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The hippocampus and its accessory are the main areas for spatial cognition. It can

integrate paths and form environmental cognition based on motion information and

then realize positioning and navigation. Learning from the hippocampus mechanism

is a crucial way forward for research in robot perception, so it is crucial to building a

calculation method that conforms to the biological principle. In addition, it should be easy

to implement on a robot. This paper proposes a bionic cognition model and method for

mobile robots, which can realize precise path integration and cognition of space. Our

research can provide the basis for the cognition of the environment and autonomous

navigation for bionic robots.
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INTRODUCTION

Biological intelligence processes information using neuronal discharge, which makes those living
creatures able to perceive and act in the real world exceptionally well. Imitating neural systems to
realize robot navigation has attracted the interest of many researchers (Bing et al., 2018, 2019). The
hippocampus and its accessory in the brain are the core physiological regions for environmental
cognition and navigation (Eichenbaum, 2017; Gu et al., 2018; Steven et al., 2018). As early as
O’Keefe and Dostrovsky (1971) found some nerve cells in the hippocampus of rats with specific
expressions for places. These cells would fire when the rat was at a specific place, and were named
“place cells” (O’Keefe, 1976). In Hafting et al. (2005) found there were nerve cells with strong
periodic firing characteristics in the entorhinal cortex. The firing field presented a hexagonal grid
and covered the whole movement space. And then these nerve cells were named “grid cells.” In
O’Keefe and Burgess (1996) found that when changing the space range, the firing field of grid cells
would move toward the edge of the environment. So they forecast the existence of “boundary cells”
with a firing reaction on the boundary, which could perceive the distance toward the environment
boundary. By 2008, The researchers found boundary cells in the shallow of the olfactory cortex
(Savelli et al., 2008). In 2012, O’Keefe and Burgess published research (Krupic et al., 2012) showing
that cell clusters with periodic striped firing fields were found in the shallow layer of the paragentum
and entorhinal cortex. These cell clusters had different firing orientations andwavelengths, and they
were named “stripe cells.”

The anatomical experiments have found strong interconnections between various hippocampus
regions, but the specific mechanism for information processing is still poorly understood. Studies
show that cognitive maps exist in the brains of rats. During nesting, foraging, and other behaviors,
the hippocampus can integrate movement paths and walk along the direction of the target
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through the path not experienced. How the hippocampus
accomplishes these calculations is still inconclusive (Epstein et al.,
2017; Sarel et al., 2017; Savelli and Knierim, 2019). Current
studies in the field of neurobiology focus on the information
processing mechanism from grid cell to place cell, but do not
consider coupling velocity information to grid cells (Rolls et al.,
2006; Si and Treves, 2009; Savelli and Knierim, 2010; Danjo et al.,
2018). Burak et al. (2008) proposed a grid cell model based on
the continuous attractor network (CAN), which can calculate the
path integral accurately. However, their research is still limited
in practical application: Firstly, the grid cells model based on
a continuous attractor network can only explain the problem
of path integration, but lacks the explanation of perceptual
input and the cognitive output, so cannot build a cognitive
map; Secondly, the method of realizing spatial cognition has
the problem of accumulating errors, which can only keep the
accuracy in a short time or a small space.

The University of Queensland, Australia, proposed a real-
time localization and mapping method “RatSLAM” based on the
spatial cognition mechanism of the rat’s hippocampus. Inspired
by place cells, they fabricated a “pose cells” attractor model,
which uses velocity and direction information to drive the activity
packets of “pose cells” on the neural plate, thus achieving path
integration and expression (Milford andWyeth, 2008). However,
they mainly imitate the spatial cognitive methods of rats at
the neurobehavioral level. They do not imitate the cognitive
mechanism at the neurophysiological and anatomical levels.
Besides, the hypothesis about “pose cells” does not conform to
physiological facts, so this method has limitations in expansion
and application.

Inspired by the biological mechanism of spatial cognition
in the hippocampus mechanism of rats, this paper proposes a
spatial cognition model and method that can be used in robots.
The method conforms to the biological mechanism, and can
achieve precise path integration and spatial cognition for a long
time. This research will promote the development of research on
bionic intelligent robot environment cognition and autonomous
navigation systems.

