
RESEARCH ARTICLE

Accurate influenza forecasts using type-

specific incidence data for small geographic

units

James TurtleID
1*, Pete RileyID

1, Michal Ben-NunID
1, Steven RileyID

1,2

1 Infectious Disease Group, Predictive Science Inc., San Diego, California, United States, 2 MRC Centre for

Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health,

Imperial College London, United Kingdom

* jturtle@predsci.com

Abstract

Influenza incidence forecasting is used to facilitate better health system planning and could

potentially be used to allow at-risk individuals to modify their behavior during a severe sea-

sonal influenza epidemic or a novel respiratory pandemic. For example, the US Centers for

Disease Control and Prevention (CDC) runs an annual competition to forecast influenza-like

illness (ILI) at the regional and national levels in the US, based on a standard discretized

incidence scale. Here, we use a suite of forecasting models to analyze type-specific inci-

dence at the smaller spatial scale of clusters of nearby counties. We used data from point-

of-care (POC) diagnostic machines over three seasons, in 10 clusters, capturing: 57 coun-

ties; 1,061,891 total specimens; and 173,909 specimens positive for Influenza A. Total

specimens were closely correlated with comparable CDC ILI data. Mechanistic models

were substantially more accurate when forecasting influenza A positive POC data than total

specimen POC data, especially at longer lead times. Also, models that fit subpopulations of

the cluster (individual counties) separately were better able to forecast clusters than were

models that directly fit to aggregated cluster data. Public health authorities may wish to con-

sider developing forecasting pipelines for type-specific POC data in addition to ILI data. Sim-

ple mechanistic models will likely improve forecast accuracy when applied at small spatial

scales to pathogen-specific data before being scaled to larger geographical units and

broader syndromic data. Highly local forecasts may enable new public health messaging

to encourage at-risk individuals to temporarily reduce their social mixing during seasonal

peaks and guide public health intervention policy during potentially severe novel influenza

pandemics.

Author summary

Forecasting influenza is a public health priority because it allows better planning by both

policy makers and healthcare facilities. Most seasonal influenza forecasting is currently

undertaken for large geographical areas and is based on the number of people who have

the signs and symptoms of influenza. Different types of models can provide roughly
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equivalent forecasts for these data: models that use the opinion of experts, statistical mod-

els, and models that reflect the underlying biology. Newly developed data streams are

resolving ever smaller spatial scales, but the impacts of coupling and smaller resolution on

type-specific forecasting have not been well established.

In addition to the use of local point-of-care type-specific influenza data, we assess the

effects of county-to-county coupling and specific humidity on forecast outcomes. Here,

we show that if the data are available for smaller geographical areas and are from actual

tests for influenza, they can be forecasted accurately by models that represent the underly-

ing biological mechanisms. Further, we add to growing evidence that mechanistic models

perform better on type-specific data than they do on symptom-based data, which can be

triggered by a number of respiratory viruses and/or influenza types.

Introduction

Influenza infections cause substantial morbidity and mortality across all geographical areas

and sociodemographic groups [1]. Forecasting pipelines—of data and associated analytics—

can create knowledge of current and likely future incidence and therefore have high potential

value to individuals and health planners [2], potentially leading to at-risk individuals choosing

to modify their behaviour to reduce their individual risk when incidence is high [3]. Some

health officials are already working to incorporate forecasts into decision making [4], and

health systems could more efficiently manage scarce resources such as intensive care services

that are impacted by local influenza incidence but also utilized by many different healthcare

pathways [5]. More generally, seasonal influenza is an ideal modelling case study for respira-

tory virus pandemics. Recent pandemics (influenza—2009, SARS-CoV-2—2020) have demon-

strated the difficult health and socioeconomic decisions that must be made during a novel

virus outbreak, making forecasting a key priority to support rapid investment decisions and

optimization of available resources [6, 7].

Current forecasting pipelines for influenza focus on the use of syndromic data for large geo-

graphically diffuse populations [8]. For example, the US Centers for Disease Control and Pre-

vention (CDC) forecasting challenge produces public forecasts of influenza-like illness rates at

regional and national scales for the US, based on a long-running national syndromic surveil-

lance system that has proven robust during a pandemic [9]. Influenza forecasters use a variety

of methods that can be categorized by their underlying model: mechanistic, statistical, and

crowd-sourced. Mechanistic models use epidemiological first principles to approximate dis-

ease transmission dynamics. In practice this often takes the form of compartmental differential

equations describing a metapopulation [10–14]. Statistical models [15–19] use patterns and

tendencies in the data-stream history to predict future data values. This includes many forms

of implementation including: various types of regression, machine-learning, and time-series

methods. Crowd-sourced models present participants with current data and ask them to man-

ually construct a forecast. In practice, the ‘crowd’ generally consists of volunteer experts who

update their forecasts weekly [20, 21]. Of course, complete model descriptions are much more

nuanced with many mechanistic models being housed in a probabilistic framework [10–14],

crowd-sourced model selection by machine learning [22], combination mechanistic and statis-

tic models [23], ensembles of automated models [24, 25], multi-team ensembles [2], and mod-

els that incorporate social media metrics [19, 26] to name a few.

