a

)α̃(−a−b+2χ

b−a
+ 1

)β̃

2+β̃�(α̃+1)�(β̃+1)
�(α̃+β̃+2)

. (18)

This distribution approaches the uniform distribution as α̃

and β̃ approach zero. Shown in the right panel in Fig. 1
is a simulation using α̃ = β̃ = 100, i.e., a comparatively

small variance around E[ρ(χ )] = 3/2. It can be seen that
the simulation is essentially equivalent to using a constant
parameter. This is to be expected since the intrinsic noise
becomes a factor when the reproductive number is near unity.
Since a beta distribution centered around 3/2 has a very
small probability near R0 = 1, no noticeable difference is
discernible. To analyze the influence of the extrinsic noise
on the infectious species, we will define an error metric
between two approximations for the infectious persons (i = 2)
as follows:

l2 =
∫ Tf

0

(〈ξ2〉(E)
t − 〈ξ2〉(S)

t

)2
dt, (19)

where 〈ξ2〉(E)
t represents the infectious population of a model

using only intrinsic noise and 〈ξ2〉(S)
t represents the infectious

population of a model using both extrinsic and intrinsic noise.
Additionally, we have let β̃ = α̃. This norm represents the
time average of the squared distance between the two models.
Figure 2 shows this norm plotted against the value used for
both α̃ and β̃ in the distribution for the model 〈ξ2〉(S)

t . Note that
the deviation increases as the variance of the input distribution
increases. Additionally, we observe a nonlinear dependence
on the variance of the input distribution.

C. Gamma distribution

Experimental studies of diseases has shown that the repro-
ductive number can be modeled effectively with a negative
binomial distribution [18]. Here we have used the continuous
analog of the negative binomial distribution, namely, the
gamma distribution:

ρ(χ ; α̃,β̃) = β̃α̃+1χα̃e−β̃χ

�(α̃ + 1)
, (20)

where α̃ is the shape parameter and β̃ is the rate parameter. We
used α̃ = 0 and β̃ = 2/3 and have plotted the results in Fig. 3.
We note that the initial outbreak occurs much quicker and also
subsides quicker. Importantly, the steady state of the solution
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FIG. 3. Gamma distribution. (Left) An O(�−3/2) expansion (red dashed line, intrinsic noise), continuum equations (black solid line, no
noise), and an O(�−3/2) expansion with extrinsic gamma-distributed noise (blue circles, intrinsic and extrinsic noise). The infectious population
has an initial value of 5%. Note that the steady-state solution with extrinsic noise is quantitatively different from a simulation using only the
expectation of the extrinsic noise. (Right) Same as in the left panel, except close-up of the time evolution of the infectious species. The intrinsic
and extrinsic model displays significantly quicker disease progression.
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FIG. 4. Monte Carlo simulation. Shown by the orange noisy lines
are 100 Monte Carlo simulations along with the mean of 2 × 104

trajectories (green circles) for the infectious species. The O(�−3/2)
expansion with extrinsic gamma-distributed noise (blue dashed line,
intrinsic and extrinsic noise) coincides with the full Monte Carlo
simulation. The continuum equation (black[solid line, no noise) is
also shown for reference. The deterministic method presented here is
able to capture the expectation over time for a process which displays
relatively large fluctuations.

is considerably different as the susceptible population never
decreases beyond the recovered population. This difference
when using a gamma distribution for R0 is notable since
both the time-dependent and time-independent dynamics differ
even for the simplest SIR model. Moreover, we have included
the standard continuum equations in Fig. 3 to emphasize the
effects of both sources of noise.

D. Comparison with a Monte Carlo simulation

In this section we compare the results obtained in Sec. III C
with a Monte Carlo simulation. We use the stochastic
simulation algorithm [5] to simulate a stochastic trajectory
over time. Let N denote the total number of Monte Carlo
samples. A random variate for the extrinsic noise is drawn
for each Monte Carlo sample: βn ∼ ρ(x) for n = 1, . . . ,N .
The propensities (unscaled probabilities for each reaction) are
defined as follows: a1 = βnSI and a2 = κI for Eqs. (1) and
(2). At each time step in the stochastic simulation algorithm,
two random variables govern the evolution of the system,
namely, a reaction index and a time step. The reaction index
is sampled from a pointwise distribution for the propensities,
i.e., P (j = l) = al/(a1 + a2), and a time step τ is sampled
from an exponential distribution with a mean of 1/(a1 + a2).
The system is updated by executing the reaction with index j

and incrementing the system time by τ .

Figure 4 shows the fraction of infectious individuals for
100 trajectories of a stochastic simulation along with the mean
over time using a total of N = 2 × 104 samples. We used a
gamma distribution for ρ(x) defined in Eq. (20) with α̃ = 0
and β̃ = 2/3. We note that the fluctuations are due to the noise
arising both from sampling a distribution for the parameter
β and from the stochastic simulation algorithm itself. The
mean of the processes over time is well captured by the �

expansion coupled with a stochastic collocation method. Both
the approximate method derived here and the Monte Carlo
simulation show accelerated disease progression compared
with the continuum equations.

IV. CONCLUSION

We performed an analytical expansion of the epidemiolog-
ical master equation, which was then coupled to a stochastic
collocation method to analyze the extrinsic noise of a random
reproductive number. To analyze the role of extrinsic noise in a
susceptible-infectious-recovered model, we used the uniform,
beta, and gamma distributions. While the difference was small
in the case of a uniform or beta distribution, the gamma
distribution caused the infection to peak earlier in time and
therefore caused the infectious individuals to go zero earlier
than the continuum model and stochastic models without
noise. This is of importance to the public health community
since a faster disease progression observed in empirical data
may lead to an erroneous estimation of the reproductive
number in a continuum model without extrinsic noise. We
showed that the deviation away from the expectation of the
extrinsic noise scaled nonlinearly with the variance of the input
distribution. In epidemiological terms, the results imply that
both intrinsic and extrinsic fluctuations should be taken into
account since they may affect the speed of disease breakouts.

The numerical methods presented here converge linearly
with respect to the number of molecules in the system and
exponentially with respect to the order of the polynomials used
in the stochastic collocation calculation. This is in opposition
to the standard Monte Carlo methods, which suffer from
a slow, nonmonotonic convergence rate. Future work may
involve the analysis of multiple sources of extrinsic noise.
Efficient numerical methods, such as the Smolyak sparse-grid
construction [27,28], could be used for a stochastic collocation
method.
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