MODELS AND METHODS

In this section, based on the physiology and anatomy of spatial
cells, we built five kinds of hippocampal cell models: head
direction cells, stripe cells, grid cells, place cells, and boundary
cells. We built a complete robot spatial cognition model based
on these cell modes by combining encoding and decoding
methods. Ourmethod used the velocity and direction of the robot
movement as the input information. Then the head direction cells
coded this information as nerve signals. Then the head direction
cells projected signals into the stripe cells. Then the cognition
model obtained a one-dimensional path integral in the stripe
cell. Then the stripe cells sent the one-dimensional signal to the
grid cells. Finally, the cognition mode realized path integration
and expression of place in grid cells. The place cells obtained the
single-peak firing expression of the current position by decoding
the multi-scale grid cells signal.

Establishment of Spatial Cell Model
Head Direction Cells Model
Head direction cells were identified in the posterior subiculum
region of the hippocampus. These cells maximized firing when
the animal’s head was facing in a specific direction (Taube et al.,
1990; Taube, 1995; Bing et al., 2021). When the head of the rat
was facing a specific preferred direction, the maximum firing
occurred. The firing gradually decreased when the head was away
from this direction, as shown in Figure 1A.

We constructed a circular attractor model as the head
direction cells, which encoded the direction and velocity
information. This information was used as the input signal of
stripe cells. As shown in Figure 1B, the head direction cells
are arranged in a ring, and the position of each cell in the
ring corresponds to the preferred orientation of the cell itself.
The phase direction of the attractor activity lump represents
the dominant orientation, which codes the direction of the rat’s
head. We established the outer Cartesian coordinate system
with the center of the circular attractor as the origin. The head
orientation at time t was set as θt , and the movement velocity
was set as vt , the phase angle of the ith head direction cell in
the attractor model was set as θi . The movement velocity was
proportional to the firing rate of the head direction cell. Each
head direction cell generated the firing rate signal si (t), which
contained the information of the current head at the angle and
movement velocity:

si (t) = v (t) · cos (θi − θt) (1)

Stripe Cells Model
The researchers found a kind of cell with periodic striped firing
fields in the parietal underdrum and the superficial dermis of the
entorhinal cortex in rats (Krupic et al., 2012). The characteristic
firing parameters of stripe cells is shown in Figure 2A, θ

represents the movement direction of the stripe, L represents the
period distance of the stripe, and (dx, dy) represents the phase of
the stripe cells. When the rat moves in a particular direction, the
velocity in that direction is integrated and encoded.

We constructed the stripe cell neural plate based on the
continuous attractor network, as shown in Figure 2B. There are
synaptic connections between neurons in the length direction
but no connection in the width direction. Each neuron can
fire in response to movement in a specific direction, depending
on the preferred direction of head direction cells. The velocity
information received from the head direction cells drives the
neurons’ periodic firing, making a flowing striped wave on the
neural plate. The position of the rat can be encoded according to
the phase change of the striped wave.

In order to obtain striped firing characteristics, the weight of
the synaptic connection between neurons in the length direction
was set to mutual inhibition, and the velocity regulation signal
generated by the head direction cells was used as the forward
input of the stripe cells. Referencing the modeling method of
continuous attractor network (Burak et al., 2008), the firing
dynamics model of stripe cells could be constructed as follows:
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FIGURE 1 | (A) Physiological firing characteristics of head direction cells. (B) In the attractor model of head direction cells, velocity and direction information is

encoded into neural firing characteristics.

FIGURE 2 | (A) Firing characteristic parameters of stripe cells. (B) Neural plate

of stripe cells, neighboring neurons have synaptic connections in the X-axis

direction, but not in the Y-axis direction.

τdsi/dt + si =f





∑

j

Wijsj + Bi



 (2)

Where τ is the time constant of the neuron firing, and the neuron
transfer function f is a nonlinear rectifier function by f (x) = x,
for x > 0, and is 0 otherwise. The firing state of all the neurons
in the current position is si, and Wij is the connection weight of
the neuron from j to i in the stripe cell neural plate.

∑

jWijsj
is the inhibitory input projected from neighboring neurons,
and Bi is the forward excitatory input from the upstream head
direction cells.