In the United States, syndromic influenza-like illness (ILI) data is available at the national,

regional, and state levels [27] in a consistent and computer-readable format. At smaller spatial
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scale, influenza data is often publicly available for large cities and/or counties, but in inconsis-

tent data-types (outpatient ILI, emergency-room ILI, laboratory positive tests, etc) and often

not in a computer-quantifiable format (i.e. PDF). One group has collected influenza data from

the public health departments of many counties and cities in the U.S. [28], but presumably at

significant cost. Possibly due to this lack of availability and coverage, there have been relatively

few studies that attempt to forecast at the county [12, 28, 29] or city [26, 30–32] level. Of those,

only [28] applies a model broadly without limiting focus to one or two areas per country.

Unlike existing data sources, the dataset used here provides access to spatial resolution as

precise as zip code. The Quidel point of care dataset has been used for one other study [33],

which focused on U.S. regional level nowcasting and forecasting. Point-of-care diagnostic

results are becoming increasingly available to researchers. BioFire Diagnostics recently

announced a similar dataset [34] that includes influenza sub-type results in addition to type

data.

Here, we consider the possibility that alternate data streams may be much more closely

related to the underlying biology and hence be inherently more forecastable using mechanistic

models. Specifically, that more-local and pathogen-specific data may permit more accurate

forecasting pipelines with mechanistic models than are currently possible using more geo-

graphically aggregated syndromic data [8, 35] or low resolution type-specific data cross refer-

enced with local syndromic proxy data [28]. We apply a set of previously validated models [11]

to incidence data from geolocated point-of-care diagnostic devices [36], and use a skill scoring

system that is analogous to that used thus far [8, 37] for the CDC prospective competition to

compare the forecastability of alternate data streams.

Materials and methods

Deployment of test machines and capture of test data

Our data are gathered from a near-real time network of benchtop Sofia and Sofia 2 POC diag-

nostic machines (Quidel, San Diego, USA). At the start of the study period in July 2016, the

network consisted of 1,676 machines located in physician offices (880), hospitals (257), urgent

care clinics (427) and other/not reported (112) settings. At the end of the study period (July

2019) the network had grown to 12,345 machines with 5,736 in physician offices, 1,206 in hos-

pitals, 1,194 in urgent care clinics, and 4,209 in other/not reported settings. The standard kit

tests for influenza A and B. Data are automatically transmitted to Quidel. Reporting cadence

can vary depending on device connectivity, but most devices report results within a day of

testing.

Selection of counties and clusters

Individual strain tests were sorted into weekly totals for each county represented in the dataset.

Of the approximately 3,240 counties and county equivalents in the United States, 1,258 are

represented in this dataset (see Fig 1A). However, to omit sparse data streams, counties that

did not report for at least 40 weeks in both the 2016–17 and 2017–18 seasons were discarded.

Next, counties with less than 250 specimens tested in any single season of 2016–17, 2017–18,

or 2018–19 were discarded. These requirements reduced the number of considered counties

from 1,258 to 136. This county filtering process was based on data reported up to and includ-

ing week 3 of 2019. Throughout this manuscript, weeks are numbered according to the Mor-

bidity and Mortality Weekly Report (MMWR) definition [38].

To identify localized groups within the 136 qualifying counties, we applied a k-means clus-

tering algorithm for the number of clusters k. Cluster distances were based on county popula-

tion centroids c (lat/lon). For a single cluster aj with N counties and geographic cluster
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centroid bj, we define the intra-cluster distance as the sum of squares

aj ¼
XN

i¼1

kci � bjk
2

where ci is the centroid of the i-th county of cluster j. The k-means algorithm was applied

while varying k over the interval [2, 60]. The total intra-cluster sum of squares (over all clus-

ters) stopped decreasing at approximately k = 38. So we chose k = 38. Smaller, sparsely spaced

clusters were removed by requiring N> = 4 and aj/N< = 0.5.

Fig 1. County filtering and clustering. (A) All counties with minimum one test result from week 27, 2016 to week 26, 2019. (B)

Counties with at least 250 specimens tested for the seasons 2016–17, 2017–18, and 2018–19 and 40 weeks of non-zero reporting for

the seasons 2016–17 and 2017–18 (as calculated on week 3, 2019). Square orange borders outline the 10 county clusters considered

in this study. The map base layer was sourced from the U.S. Census Bureau [39]

https://doi.org/10.1371/journal.pcbi.1009230.g001
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The one exception to these rules is the Atlanta cluster. Most Atlanta counties do not pass

the incidence minimums for the 2016–17 season. However, county coverage for 2017–18 and

2018–19 is the best of any large metropolitan area in the United States, so Atlanta was included

for these seasons.

