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Low-grade gliomas (LGG) are heterogeneous, and the current predictive models for LGG
are either unsatisfactory or not user-friendly. The objective of this study was to establish a
nomogram based on methylation-driven genes, combined with clinicopathological
parameters for predicting prognosis in LGG. Differential expression, methylation
correlation, and survival analysis were performed in 516 LGG patients using RNA and
methylation sequencing data, with accompanying clinicopathological parameters from
The Cancer Genome Atlas. LASSO regression was further applied to select optimal
prognosis-related genes. The final prognostic nomogram was implemented together with
prognostic clinicopathological parameters. The predictive efficiency of the nomogram was
internally validated in training and testing groups, and externally validated in the Chinese
Glioma Genome Atlas database. Three DNA methylation-driven genes, ARL9, CMYA5,
and STEAP3, were identified as independent prognostic factors. Together with IDH1
mutation status, age, and sex, the final prognostic nomogram achieved the highest AUC
value of 0.930, and demonstrated stable consistency in both internal and external
validations. The prognostic nomogram could predict personal survival probabilities for
patients with LGG, and serve as a user-friendly tool for prognostic evaluation, optimizing
therapeutic regimes, and managing LGG patients.

Keywords: low-grade glioma, DNAmethylation-driven genes, TCGA database, CGGA database, survival nomogram
model, prognosis
INTRODUCTION

Glioma is a central nervous system tumor derived from glial cells and is the most prevalent primary
malignant intracranial tumor (1, 2). According to statistics from the Central Brain Tumor Registry of the
United States (CBTRUS), gliomas account for approximately 27% of all central nervous system tumors,
and 80% of brain malignancies, with 15,000-17,000 new cases in the United States per year (3). Gliomas
are traditionally divided into lower-grade gliomas (LGG) and glioblastoma multiforme (GBM). GBM is
one of the most frequently diagnosed malignant gliomas, and its characteristics include highly aggressive
progression and short median overall survival (OS) of 12-16 months (4, 5). Although LGG is less
invasive than GBM, it nevertheless causes considerable morbidity, and presents a difficult challenge to
doctors due to heterogeneity in their clinical behavior (2, 6, 7). Current predictive models for LGG are
either unsatisfactory or not user-friendly, which greatly hinders clinical application. Therefore, a reliable
and user-friendly predictive model for LGG patient prognosis is urgently needed.
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Epigenetic alterations have been reported to play crucial roles in
cancer development, and aberrant DNA methylation is one of the
most well-characterized epigenetic modifications, and is of
paramount importance (8). DNA methylation plays a key role in
transcriptional regulation and maintains genome stability without
changing the DNA sequence (9). In particular, a large number of
studies have demonstrated that DNA methylation alterations can
make available significant information for early tumor diagnosis
and prognostic prediction (10–12).

Moreover, there is a growing number of studies focusing on
abnormal DNA methylation, which is viewed as a key factor in the
occurrence and progression of glioma (13–16). For example, Chen
et al. (17) showed that an MGMT methylation group exhibited
prolonged progression-free survival (PFS) compared to the negative
MGMT methylation group. Wang et al. (18) reported that eight
genes affected by DNA methylation modification have independent
prognostic values for GBM patients. Therefore, identifying novel
genes with aberrant DNA methylation in LGG is critical to gain
better insights into the biological mechanisms involved in LGG,
thereby offering a promising tool for effective prognostic prediction.

A nomogram is a graphical representation of logistic regression or
Cox regression, which can be employed to predict the survival or
diagnosis probability of individuals with high accuracy and good
clinical practicability (19, 20). Although an association between DNA
methylation alterations and prognosis in LGG patients has been
reported, most studies have been based either on gene expression or
methylation, and no study has combined gene expression/
methylation with significant clinical features to establish a survival
nomogram for LGG patients (21). In this study, we sought to set-up
and independently validate a nomogram incorporating multiple
parameters for survival estimation among patients with LGG. The
findings of our study will help further improve individualized
management for patients with LGG.

METHODS

Data Curation From TCGA and
CGGA Databases
RNA sequencing and DNA methylation sequencing data in LGG
and accompanying clinicopathological parameters were
downloaded from The Cancer Genome Atlas (TCGA) database
(22) (https://portal.gdc.cancer.gov/). Samples with incomplete data
were removed, and finally, 516 LGG patients were included in this
study. To verify the prognostic value of selected genes and the final
nomogram, 104 LGG patients with expression and methylation
array data, and 620 LGG patients with RNA sequencing data, were
curated from the Chinese Glioma Genome Atlas (CGGA) database
(23)(www://cgga.org.cn/). Data were utilized according to the data
access policy of TCGA and CGGA. All analyses were conducted in
accordance with relevant regulations and guidelines.