The connection’s weight matrix of stripe cells is as follows:

Wij = W0(
−→x i −

−→x j − k · −→e θj ) (3)

Where function W0(
−→x ) = e−γ |−→x |2 − e−β|−→x |2 , and −→e θj is

the unit vector along the preferred direction θj of the neuron
j. Figure 3A shows that the weight matrix forms a hat shape
distribution with high in the middle and low on both sides. Each
neuron in the stripe cell neural plate has a priority direction, the

FIGURE 3 | (A) Mexican hat weight profile for connection between the

neurons. (B) Weight offset contour of stripe cells.

same as the priority direction of the upstream head direction
cells. Furthermore, the priority direction of the left and right
adjacent neurons i and j is opposite. The inhibitory weight matrix
of the neuron to the surrounding neurons will shift toward its
priority direction. According to the principle of “Turing pattern
dynamics,” when there is only inhibitory input between neurons,
the interaction between neurons causes the neural plate to form
steady striped firing spontaneously. Half of the neurons are
excited when there is a certain direction of the velocity input,
and another half do not respond. So the original static striped
firing balance is broken. The firing pattern of the stripe cells
spontaneously shifts along the velocity direction. As shown in
Figure 3B, the central position of the weight matrix of stripe cells
is x − k and x + k. We set γ = 1.035 × β and β = 3/λ2, λ

is the firing period on the neural plate. Since the W0 is always
less than or equal to zero, all the connections are inhibitory, and
locally surrounding inhibitory connections interact to generate a
striped firing.

The forward input to the neuron is:

Bi = 1+ α
−→e θi ·

−→v (4)

Where −→e θi is the unit vector along the preferred direction of
the neuron, and −→v is the unit vector in the direction of the
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FIGURE 4 | Schematic diagram of grid cells model coding principle.

According to the movement information of the robot, the striped firing

response is formed in the stripe cells. The striped firing signals are projected

onto the grid cells, forming a grid-like firing response.

current velocity of the rat. If the coefficient k or α is 0, static
fringes are generated. If k and α are both nonzero, then the rat’s
velocity is coupled with the firing pattern of the stripe cell plate
to drive the formation of a flowing striated wave. The k and α

product determines the intensity of the streaks driven by the
velocity input. The striated wave can only maintain a stable fringe
pattern when the output weight offset k is relatively tiny. Based
on constant k, the gain of the stripe cell network to the velocity
response is determined by α.

Grid Cells Model
Researchers found grid cells in the second layer of the olfactory
cortex in the rat hippocampus, but unlike the place and head
direction cells, the grid cells were scattered and fired weakly. Grid
cells in different regions along the dorsal and ventral axis in the
entorhinal cortex have different grid periodic scales. The firing
pattern of grid cells population in each scale is the same. The
firing fields form a stable hexagonal pattern. The firing activity
of grid cells does not depend on external cues, even if the rat’s
activity pattern does not change in a dark environment.

The superimposition of multiple stripe cell firings could form
periodic grid cell firing fields, so the stripe cells were considered
the primary mechanism for firing grid cells. Therefore, we
proposed to use the stripe cells firing as the forward signal input
of the grid cells, and multiple flowing striated waves jointly
drove the grid cells to encode the space to form a flowing
two-dimensional firing grid. This information transmission and
processing method conformed to the physiological basis. As
shown in Figure 4, it is a schematic diagram for the coding
principle of the grid cells model. We used a two-dimensional
continuous attractor model to model the grid cell population.
Each attractor represents a grid cell, and its activity state is related
to the forward input of the striped cells. We composed grid cells
with the same firing cycle to form a neural plate, and projected the
firing information of striped cells in different directions onto the
neural plate, and generated superimposed firing responses on the
grid cells, thus forming a grid firing. The velocity of the robot’s

motion drives the firing pattern of the striped cells to flow, and
the grid cells also generate a flowing firing grid. So the grid cells
model realizes the integration of the path information.

Place Cells Model
Place cells are a kind of spatial place-selective firing cell. For
each place cell, only when the rat is in a specific position in
space, the cell will make firing activity, but in other places in
space it does not produce firing activity. Firing characteristics
were found by physiological research as shown in Figure 5A,
the black curve represents the trajectories of the rat, the red dot
represents the firing position of place cells, place cells establish a
one-to-one correspondence between neurons in the brain region
and the physical world. We built, as shown in Figure 5B, a two-
dimensional neural plate, the firing of the place cells population
showed a single peak pattern, which reflected the spatial place
of the robot. The place cells mathematical model proposed by
O’Keefe et al. was adopted to calculate the firing rate of cells at
various locations (O’Keefe and Burgess, 2010). Figure 5C shows
the model of a single place cell’s response to spatial location. Its
mathematical expression is:

Ripc (r) = exp
(

−‖r − ri0‖
2/δ2

)

(5)

Where, Ripc(r) is the firing rate of place cell i at position r, r =
(x, y) representing the current position of rat in the environment.
ri0 is the position corresponding to the firing field center of the
place cell i, δ2 is the adjustment coefficient of the firing field of
the place cells.