This process resulted in 10 county clusters, covering 57 counties as described in S2 Table.

The 136 filtered counties and resulting county clusters are illustrated in Fig 1B.

The cutoff values for county inclusion were chosen to insure a sampling of county clusters

with which to test the intra-county coupling across all three seasons. These decisions reduced

the total number of counties (1258) drastically to only 136. However, it should be noted that

the number of counties meeting these cutoffs (250 specimens and 40 reporting weeks per sea-

son) has increased significantly each season (see Table 1) from 136 to 541. A map of eligible

counties by season appears in S1 Fig. Furthermore, the population encompassed by filtered

counties increased from 76 million in 2016–17 to 181 million in 2018–19, providing represen-

tative data for over half of the country’s population.

For each county of the 10 clusters, data was compiled to weekly totals for both Total Speci-

mens (TS) and specimens that were Positive for A (PA). Weekly cluster data resulted from a

sum of the constituent counties.

Mechanistic modelling framework

The following sections offer a summary of the model framework, covariate data collection, and

fitting procedure used for this work. These concepts were executed using the software package

Dynamics of Interacting Community Epidemics (DICE). DICE is a publicly available R-pack-

age available for download with documentation and examples [40].

The foundation of our model is the common Susceptible-Infectious-Recovered (SIR) set of

equations [41]

dSi
dt
¼ � liðtÞSi;

dIi
dt
¼ liðtÞSi �

Ii
Tg
;

dRi

dt
¼

Ii
Tg
:

Here the state variables are number of susceptibles S, infectious I, and recovered R in the ith
physical region. The equations are completed by generation time Tg and force of infection λ.

The model is applied to a single season with the assumption that the entire population is sus-

ceptible at start of season. Included in λ are terms to modulate the force of infection for specific

Table 1. Filtered county totals by season.

Season No. counties Population (millions) encompassed

2016–17 136 76

2017–18 281 109

2018–19 541 181

Total number of counties with at least 250 specimens tested and 40 weeks reported in a season. The right column is

the total population of the filtered counties. These totals were calculated following the end of the 2018–19 season.

https://doi.org/10.1371/journal.pcbi.1009230.t001
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humidity and county coupling

liðtÞ ¼
XD

j¼1

bjðtÞmij

PD
l¼1

mljIl
PD

p¼1
mpjNp

:

The transmitting-contact rate βj(t) pertains to transmission dynamics internal to county j,
where D is the total number of coupled counties. The mobility matrix mij describes the proba-

bility that a contact made by an individual in i was with an individual from j [42]. The proba-

bility of inter-county contacts is proportionate to the mobility kernel

kðrijÞ ¼
1

1þ ðrij=sdÞ
g

that is a variation of the offset power function. Here, the distance rij is calculated as the great-

circle distance between counties’ population centroids. Saturation distance sd and the expo-

nent γ are fit parameters. The mobility matrix is population weighted and row-normalized

mij ¼ NjkðrijÞ
1

P
kNkkðrikÞ

:

Following the functional form in [43], the transmitting-contact rate in region i becomes

time-dependent when modulated by specific humidity qi(t)

biðtÞ ¼ b0ið1þ DRi � e
� ai �qiðtÞÞ:

The basic reproduction number R0 = Tg β0i, specific humidity scaling ΔRi, and specific

humidity power ai are fit parameters. When ΔRi! 0, the transmitting-contact rate reverts to a

constant value β0i.

All results presented here pertain to forecasting cluster weekly incidence, where cluster inci-

dence is the sum of the counties incidence. The spatial aspect of the model is characterized in

three ways: direct, uncoupled, and coupled. The self-describing ‘direct’ fit matches the model

directly to cluster totals. When applying the uncoupled model to a cluster, each constituent

county is fit independently. The individual county forecasts are then aggregated to produce a

cluster forecast. The coupled approach simultaneously fits the coupled model to all constituent

counties.

Specific humidity data was taken from the National Centers for Environmental Prediction

(NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis-2 project [44]. This

provides climate model evaluations 1979-present on a 1.875˚ spatial grid. The reanalysis-2

spatial grid is layered with GADM (the Database of Global Administrative Areas) county

definitions [45] and the SocioEconomic Data and Applications Center (SEDAC) population

densities [46] to produce weekly population-weighted averages for specific humidity in each

county.

Model fitting

Here we define incidence as the population count that was ILI symptomatic (TS) or influenza

infectious (PA) and presented to a reporting clinic for testing. Model equations are applied to

the full population, however model incidence-reported IRm is returned from the model as a
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proportion of weekly new infectious as

IRm ¼ Bþ pC

Z ti

ti� 1

lðtÞSðtÞdt:

The proportion clinical pC scaling accounts for both the portion of the population covered

by reporting clinics and the proportion of infectious that sought medical evaluation/treatment.