The following clinical information was collected from the
TCGA databases: patients’ age, sex, tumor grade (WHO grade I
or WHO grade II) , histological type (astrocytoma,
oligoastrocytoma and oligodendroglioma), date of initial
pathologic diagnosis (1993–2013), age at diagnosis (14–86),
race (white, black or African American, Asian, American
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Indian or Alaskan native), OS, and survival status (alive or
dead), were also retrieved, where available.

Differential Expression Analysis in LGG
Among the 516 LGGpatients represented in TCGAdata, 14 had both
primary and recurrent samples. Differential expression analysis was
performed among the 502 primary tissues of LGG patients without
recurrence, and 14 samples with recurrence using Student’s t-test
followed by p value adjustment by the “Benjamini-Hochberg”
method, utilizing R software (v.3.6.1). Differentially expressed genes
(DEGs) were defined as being significantly up or downregulated
when p values were < 0.001 and absolute log2 fold-change (LFC) > 1.

DNA Methylation Correlation Analysis
Here, single specific gene DNA methylation values were
estimated from mean DNA methylation Beta values for
complete CpG sites in gene promoters. In order to recognize
gene transcription and predict DNA methylation, gene
expression and DNA methylation data were robot-like
matched. Relationships between gene expression levels and
extent of DNA methylation were investigated in 516 LGG
samples. Methylation-associated genes (Methygenes) were
defined as |Coef| > 0.5 and p value < 0.001.

Survival Analysis and LASSO Regression
To avoid the influence of interventions on OS, we excluded those
patients with OS < 30 days, left with 481 LGG individuals included
in the survival analysis. Univariate Cox regression was performed to
uncover survival-associated genes (Survgenes) in LGG patients. The
best cut-off value for each gene was determined using the survminer
package (v.0.4.6), and significant Survgenes were defined as having
p values < 0.001.

Candidate genes were selected using Venn diagrams; only genes
meeting the criteria of significance in differential expression, OS,
and methylation correlation analyses, were chosen for downstream
analysis. LASSO (least absolute shrinkage and selection operator)
was performed to evaluate potential correlations involving DNA
methylation-driven gene expression levels and patient prognoses in
order to identify independent DNA methylation-driven genes
related to prognosis in the TCGA dataset.

Establishment and Validation of
Predictive Model
To compare and further improve the predictive efficiency of the
model, survival analyses were also performed involving clinical
features so as to identify significant prognostic factors. A risk
score prediction model was constructed based on the expression
levels of three DNA methylation-driven genes filtered by LASSO,
together with age, sex, and IDH1 mutation data.

For internal validation, patients were randomly divided into a
training set (n = 289) and a test set (n = 192) to validate the
predictive capability of the prognostic model. In the whole set,
time-dependent receiver operating characteristic (tROC) curves
using the survivalROC package (v.1.0.3) (24) were employed to
compare the predictive efficiency of the individual factors
and model.
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Building and Validating
Prognostic Nomogram
To present a predictive model with integrated factors in a user-
friendly way, a nomogram was built using the rms R package
(v.5.1-4) (25). Validation using calibration curves was then
performed. Calibration of the nomogram was evaluated using
calibration curves, graphically assessed with the relationships
between the actual observed rates and the probabilities predicted
by the nomogram, by which the 45° line indicates the best
prediction. To calculate the discrimination accuracy of our
nomogram, concordance index (C-index) was measured. The
radiomic nomogram was submitted to bootstrapping validation
(1,000 bootstrap resamples) to compute a relatively corrected
C-index.

External Validation Analysis
Because different detection platforms were used in TCGA and
CGGA databases, methylation levels of CMYA5 and ARL9 were
not available in the CGGA database. Therefore, we attempted to
verify the power of each factor and the model with available data in
CGGA. The cut-off values of the high and low groups for each gene
were determined by quantiles set as in TCGA dataset. KMplots
(Kaplan-Meier Plotter) for each gene and models with three genes,
with or without clinical parameters, were provided.

Statistical Analysis
All statistical analyses were performed using R software (v.3.6.1).
The Cox regression model was applied to evaluate the significance
of each clinical parameter on OS. Survival curves were generated
using Kaplan–Meier plots, and compared using the log-rank test.
Frontiers in Oncology | www.frontiersin.org 3
Time-dependent receiver operating characteristic (tROC) curves
generated using the survivalROC package (v.1.0.3) (24) were
employed to measure predictive power; the area under the curve
at different time points (AUCt) could be determined and compared
easily. All statistical analyses were 2-sided, and probability values of
p < 0.05 were considered statistically significant.