Boundary Cells Model
The recursive attributes of the path integral by grid cells cause the
accumulated error to increase continuously. If there is no error
correction mechanism, it will seriously damage the positioning
accuracy. Researchers have long-term tracking experiments
on rats in open spaces. They found that the accumulation
error of grid positioning is related to the time and distance
of the last encounter to the boundary. This phenomenon is
indicating that the boundary cells are the neural bottom layer for
error correction.

The boundary cells are located in the inferior hippocampus
pad, which can make specific firing responses to the boundary
of the environmental, and respond to different distances and
angles. It plays a crucial role in space navigation and memory
during mammals activating in wide-area environments. It is
found that the rats cut the environment into multiple regions
according to the space boundary during the navigation process.
The expression of space by the grid cells is independent of the
area enclosed by the boundary.

We extended the Continuous attractor network model of grid
cells. The activation signal was input into the grid cells when the
boundary cells were activated in the boundary region. Since the
grid cells firingmodel was based on the stripe cells model, we only
needed to extend the dynamics model of stripe cells.
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FIGURE 5 | (A) Physiological firing characteristics of one place cell. The black curve represents the rat’s trajectory, and the red dot represents the cell’s firing at that

location. (B) Neural plate model of place cells population. (C) The mathematical model of place cell’s response to spatial location.

FIGURE 6 | The mechanism of boundary cells correcting spatial cognitive errors. (A) In the initial exploration phase, the grid cells’ activation pattern and boundary

cells’ activation pattern are associated with memory. (B) When the boundary cells are activated again, the grid firing pattern has deviated. (C) Boundary cells correct

grid cell pattern by weight connection. (D) The error correction has been completed, the memory of grid cells activation pattern and boundary cells activation pattern

are updated.

τ
dsi

dt
+ si = f

[

∑

j
Wijsj + Bi +WidBd

]

(6)

The activation value of boundary cell d is Bd, and the activation
intensity of boundary cell is c for a given boundary region Rd, so:

Bd =

{

c, Ex ∈ Rd
0 Ex /∈ Rd

(7)

N represents the number of grid cells in the neural plate, and
ri(
−→x 0) represents the firing rate of grid cell i when the robot is

at position−→x 0. The weight of synapses from boundary cell d to
grid cell i is proportional to the integral of grid cell firing in the
Rd region:

Wid =
1

N

∫

Rd

ri(
⇀
x)d

⇀
x (8)

In the process of environment exploration for the robot, the
boundary activation value of boundary cells was superimposed
on the grid cells through the synaptic weight. It enhanced
the intensity of the grid firing in the corresponding boundary
region. Thus, grid cells realize the coding of the boundary

information. In order to more intuitively explain the error
correction mechanism by boundary cells, as shown in Figure 6,
we simplified the error correction by a single boundary. As
shown in Figure 6A, boundary cells are activated during the
environmental exploration stage, and the activated information
is remembered by the grid cells. As shown in Figure 6B, when
the boundary cells are activated again, the grid firing pattern has
deviated from the previous memory. As shown in Figure 6C,
the remembered average activation value of the remembered
boundary cells is weighted and projected onto the grid cells.
Since the grid cells model is the superposition of stripe cells,
according to the stripe cells dynamics function, the grid firing
pattern will shift to the phase direction of the boundary cells
weight matrix. As shown in Figure 6D, the final boundary cells
realize the error correction for grid pattern through the memory
of the weight matrix.

Decoding Method of Spatial Information
After the grid cells complete the movement path’s integration,
it requires to decode spatial information to achieve
expression on the place cells. Experimental and theoretical
neuroscientists noticed the spatial periodicity firing of
grid cells. They considered the grid cells as a metric of
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space (Hafting et al., 2005; Stemmler et al., 2015). The firing of
grid cells is discretely spaced, so the phase of firing pattern
can estimate the displacement of animal movement. Here we
proposed a decoding method that was biologically feasible and
could be calculated in real-time on a robotic system.