In this framework ti is defined as the Saturday that ends week i, and ti−1 is the previous Satur-

day. A baseline incidence B is introduced as a phenomenological parameter that accounts for

year-round testing and, particularly, early-season weeks where the incidence trend is not yet

exponential. B and pC are both fit parameters.

In the fitting procedure, the objective function is a Poisson based, Log-Likelihood (LLK).

For the i-th week of data, we calculate the probability that the data incidence reported IRdi is a

Poisson expression of model incidence reported IRmi

Pðx ¼ IRdiÞ ¼ Pois ðIRmiÞ:

The model likelihood is then a product over N weeks of P(x = IRdi), and results in an LLK

of

LLK ¼
XN

i

wiðIRdi � log ðIRmiÞ � IRmi � log ðIRdiÞÞ:

Here, wi is used to give zero weight to weeks where the data has been designated ‘no data’.

The following is a summary description of how the spatial aspect of the model effects the fitting

procedure. For the direct model, a single LLK fits the model to cluster totals. For the uncou-

pled model, we independently fit the model to each county and then aggregate model results

to cluster forecasts. For the coupled model, cluster LLK is calculated as a population-weighted

average of the individual county LLKs, and thus the counties are fit simultaneously in a single

fit procedure.

The fit procedure is a Metropolis-Hastings type Markov Chain Monte Carlo (MCMC) pro-

cess [47] with adaptive step size to map the likelihood minima in parameter space. This proce-

dure was implemented in Fortran and is accessed through the R wrapper, all of which is

included in the linked GitHub repository. For each MCMC fit, we processed three randomly-

initialized chains, each for 2 × 106 steps, and returned 104 parameter sets (evenly distributed

from the second half of the chain). Of the three chains, we chose the one with the lowest LLK

minimum. By using 3 chains starting in different parts of parameter space, we avoid the rare

event where a chain gets ‘stuck’ in a local minima of the objective function. Due to the lack of

sufficient historic data and resulting model-fit posteriors, we do not attempt to use informed

parameter priors. Therefore, all parameter priors are uniform.

For each of the three seasons (2016–17, 2017–18, 2018–19) we fit the data from week 27 to

x, where x covered the weeks [36, . . ., 52, 1, . . ., 18], and projected the model forward 1 to 10

weeks. This resulted in 1- to 10-week forecasts for each of the evaluated weeks [46, . . ., 52,

1, . . ., 19]. At each week we applied 6 model variants stemming from combinations of spatial

organization (direct, uncoupled, coupled) and β-modulation (fixed β, humidity-modulated β).

Forecast scoring

For each forecast target, our model produces a distribution of predicted outcomes. This distri-

bution is binned for evaluation based on the scoring system used by the CDC Influenza Chal-

lenge for the 2016–17, 2017–18 and 2018–19 seasons [37]. The maximum range is separated
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into 130 equally sized bins with a 131st bin for all values over the maximum previously

observed. In this scoring system, higher magnitude seasons tend to score lower. As a simple

correction for this, we re-scaled the bins for TS and PA so that both metrics peak in the same

bin as CDC %ILI for the encompassing region (see ‘CDC_Parent’ in S2 Table). Although each

cluster was generally much smaller than its encompassing CDC state/region, we suggest that

CDC %ILI is the most spatially consistent and comprehensive dataset to perform this scaling

with. Re-scaled bins for the San Antonio/Austin cluster, 2016–17 season appear as an example

in S2 Fig. Forecast probabilities for the observed bin (red shading) as well as the 5 pre- and

pro-ceeding bins (yellow shading) are summed to produce forecast skill. Forecast score is the

natural log of skill, with scores below -10 set to -10. For example, if we assigned a total proba-

bility of 20% to bins in the skill window, then the score would be ln(0.2) = −1.6. Note that due

to the work of Bracher [48] and the response [49], starting with the 2019–20 influenza season,

the CDC Influenza challenge defines forecast skill as only the probability in the observed bin.

Here we primarily show results from the 11-bin skill window for consistency with matching

Influenza Challenge seasons. However, some single bin scores are included in the supplemen-

tary material for comparison.

Null models

For a given season, cluster, week, and data metric, Null models were evaluated using data from

the same cluster, metric, and week, but different seasons. The most basic Null model ‘N.pt’ is a

point forecast calculated as the mean of the Null data. The ‘N.d’ model is a distribution fit to

the same data. For intensity targets we use a log normal distribution and for timing targets a

normal distribution. However, both of these models suffer from the same problem: due to the

small number of seasons in the dataset, the model is typically fit to only 2 data points. The

third Null model ‘N.d5’ was designed to mitigate this problem. For a given forecast week, ‘N.

d5’ uses the historic data from a 5-week window including the forecast week as well as the 2

pre- and pro-ceeding weeks to fit a log normal distribution. As an example, for epidemic week

4 of 2017 the data from epidemic weeks 2, 3, 4, 5, and 6 for years 2018 and 2019 are fit to a log

normal. This distribution is then intensity-binned to serve as the N.d5 model forecast.