RESULTS

Identification of Methylation-Driven Genes
in LGG
An analysis pipeline of this exploration is shown in Figure 1A.
First, DEG analysis was performed involving primary tissues of
LGG patients without recurrence (n = 502), and those with
recurrence (n = 14) in TCGA (Figure 1A). Using a cut-off
criterion of p < 0.001 and |log2 FC| > 1, 567 genes were identified
as DEGs (Figure 1B), which were differentially expressed
between patients with recurrence and patients without
recurrence. Secondly, methylation correlation analysis revealed
a total of 1,685 Methygenes whose expression was significantly
different with changes in DNA methylation levels. (Figure 1B).
Thirdly, 8,484 Survgenes (p < 0.001) were identified by survival
analysis in the 481 LGG samples (Figure 1B). Furthermore, 40
overlapping candidate genes (OCGs) were identified using Venn
diagrams (Figure 1B) involving genes identified in the
above steps.

To further narrow down and uncover the driving factors
involving the 40 OCGs, LASSO analysis was performed and
ARL9, CMYA5, and STEAP3 were identified as driving factors
related to OS (Figures 1C, D). Correlations between each specific
A B

D

C

FIGURE 1 | Identification of three significant prognostic genes in LGG and LASSO results (A) Technical roadmap for the whole study. (B) Venn diagram of 40 OCGs.
(C) Partial likelihood deviance for LASSO regression. (D) LASSO regression analysis of 40 genes in LGG.
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CpG site and expression of the three genes are shown. Generally,
the expression of each gene was negatively correlated with the
methylation levels of almost all CpG sites, and the aggregated
level (Figures 2–4).

Establishment of Nomogram
Prognostic Model
Survival analyses were performed based on the gene expression and
DNA methylation levels of ARL9, CMYA5, and STEAP3 in the
cohort of LGG patients from TCGA data. High levels of ARL9
(Figures 5A, B), CMYA5 (Figures 5C, D), and STEAP3
(Figures 5E, F) expressions, and DNA hypomethylation of the
three genes were significantly associated with poorer prognosis,
indicating that DNA methylation is involved in the regulation of
gene expression, and that the control relationship may be negative
(Figures 2, 3). Meanwhile, age, sex, and IDH1mutation status were
also significant in the OS analysis. Multivariate Cox proportional
hazards regression analysis was performed to establish prognostic
models with or without clinical factors. KMplots of the two
prognostic models are shown in Figures 5G, H. Intuitively,
adding clinical parameters, including age, sex, and IDH1 mutation
status, did not dramatically improve the predictive efficiency of the
prognostic model (Figures 5G, H). Furthermore, we conducted
ROC curve analyses for specificity, sensitivity, and predictive value
of the prognostic parameters assessed. At 1-year OS, the time-
dependent AUC of the 3-gene model was 0.921 (Figure 5I),
indicating high performance in predicting OS in LGG patients.
The AUC of the model with three genes and clinical parameters was
0.930, which was slightly higher than that of the 3-gene model alone
Frontiers in Oncology | www.frontiersin.org 4
(Figure 5I), in which each was higher than the individual factors
(Figure 5I). The AUCs of time-dependent ROC analysis at 0.5-, 1-,
2-,3-, and 5-year OS of the 3-gene model in the whole set were
0.844, 0.921, 0.864, 0.834, and 0.736, respectively (Figure 5J). In
conclusion, the 3-gene model performed well in predicting OS of
LGG patients.

To provide a more user-friendly clinical predictive model, a
prognostic nomogram was built with the three DNAmethylation-
driven genes and clinicopathological factors. Using the survival
nomogram, the proportion of patients with probabilities of 1-, 3-,
and 5-year survival times can be reliably predicted (Figure 6A).
STEAP3 methylation was the dominant factor in the nomogram
(Figure 6A). Moreover, calibration curves for survival prediction
demonstrated that the nomogram predictive outcome showed
good agreement with actual observations in 1-, 2-, 3-, and 5-
year OS rates (Figures 6B–E). In summary, the final prognostic
nomogram exhibited high prediction efficiency and good
consistency in LGG patients.
Internal Validation of the Prognostic
Nomogram
To verify the predictive capability of the prognostic nomogram,
481 LGG patients were randomly divided into a training set (n =
289) and a testing set (n = 192) by 6:4 ratio. Patients were
categorized into two groups: low-risk and high-risk, with the
same cut-off value as in the previous analysis. Specifically,
KMplots for each gene demonstrated similar patterns in the
training (Figures 7A–F) and testing sets (Figures 8A–F), which
FIGURE 2 | Regression analysis involving each specific CpG site and aggregated levels, and the expression of ARL9 in the whole dataset from TCGA.
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were largely consistent in the whole cohort. Moreover, survival
analysis revealed that patients with high scores in the risk model
had significantly shorter OS than those in the low score group
(Figures 7G, H, 8G, H), suggesting that the prognostic model of
the nomogram was influenced by randomization, and showed
high consistency in TCGA LGG cohort.