Simplification of Continuous Attractor Model
The continuous attractor net model is a bionic model that
simulates the electrophysiological principle of nerve cells. The
model realizes accurate path integration, and theoretically
explains the phenomenon observed in biological experiments.
However, It is difficult to use the existing mathematical methods
to derive and calculate. So in the process of deriving the
decoding algorithm, it is necessary to simplify the description
of neural firing patterns through explicit mathematical functions.
Therefore, we use explicit mathematical functions to replace the
dynamics equation in the decoding operation. The Von Mises
function is used to fit the firing characteristics of stripe cells
�j(x) = nmax · exp{κ[cos(2π(x − cj)/λ) − 1]}. It is a periodic
extension of the Gaussian function, where nmax is the maximum
expected firing rate, cj is the spatial priority phase of cell j, κ

is the gain factor, and λ is its spatial period. The spatial firing
probability function of the grid cells is the sum of three fringe
waves rotated at an angle of 60 degrees. We model the grid cells
as a function �j(

−→x ) that describes the average firing rate of the
grid cells when the rat is in position−→x = (x, y):

�(
⇀
x) = nmax · exp

[

κ/3

3
∑

l=1

{

cos

(

w
⇀

k l ·
⇀
x

)

− 1

}

]

(9)

Where the wave vector corresponding to each stripe cell is kl =
(cos(φl), sin(φl)), where φl = −π/6+ l · π/3.

Grid Cells Decoding Method
Each grid cell on the neural plate has the same scale λ, but
different spatial phases. In order to decode the location of the
robot by the firing activity of the grid cells population, we
recorded the firing rate of grid cell i at the current location as
ni. Thus, the response vector of the grid neural plate population
is−→n = (n1, . . . , nn). The average firing rate of neuron j is �j(

−→x )
when the robot in position−→x The real numbers−→n j are scattered
around this value. We assume that the firing rate �j(

−→x − −→c j)
of grid cell j obeys the Poisson distribution and that each neuron
is statistically independent, so the probability of the firing rate
vector at the position −→x of a given population composed of M
cells is:

p
(

⇀
x|

⇀
n
)

∝

M
∏

j=1

�(
⇀
x −

⇀
c j)

nj

/nj! · exp(−�(x−
⇀
c j)) (10)

Considering that the grid firing covers the movement space
uniformly, so

∑M
j=1 �j(x) is approximately a constant, the above

joint probability density function of each grid cell can be
simplified as:

P
(

⇀
x/

⇀
n
)

= C · exp



κ/3

M
∑

j=1

3
∑

l

nj cos(ω
⇀

k l · (
⇀
x −

⇀
c j))



 (11)

FIGURE 7 | A unique high-precision solution can be obtained by calculating

the joint distribution of the posterior probability of each scale grid neural plate

(A). (B) The multi-scale decoding could be calculated by the weighted sum of

the deviations.

The maximum likelihood estimate −→x = −→µ
ˆ
can be obtained

from the above equation, where:

−→µ
ˆ
= 2/3

3
∑

l=1

µl
−→
k l (12)

µl =
−→
k l ·

−→µ l = ω−1 arg

(

∑M

j=1
nj · exp(iω

−→
k l ·

−→c j)

)

(13)

Multi-scale Grid Cells Decoding Method
Suppose the scale of a single grid period is relatively large
and can cover the range of motion. In that case, It can get
a unique position solution according to the above decoding
method, but the uncertainty error of the decoding will be
relatively large. Using a smaller grid period scale can reduce
the uncertainty error, but it will generate multiple solutions.
Referencing nesting probability calculation method (Stemmler
et al., 2015), multiple scaled-down grids’ cell neural boards
can be used for joint decoding. It could obtain a unique
position solution with high precision. The principle is shown
in Figure 7A. Combining various scale probability distributions
of solutions in various scales, get the joint probability
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distribution. The maximum likelihood solution of the joint
probability distribution is the final solution for the robot’s
actual location.