Results

We obtained 3,258,166 specimen results from 12,227 point-of-care (POC) machines in the

United States starting from week 27, 2016 through week 26, 2019. These data were down-

selected to obtain clusters of nearby counties with at least 250 tested specimens in any season,

resulting in 10 clusters, capturing: 57 counties (S2 Table); 1,061,891 total specimens; and

173,909 specimens positive for Influenza A (Fig 2). Where no data was reported and there was

no temporal overlap of devices, we designated that week as ‘no data’ rather than a zero. A clus-

ter containing metropolitan Atlanta was just below the average season requirements for 2016–

17 but had very high coverage for 2017–18 and 2018–19 and was thus included.

Total specimens (TS) and specimens positive for influenza A (PA) both showed broadly

similar dynamics, however, there were some intriguing differences between them (Fig 2). As

would be expected, the more specific PA data had a clearer difference between off-season and

in-season. Also, regardless of noise during periods of low activity, the county-level PA time

series produced sharper epidemics, with 6.05 weeks average duration at or above half maxi-

mum incidence compared with 8.84 weeks for the TS data. For clusters, the peaks became

slightly wider with a width at half peak for PA averaging 6.48 weeks and TS averaging 9.57

weeks. The TS data showed a high correlation with influenza-like illness data for the enclosing
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CDC region (overall average Pearson coefficient 0.96, S1 Table). Additionally, S2 Fig serves as

an example illustration of this similarity.

When averaging across all clusters and seasons, at each forecast week; we found substantial

evidence that PA data could be more accurately forecast than could TS data (Fig 3 and S3–S5

Figs). We assessed accuracy using a similar scoring system as that used for influenza by the US

CDC [8] during the same seasons. The incidence scale was separated into 131 bins and we

used our model to assign a probability to every possible category. In the 2019–20 season, the

CDC influenza competition moved to a single-bin scoring system. For completeness, we have

reproduced S3 and S4 Figs with single-bin scoring as S6 and S7 Figs respectively. The best

model for 2-week ahead forecasts scored an average of -1.41 for PA data compared with -2.55

for TS data. Although the accuracy of the forecast did vary over the season, the superiority of

Fig 2. Incidence for each cluster for syndromic (total specimens, LHS) and specimens positive for A (RHS). Each row of rectangles represents a

single county with counties grouped into clusters (bounded by tick marks) and then into seasons. Seasons are indicated by start year on the y-axis (with

a blank row between years). Within seasons, clusters are ordered by latitude and within clusters, counties are also ordered by latitude. Cluster peak

weeks are marked with a gray vertical line. In this figure, the incidence for each week is normalized for each county and year using the peak value for

that year (Legend, RHS). White indicates ‘no data’.

https://doi.org/10.1371/journal.pcbi.1009230.g002
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Fig 3. Forecast scores for 2- to 10-weeks ahead lead times, and comparing different data metrics. Pixel colour shows forecast

score (see main text) for a given observation week averaged across clusters and seasons, e.g. the 4-week ahead forecast for week

48 was made using data only up to week 44. Averages across all weeks for a given model are printed on the RHS of each row of

pixels. Model type is shown on LHS y-axis tick labels: C.H, coupled model with humidity modulated contact rate; C.F, coupled

model with fixed contact rate; U.H, uncoupled with humidity; U.F, uncoupled with fixed contact rate; D.H, model directly fitted

to cluster with humidity term; D.F, model directly fitted to cluster with fixed contact rate; N.pt, null model made from simple
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best fits to PA data over TS data was maintained across the whole season. In fact, the accuracy

of the best fit model for PA data with a 10-week lead time was still better than that of the TS

data at a 2-week lead time.

We considered specific examples to understand how and why the models were better able

to fit these data in different scenarios. For example, after testing all forecast models at all fore-

cast times for the Colorado cluster for 2016–17, the best fitting model was better able to cap-

ture the rapid acceleration of incidence and the shape of the peak PA data stream than was

possible for the best fitting model for the TS data (Fig 4A and 4B). Despite not being able to

accurately fit the decay phase of the epidemic, the best fitting model for the PA data still

achieved a substantially better score of -0.51 than the score of -0.82 that was possible for the

corresponding TS data. We note that a score of -0.51 corresponds to 60% of forecasts falling

within the skill window. However, for the same cluster for the following year, the same did not

apply. The best model fits to both datasets were substantially worse than the year before, largely

due to the cluster exhibiting a double peak (Fig 4C and 4D). The average single-peak line

through the slightly diffuse TS data performed slightly better than did a similar line through

the more sharply peaked PA data. We note that our data and models do not distinguish

between subtypes of influenza A and that both H1N1 and H3N2 were circulating during simi-

lar periods in this season. Similar panels are available for all models and seasons in S12 Fig.