External Validation of the Prognostic
Nomogram
The CGGA dataset was used for external validation of the
prognostic nomogram; however, methylation levels of CMYA5
and ARL9 and expression data for ARL9 were not available
because different detection platforms were used in TCGA and
CGGA databases. Therefore, we attempted to verify the power of
each factor and the model with available data in CGGA. As shown
in Figure 9, high expression of CMYA5 and STEAP3 predicted
poorer OS, while high methylation of STEAP3 indicated better OS
(Figures 9A–C). A multivariate prognostic model employing the
available factors also demonstrated high predictive efficiency
(Figure 9D), while adding clinical parameters enriched more
patients with high risk (Figure 9E). In summary, these results
demonstrated that it was reliable to create prognostic models based
on these three DNA methylation-driven genes.
DISCUSSION

In the present study, we first constructed a prognostic prediction
nomogram based on three DNA methylation-driven genes and
Frontiers in Oncology | www.frontiersin.org 5
clinical parameters. Predictive efficiencies were evaluated and
compared in two cohorts, including 516 glioma patients from
TCGA database, and 104 patients from the CGGA database. The
AUC of the final prognostic nomogram was 0.930, which was higher
than for each factor individually. These results indicated that the
prognostic nomogramwas powerful in predictingOS of LGGpatients.