We assume that there are m grid neural plates with different
scales. The number of nerve cells on each neural plate isMm, and
the grid direction is the same. The maximum grid period is λ0,
and the grid period of them th grid neural plate is λ0/sm. So, the
posterior probability is:

P
(

⇀
x/

⇀
n
)

= C
′
· exp



κ/3

Mm
∑

j=1

3
∑

l

nj cos(ωsm
⇀

k l · (
⇀
x −

⇀
c j))





(14)

The maximum likelihood solution based on multi-scale joint
posterior probability is:

xML =

L−1
∑

m=0

Mms
2
m

⇀

δm/

L−1
∑

m=0

Mms
2
m (15)

Where,
−→
δ m represents the position solution on the m th grid

neural plate. Equation (15) can calculate the joint maximum
likelihood solution of L grid cells neural plates. Set the number of

cells of each neural plate to be equal, set 1
−→
δ L =

−→
δ L-

−→x L, and
sm = λ0/λm. From above, we set−→x L as the maximum likelihood
estimate by the combination of L neural plates. Then −→x L+1 can
be calculated by the following recursive formula :

−→x L+1 =
−→x L + λL

−2/(

L
∑

m=0

λ−2
m 1δL) (16)

According to Equation (16), the decoding from grid cells to place
cells can be iterated according to the following steps:

(1) Start the decoding calculation from the scale λ0 that a cycle
can cover the movement space, and calculate the population
vector activation value to obtain the roughest displacement
estimate−→x 0.

(2) Using the estimated value −→x 0 as the center, calculate the
relative offset value of position estimation on the grid cells
neural plate of the scale λ1, and multiply the offset value
by the weight value to correct the estimated value of the
previous scale, to obtain a new displacement estimation
value−→x 1.

(3) Similar to the previous step, new displacement estimates−→x 2,
−→x 3 · · · are calculated step by step.

As shown in Figure 7B, the multi-scale decoding calculation
process can be regarded as the weighted summation process
of deviation values, which can be realized physiologically by
calculating neural synapses.

Bionic Spatial Cognition Model
Based on the models of spatial cells in the hippocampus: head
direction cells, stripe cells, grid cells, place cells, and boundary
cells, we constructed a bionic spatial cognitive model for robots.
As shown in Figure 8, the system consisted of a mobile robot

FIGURE 8 | The figure shows the system architecture of the bionic spatial

cognitive model on the mobile robot. The process of robot spatial cognition

includes the following steps: (1) Head direction cells and stripe cells code the

robot’s motion information and integrate the paths. (2) The neural information

from stripe cells to grid cells is integrated into two-dimensional space. (3) The

boundary information corrects the grid cells integration error according to the

memory of synaptic weight. (4) By decoding the firing signals of multi-scale

grid cells, our model realized the one-to-one expression of physical space.

chassis, a compass sensor, an ultrasonic sensor, and a notebook
computer. The front wheels of the mobile chassis are equipped
with two incremental encoders that provide raw motion data,
a compass that provides directional information, and ultrasonic
sensors are mounted around the mobile chassis to provide
environmental boundary information. The movement velocity
and direction of the robot are encoded in the firing activities
of the head direction cells, and the boundary information is
encoded in the firing activities of the grid cells. The calculation
process includes four main steps:

(1) The robot’s motion information is encoded by head direction
cells, then stripe cells realize one-dimensional spatial
cognition through path integration.

(2) The spatial cognition is extended to a two-dimensional
spatial expression of grid cells by neural projection from
stripe cells to grid cells in multiple priority directions.

(3) The boundary information is encoded into the firing activity
of the grid cells. When the boundary signal is detected
again, the grid cells will self-correct the accumulated error
according to the memory of the synaptic weight.
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FIGURE 9 | The process of stripe formation. (A) The initial firing of the stripe

cells neural plate under the action of noise. (B) Striped firing pattern were

formed spontaneously over time, the curve from green to red, respectively,

represents the striped firing pattern from 50 to 500 ms.

FIGURE 10 | Stripe-driven experimental result. (A) The linear relationship

between the position and the phase movement of the stripe. (B) The direct

residual of the stripe cells on cognitive position and regression line.

(4) By decoding the firing signal at the multi-scale grid cells,
the precise position information of the place cells could
be obtained, and the one-to-one expression of the physical
space is realized.

EXPERIMENT AND RESULT ANALYSIS

Spatial Cells Path Integral Experiment and
Results
Results of Stripe Cells Experiment
Stripe formation: There are 120 stripe cells arranged in
the longitudinal direction of the stripe cells’ neural plate.
In the beginning, the robot is stationary, that is, the actual
velocity−→ν =0. Due to the influence of sensor noise, the input
value to the head direction cells is a slight value noise. Upon
that, the stripe cells spontaneously form a stripe firing pattern.
As shown in Figure 9, the formation process of the stripe firing
pattern is within 500ms.