Looking at the seasons more broadly, S8 Fig contains scores averaged over cluster and 1- to

4-weeks-ahead forecasts to show model performance by season and data type. Here we see rel-

atively high scores for the 2016–17 season, likely a result of semi-synchronized H3N2 and B

peaks. The 2017–18 season was characterized by an early H3N2 peak followed by a late B peak.

Thus, the model performed well on PA data, but struggled with the broad peaks in TS data.

A--very unusual--early H1N1 peak followed by late H3N2 peak caused 2018–19 to score the

worst for both TS and PA data.

Among the mechanistic models, coupled models generally performed better than uncou-

pled models or models that fit the cluster incidence directly (Fig 3). Also, the accuracy of

mechanistic models relative to non-mechanistic average-based models compared for TS and

PA data suggests that mechanistic models are able to capture more information from the PA

data than a simple baseline (null) model. For the TS data, the 5-week rolling historical average

model outperformed the best mechanistic models for all time scales from 2- to 10-weeks. How-

ever, for PA data, the best mechanistic model outperformed the 5-week average historical

model in the 1- to 4-week ahead range. We note that there were few years available to the his-

torical models in these data, therefore the performance of historical-average models would

likely improve over time as the training data set grows.

Patterns in the posterior densities for key mechanistic parameters also suggest that when

the models are fit to the PA data they are capturing more of the underlying biology (Fig 5).

The posterior median for the basic reproductive number R0 was consistent from year to year

and location to location when fit to the PA data. For coupled models, cluster R0s were higher

(mean 1.32; 95% CI [1.31, 1.33]) than for uncoupled models (mean 1.18; 95% CI [1.17, 1.18]).

Given that transmissibility is reflected by R0 − 1, this difference is significant and likely reflects

the need for uncoupled models to have longer durations (resulting from lower R0) because the

overall cluster incidence was not driven by epidemics in subpopulations taking off at different

times. This theory is supported by an inverse relationship for the estimated proportion of

model of that week for all other seasons; N.d, null model made from fitting a log normal to all observations for that week from

other years; and N.d5, null model made from fitting log-normal to the observation week, two weeks prior and two weeks

following for all other years (see main text). Models are ordered approximately from least complex on the bottom rows to most

complex on the top row. See S2 and S3 Figs for complete 1–10 weeks ahead forecast results.

https://doi.org/10.1371/journal.pcbi.1009230.g003

PLOS COMPUTATIONAL BIOLOGY Forecasting influenza type data for small geographic units

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009230 July 29, 2021 11 / 20

https://doi.org/10.1371/journal.pcbi.1009230.g003
https://doi.org/10.1371/journal.pcbi.1009230


infections which result in clinical cases pC. Estimates of pC were lower for coupled models than

for uncoupled models because subpopulations with higher R0s require fewer of their infections

to result in cases to achieve the same level of incidence as those from the uncoupled model.

Despite the coupled model outperforming the uncoupled model, estimates for the parameters

that determined coupling strength were not well constrained when fit to the data (S9 Fig).

Fig 4. Illustrative high-scoring and lower-scoring forecasts for the Colorado cluster. Here the incidence data is shown in black and shaded cones

depict the central 50% forecast windows for 1–4 week ahead. Forecasts were generated for every week, but only every third forecast is shown here for

clarity. Colour progression from left to right indicates time of forecast. Solid lines show fit to data at the point the forecast was assumed to have been

made. Dashed lines show forecasts beyond the time at which data were assumed to be available. Mean score is the average score across MMWR

forecasted weeks and 1 to 4 weeks ahead targets.

https://doi.org/10.1371/journal.pcbi.1009230.g004
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Although coupling posteriors showed large spreads, there were subtle differences from cluster

to cluster and between the data metrics. Plotting the posterior coupling kernel κ as a function

of distance (see S10 and S11 Figs) shows differing patterns of coupling fall-off.

Discussion

We have shown for a large set of mechanistic models, using a skill scoring system analogous to

current best practise, that cluster-level influenza incidence-data based on type-confirmed test

Fig 5. Posterior parameter densities by season, cluster and model type. Bars show central 95% of posterior credibility interval with marker showing

posterior mean. Colour indicates model type and symbol shape indicates season. Values for each cluster are grouped together as per x-axis tick labels.

https://doi.org/10.1371/journal.pcbi.1009230.g005
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results generate substantially better forecasts than those based only on the volume of respira-

tory samples being tested. We have also shown a close correlation between the weekly total

number of respiratory samples in each cluster and the pattern of influenza-like illness reported

to the national surveillance system for the geographical region enclosing each cluster. Among

these mechanistic models, cluster forecasts were more accurate in those that fit to subpopula-

tion county data than those that do not. Also, the relative difference between the mechanistic

models and simple historical average models is much greater when forecasting type-specific

data than when forecasting total samples.