To date, several prognostic models for glioma have been
reported. Wang et al. (26) constructed a risk score model using
five selected pseudogenes (ANXA2P2, EEF1A1P9, FER1L4,
HILS1, and RAET1K) in glioma patients, and Zeng et al. (27)
developed and validated a 3-gene (EMP3, GSX2, and EMILIN3)
prognostic signature in LGG cases by combining multi-
dimensional genomic data from TCGA and CGGA datasets,
the two predictive models based only on gene alterations with no
clinical parameters. The AUCs for 1-year survival of Wang
studies were 0.862, which is lower than our prognostic
nomogram, demonstrated an AUC of 0.930. In addition, the
models of Cheng et al. (28) and Gittleman et al. (29) are only
suitable for primary glioblastoma, lacking predictive power for
other types of glioma; in addition, only a small number of studies
are available for WHO I and WHO II glioma models (30, 31).
Zhao et al. (32) constructed a prognostic model for GBM survival
prediction based on methylation-driven genes. The AUC of the
validation set was 0.808, which was also less effective than our
prognostic nomogram. Therefore, our nomogram for LGG
patients included not only three methylation-driven genes, but
also other clinically important variables related to prognosis; it
demonstrated higher predictive efficiency than existing models,
and was more user-friendly.
FIGURE 3 | Regression analysis involving each specific CpG site and aggregated levels, and the expression of CMYA5 in the whole dataset from TCGA.
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Recent studies have demonstrated that there are various
survival-associated genes with epigenetic abnormalities in
gliomas (33–35). Furthermore, DNA methylation is a frequent
type of epigenetic change; it is stable and easily detectable
through high-throughput and sensitive equipment requiring
minimal glioma samples (36). Therefore, identifying novel
DNA methylation-driven genes is urgently needed. In the
current study, all the three DNA methylation-driven genes
were confirmed to be prognosis-related genes, with negative
relationships. Han et al. (37) demonstrated that STEAP3 is
overexpressed in glioma samples and validated to be related to
poorer clinical prognosis in glioma patients. As a member of the
iron regulatory protein family, STEAP3 plays a critical role in
iron uptake (38). In addition, the function of STEAP family for
the prognosis prediction of GBM and other types of human
cancer s have been validated in several studies (39, 40). Previous
research has established that disorders involving iron
Frontiers in Oncology | www.frontiersin.org 6
metabolism play important roles in tumorigenesis, and iron
uptake by glioma stem cells (GSCs) can be increased (38, 41).
Certain studies have concluded that it may be caused by STEAP3
activating the TfR-STAT3 pathway in GBM, and that
knockdown of the transferrin receptor (TfR) significantly
influences the impact of STEAP3 overexpression on malignant
phenotypes in GSCs (42, 43). These two crucial factors involving
iron regulatory-TfR and ferritin are also vital for the proliferation
of GSCs, and for tumor growth in vivo (43). However,
researchers still need to explore the potential clinical practice
and role of STEAP3 in the progression of human gliomas. In
contrast to STEAP3, the roles of ARL9 and CMYA5 in glioma
have rarely been reported and remain obscure. Tan et al. (44)
shown that ARL9 is negatively regulated by ARL9 methylation,
and both low ARL9 expression and hypermethylation predicted
favorable OS and PFS in LGG patients. Its expression exhibited a
close correlation with some immune cells, especially CD8+ T
FIGURE 4 | Regression analysis involving each specific CpG site and aggregated levels, and the expression of STEAP3 in the whole dataset from TCGA.
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A B
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FIGURE 6 | Nomogram construction and validation. (A) Prognostic nomogram to predict 1-, 3-, and 5-year survival probability for patients with LGG. (B–E)
Calibration curves of the nomogram for predicting the probability of OS at 1-, 2-, 3-, and 5-years. The x-axis represents nomogram-predicted probabilities; the y-axis
represents actual survival rates of patients.
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FIGURE 5 | Prognostic analysis of three genes individually and in combination for the whole TCGA dataset. (A, C, E) K-M OS curves based on expression levels for
the three genes. (B, D, F) based on DNA methylation data. (G) based on expression and methylation data. (H) based on 3-gene signature with clinical parameters.
(I) Multi-index ROC curve of indicators (J) Time-dependent ROC analysis the of the 3-gene model.
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cells, indicating that probably plays an important role in immune
cell infiltration in LGG. Prior studies have reported that the
difference in CMYA5 expression levels were detected as a
potential driven gene in Taiwanese patients with endometrial
cancer (45).
Frontiers in Oncology | www.frontiersin.org 8
Previously, isocitrate dehydrogenase (IDH) mutations were
first reported in 2008 by Parsons et al. (46) after GBM exome
sequencing. Since the 2016 WHO reclassification of gliomas, it is
thought that molecular alterations, such as 1/2 (IDH) mutations,
are significantly more important than the WHO grading score.
A
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FIGURE 7 | Validation in the internal training set. (A–F) K–M OS curves for 3-gene expression and methylation in the internal training set. (G) combination of 3
genes. (H) of the nomogram.
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FIGURE 8 | Validation in the internal validation set. (A–F) K–M OS curves for 3-gene expression and methylation in the internal validation set. (G) combination of
three genes. (H) of the nomogram.
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Song et al. (47, 48) showed that in comparison to patients with
IDH wild-type glioma, patients with IDH1-mutated grade III
tumors had better chemotherapy responses and improved
prognoses. To date, mutations involving the IDH1 gene
represent the most common alterations in LGG patients, and
are significantly related to better prognosis (49, 50). Most studies
have demonstrated that IDH1 mutation plays a key role in the
tumorigenesis and progression of glioma byDNA hypermethylation,
histone hypermethylation, hypoxia-inducible factor-1a level changes,
and oxidative stress mechanisms (51, 52). For the purposes of
improving the model’s prognostic prediction power based on the
above 3 DNA methylation-driven genes, a more user-friendly and
highly accurate predictive nomogram was established by combining
traditional clinical prognostic indicators (including IDH1 status, age,
and sex). All of these three indicators were validated to be
independent prognostic factors in terms of OS of glioma patients
after examination by Cox model analysis.

It is worth noting that there were several limitations to our
study. First, the ethnicity of the LGG patients from TCGA and
CGGA databases were different, which might have influenced the
results. Second, the establishment and validation of our
prognostic model was based on public datasets and different
detection methods were used; some data were not available in
CGGA due to these issues. Third, the cohorts were also relatively
small, and need to be validated in larger, multicenter, and
prospective clinical cohorts. Notwithstanding these limitations,
Frontiers in Oncology | www.frontiersin.org 9
this study provides a readily-available nomogram for clinical
practice, and opens a new door for methylation-driven gene
applications, which may be beneficial to LGG patients. Further
research should also be conducted to determine the effectiveness
of this nomogram, and possible new strategies for targeted therapy.

In summary, our study identified three methylation-driven
genes, namely ARL9, CMYA5, and STEAP3 and, combined with
clinical factors, we first established and independently validated a
prognostic nomogram to provide novel and user-friendly
options for prognostic evaluation of LGG patients, and to
improve their treatment.
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