Stripe movement: Based on the firing pattern of the stripe
cells formed, the robot roamed in a 1m × 1m environment
and projected the speed information into the stripe cells
model to drive the stripe wave moving. We had calculated
the correspondence between the displacement of the robot
and the shift of stripe wave. Experiments had proved that
the robot’s motion could produce highly linearly correlated
stripe movement.

FIGURE 11 | The figure shows the firing point of a single stripe cell in the

trajectory. Striped cells neural plates with different priority directions can form

patterns in different directions.

As shown in Figure 10, the linear correlation reaches 0.9997,
in one-dimensional space, the residual of the regression line is
less than 0.02m.

One-dimensional path integral: When adjusting the
direction of the synaptic connection, the stripe cell neural plate
could obtain striped firing fields in different orientations. The
robot movement time was t = 5, 000 s, the stripe spacing
was L = 0.2m, and the stripe direction θ is 0, 60, and 120
degrees, respectively. Figure 11 recorded the firing rate of the
single-cell in-motion trajectory, which shows that the firing field
of stripe cells can form an accurate displacement integral in the
specific direction.

Results of Grid Cells Experiment
Grid formation: Set the number of neurons in the grid
cells neural plate as 200 × 200, set the stripe cells’ priority
direction to 0, 60, 120 degrees. The activation values of
the stripe cells are superimposed and projected onto the
grid cells neural plate, to form a grid-like firing pattern. As
shown in Figure 12, The hexagonal grid formed can cover
the entire space of robot movement. The input of the stripe
cells of different intervals can obtain the grid patterns of
different intervals.

Grid movement: The grid movement can be measured from
two methods. One method is to sample the activation values of
the grid cells population on the entire neural plate at different
times to compare the phase changes of the grid mode. The other
is to record the periodic firings of a single grid cell, Which
indirectly reflects the moving distance of the grid discharge
pattern. As shown in Figure 12, the white arrow shows the
direction of the robot’s uniform motion. The activity pattern on
the neural plate of the grid cells flowed along the direction of
movement, and one grid period movement was realized within
2, 500 ms. In this process, the single grid cell on the neural plate
realized a periodic firing. The red circle represents the peak firing
period of a single grid cell, and the blue represents the low
firing period.

Simulation and Results of Boundary Cells
Correcting Accumulation Error
Boundary information can effectively reduce the accumulated
errors of the grid cells and provide an essential foundation for the
robot’s long-term and stable spatial cognition. We compared the
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FIGURE 12 | Pattern movement of grid firing. The red circle represents the peak firing period of a single grid cell, and the blue represents the low firing period.

FIGURE 13 | Comparison of spatial cognition accuracy between with and without boundary cells. (A) When there is no boundary cell, the deviation between the

cognitive results and the actual trajectory becomes larger and larger. (B) When touching the boundary (at the green point) the accumulated error is corrected.

FIGURE 14 | Position decoding experiment for grid cells. Part labels (A–C) are the experimental data when the number of cells in the grid neural plate is

50× 50, 100× 100, and 200× 200.
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robot’s cognition trajectory without and with the boundary cells
within 0 ∼ 1, 000 s. As shown in Figure 13A, when there was
no boundary cell, due to the accumulation of errors the cognitive
results of the robot in space deviated more and more from the
actual trajectory. When there were boundary cells, as shown in
Figure 13B, when the robot touches the boundary (the red dot
in the figure indicates), the cognitive trajectory was corrected due
to the weight effect of boundary cells, the accumulated errors did
not accumulate continuously.

Spatial Position Decoding of Multi-Scale
Grid Cells
Set scale ratio between the neighboring neural plate as i = 1.5,
feed the information of neural plates in various scales into the
decoding model, try to use 1, 2, 3, and 4 scales, respectively
decoding the space position. The neural plate in tbe experiment
was constructed with 50 × 50, 100 × 100, and 200 × 200 grid
cells, respectively. Experimental results are shown in Figure 14.
In the case of the same number of grid cells, the larger the number

FIGURE 15 | Functional verification of robot bionic cognitive model. (A) The gray line is the robot’s trajectory, and the red dot is the robot’s position at the current time.

(B) The population firing pattern of grid cell neural plate at each time and each scale. (C) Firing pattern of place cells at each time.
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FIGURE 16 | Comparison of bionic cognition and odometer trajectory error,

the black curve represents the real trajectory of the robot. (A) The red curve

represents the bionic cognitive trajectory. (B) The red curve represents the

odometer trajectory. Obviously, the bionic spatial cognitive trajectory is closer

to the real trajectory.

of multiscale neural plate combined decoding could significantly
reduce the decoding error. Increasing the number of nerve cells
could significantly reduce the decoding error.