A limitation of our study is that we compared only forecasts from our suite of mechanistic

and historical average models against the two datasets. Therefore, it is possible that other

approaches may have been able to forecast the TS data more effectively than the PA data. How-

ever, the difference in our ability to forecast the two types of data was considerable and signifi-

cantly greater than the difference in performance between our approach and other high

performing participants in the CDC challenge study, which is measured on a similar scale [8].

Also, intuitively, the shape of epidemics in the PA data was more consistent with a short-gen-

eration-time infectious disease epidemic: the degree of noise prior to the start of the season

was low and the epidemic itself was more peaked, as measured by width at half maximum, sug-

gesting that the substantial improvement in forecastability using a mechanistic approach is

consistent with the PA data being much more representative of the underlying biological

process.

A previous study compared the forecastability of pathogen-specific data and found evidence

of slightly increased forecastability of local type- and subtype-specific data, albeit using differ-

ent accuracy metrics [28]. However, the virological data available to the prior study repre-

sented considerably larger spatial units than the separate ILI data. More local sub-type

epidemics were inferred by combining regional laboratory-confirmed positive proportions

with Google Flu Trends [50] estimates of state and municipality ILI data, implicitly assuming

that the temporal distribution of types and subtypes was uniform for large geographical

regions. A similar study [29] looked at influenza positive laboratory data at small spatial scale

combined with several other data types, but did not address subpopulation coupling or type-

specific data. We suggest that aggregated positive tests at the geographical and temporal scales

of analysis contain maximal information that is not present in similar inferred data streams.

Our results suggest a number of additional refinements to our forecasting workflow that

may further improve model forecast accuracy. We assumed that each cluster consisted only of

the sub-populations for which data were available. It may be that the inclusion of the interven-

ing and surrounding populations that were not observed could increase accuracy. This would

substantially increase the computational complexity of the approach, but could potentially fill-

in surveillance gaps at the same time as increasing the accuracy and robustness of the forecasts.

Additionally, tightly clustered counties with low reporting could be combined into a single

super-county. This would allow us to include incidence data that is currently being lost in the

county filtering process. A separate issue is that we have treated these as weekly data, which

reflects their current reporting pattern. However, accuracy for now-casting and short term

forecasting could be improved substantially by looking at daily incidence which are available

from this surveillance network. Although some work would be required to make a day-of-

week adjustment [51], accuracy of 1-week ahead and 2-week ahead forecasts would likely

increase substantially over and above the gains described here.

Public health authorities may wish to consider the routine use of type- and subtype-specific

point-of-care data for influenza surveillance in addition to traditional ILI surveillance to

enable more accurate local influenza forecasts during seasonal and pandemic periods. Our

results were for 10 geographical clusters based only on three seasons of data (so a maximum of

PLOS COMPUTATIONAL BIOLOGY Forecasting influenza type data for small geographic units

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009230 July 29, 2021 14 / 20

https://doi.org/10.1371/journal.pcbi.1009230


two training years). Very soon, the network of machines from which these data were obtained

and other similar networks will have much more complete geographical and temporal cover-

age [52]. Similar networks are being established in many other populations.

Other studies have shown that aggregating local forecasts can improve accuracy over direct

forecasts for larger geographical units, but have not focused on the potential accuracy at small

spatial scales [11, 53]. Also, more descriptive ecological analyses have demonstrated the poten-

tial for improved local forecasts by characterizing how humidity and population density are

correlated with average properties of epidemic curves [54]. Building on these prior studies, the

smaller spatial unit and temporal accuracy of the results presented here could be used to guide

public health interventions and give individuals the opportunity to modify their behaviour

over short periods of time, based on very local information. In particular, people at high risk of

severe disease may choose to reduce their social mixing during short periods where the local

risk of infection can be accurately predicted to be high.

Supporting information

S1 Fig. County filtering by season. Counties with at least 250 specimens and 40 reporting

weeks per season. (A) 2016–17 season—187 counties, (B) 2017–18 season—281 counties,

and (C) 2018–19 season—541 counties. The map base layer was sourced from the U.S. Census

Bureau [39]

(PDF)

S2 Fig. Peak-normalization of scoring bins across data metrics, illustrated for 2016–2017

season in the San Antonio / Austin area cluster. Bins were scaled to each metric such that

all peaks fall in the same bin. The skillful bins for the peak week are shown in yellow shading.

Forecast probabilities in these bins, in addition to the observed bin (red shading), are summed

to calculate skill. The Centers for Disease Control and Prevention percentage ILI (CDC %ILI)

is for the enclosing CDC region (state of Texas).

(PDF)

S3 Fig. Mean scores for total specimens forecasts 1–10 weeks ahead. Pixel colour shows

forecast score (see main text) for a given observation week averaged across clusters and sea-

sons, e.g. the 4-week ahead forecast for week 48 was made using data only up to week 44. Aver-

ages across all weeks for a given model are printed on the RHS of each row of pixels. Model

type is shown on LHS y-axis tick labels: C.H, coupled model with humidity modulated contact

rate; C.F, coupled model with fixed contact rate; U.H, uncoupled with humidity; U.F, uncou-

pled with fixed contact rate; D.H, model directly fitted to cluster with humidity term; D.F,

model directly fitted to cluster with fixed contact rate; N.pt, null model made from simple

model of that week for all other seasons; N.d, null model made from fitting a log normal to all

observations for that week from other years; and N.d5, null model made from fitting log-nor-

mal to the observation week, two weeks prior and two weeks following for all other years (see

main text). Models are ordered approximately from least complex on the bottom rows to most

complex on the top row.

(PDF)

S4 Fig. Mean scores for positive-for-A forecasts 1–10 weeks ahead. Pixel colour shows fore-

cast score (see main text) for a given observation week averaged across clusters and seasons,

e.g. the 4-week ahead forecast for week 48 was made using data only up to week 44. Averages

across all weeks for a given model are printed on the RHS of each row of pixels. Model type is

shown on LHS y-axis. Models are ordered approximately from least complex on the bottom
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rows to most complex on the top row.

(PDF)

S5 Fig. Peak target mean forecast scores for total specimens and positive for A. The panels

are divided by target (top—Peak Week, bottom—Peak Intensity) and data metric (left—total

specimens tested, right—specimens positive for A). Forecast scores for each square are aver-

aged across all clusters and all seasons. The mean value of each row appears in the AVG col-

umn on the right. Model type is shown on LHS y-axis.

(PDF)

S6 Fig. Mean single-bin scores for total specimens forecasts 1–10 weeks ahead. Pixel colour

shows forecast single-bin score for a given observation week averaged across clusters and sea-

sons, e.g. the 4-week ahead forecast for week 48 was made using data only up to week 44. Aver-

ages across all weeks for a given model are printed on the RHS of each row of pixels. Model

type is shown on LHS y-axis.

(PDF)

S7 Fig. Mean single-bin scores for positive-for-A forecasts 1–10 weeks ahead. Pixel colour

shows forecast single-bin score for a given observation week averaged across clusters and sea-

sons, e.g. the 4-week ahead forecast for week 48 was made using data only up to week 44. Aver-

ages across all weeks for a given model are printed on the RHS of each row of pixels. Model

type is shown on LHS y-axis.

(PDF)

S8 Fig. Forecast scores for 1- to 4-week-ahead targets by season. Pixel color shows multi-bin

forecast score (see main text) for a given observation week averaged across clusters and 1–4

week ahead target. Averages across all weeks of the season for a given model are printed on the

RHS of each row of pixels. Model type is shown on LHS y-axis.

(PDF)

S9 Fig. Coupling parameter mean and central 80% interval. Results were compiled from

MCMC chains across all models and forecast weeks for a given cluster and season. Coupling is

modeled with the offset power law relationship described in (11) using free parameters for sat-

uration distance and power. Briefly, the probability of coupling occurring across space is deter-

mined by a function with a plateau followed by a power law drop-off. Saturation distance is

the width of the plateau and ‘power’ is the power coefficient of the drop-off.

(PDF)

S10 Fig. Spatial kernel posterior by cluster for positive-for-A. Spatial kernel κ posterior as a

function of distance. Posterior distributions are across all season-years and β-modulation vari-

ants (fixed, humidity) for each cluster. Posteriors are taken from late-season fits using data

through EW 18. Median kernel values appear as a black line and the 25% to 75% interval is

shaded blue. For each unique county pair, there appears a vertical orange line indicating the

great-circle distance (km) between population centroids.

(PDF)

S11 Fig. Spatial kernel posterior by cluster for total specimens. Spatial kernel κ posterior as

a function of distance. Posterior distributions are across all season-years and β-modulation

variants (fixed, humidity) for each cluster. Posteriors are taken from late-season fits using data

through EW 18. Median kernel values appear as a black line and the 25% to 75% interval is

shaded blue. For each unique county pair, there appears a vertical orange line indicating the
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great-circle distance (km) between population centroids.

(PDF)

S12 Fig. Illustrative forecasts for all models. Each page contains results from a single model.

Rows are divided first by data metric and then by season. Columns are divided by cluster. In

the panels incidence data is shown in black and shaded cones depict the central 50% forecast

windows for 1–4 week ahead. Forecasts were generated for every week, but only every third

forecast is shown here for clarity. Colour progression from left to right indicates time of fore-

cast. Solid lines show median fit to data at the point the forecast was assumed to have been

made. Dashed lines show forecasts beyond the time at which data were assumed to be avail-

able. Mean score is the average score across MMWR forecasted weeks and 1 to 4 weeks ahead

targets.

(PDF)

S1 Table. Pearson correlations between data metrics. Correlations are calculated for each

cluster and season, and comparing total specimens, positive for, A and CDC %ILI. From the

resulting distributions, we have extracted the median, 20%, and 80% quantiles.

(PDF)

S2 Table. County cluster information.

(PNG)
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