Experimental Results of Spatial Cognition
of Mobile Robots
In order to verify the effectiveness of the bionic spatial cognition
model, the robot walked randomly in the boundary area of
10 × 10 m2 for 5, 000 s. Set the movement speed to a random
number in (0, 0.5) m/s, and the direction to a random number
in (−π/2, π/2). Use the robot to imitate the rat’s irregular
free exploration movement in the room. The specific speed and
direction information of the robot can be obtained from the
gyroscope and the encoder, then fed into themodel. The roughest
grid period is set at λ0 = 10m, and the grid-scale ratio of
all levels is i = 1.5. Figure 15A shows the actual trajectory
positions of the robot at various moments. Figure 15B shows
the population firing patterns of the grid cells at each scale at
different moments, which represents the integral results of the
grid cells to the spatial path. Figure 15C shows the place cells’
firing response after decoding the grid cells at each moment. The
obtained cognitive expression of place cells corresponds to the
actual trajectory of the robot, which proved that the bionic spatial
cognition model we constructed could realize the cognition of
the environment and form a firing response corresponding to the
location of the space.

We decoded firing patterns of grid cells at each time step
to obtain the cognitive trajectories, which were used as the
spatial cognition map of the robot. Figure 16A shows that the
bionic spatial cognitive trajectories kept a slight deviation from
the actual trajectories. For comparison, we accumulated the
robot encoder to obtain the odometer trajectory. Figure 16B
shows the odometer trajectories with significant deviation for the
accumulated errors after a long time of movement.

It compared the error value between the bionic spatial
cognition and the odometer based on the encoder within 0-
5, 000 s. As shown in Figure 17A, the position error obtained by
the odometer continued to expand. In contrast, the position error

FIGURE 17 | Bionic spatial cognitive model and odometer error comparison,

(A) Comparison of error value from 0 to 5,000 s. (B) Comparison of the

distribution of error values in the entire trajectory.

based on the bionic cognitive model was always stable within a
small range. Figure 17B shows the distribution of errors in the
process of movement. The position error of the odometer was
biased to one side of the point (0,0), while the position error of
the bionic cognition model was only around the point (0,0). This
experiment proves that the bionic spatial cognitive model based
on the proposed hippocampus has good cognitive accuracy and
robustness to information error.

DISCUSSION

Feasibility of Robot Application
The spatial cognition model proposed in this paper aims to
stimulate the cognition mechanism of the hippocampus, which
can be embedded into mobile robots to realize environmental
cognition and autonomous navigation as humans and animals,
explaining its feasibility from the following two points.

Physiological feasibility: (1) The constructed hippocampal
cell models such as head direction, striped, grid, and boundary
cells can simulate physiological firing responses as found
in biological experiments. (2) The mathematical calculations
in our algorithms, such as weighted summation, threshold
value, exponential operation, and differential operation, can
all be realized through the principles of neural synapses and
membrane potentials.

Robotics feasibility: (1) The input velocity, direction,
boundary, and other perception information required by
our algorithm can be easily obtained on ordinary mobile
robots. (2) We use population firings of neural cells to
express the results of cognition calculations. The results are
easily converted into electronic information for information
transmission and processing.

The Accuracy of Spatial Cognition
Humans and mammals can roughly recognize spatial
position through their motion information. Then they
can correct spatial cognition information to achieve
precise positioning with the assistance of other perceptual
information. For mobile robots, the input velocity is from
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FIGURE 18 | Coordinate positions (−3, −3) are coded on the 250× 250 grid cell neural plate, and a single period of hexagonal lattice is intercepted according to the

size of the grid period. Add 0, 10%, 20% amplitude Gaussian noise to the grid activation value, and then decode the space coordinates as shown in the figure, the

noise has very little interference on the position expression.

the wheel encoder, and there is inevitably the influence
of wheel slip, deformation, and sensing accuracy. The
robot bionic cognition model we proposed uses the
boundary signal captured by the distance sensor to correct
the cognitive position, which could effectively eliminate
accumulated errors and generate an accurate representation
of the environment. With the deepening of research,
integrating more perceptual information such as exogenous
landmark information can further improve the accuracy of
spatial cognition.

The Advantages of the Proposed Method
The spatial cognition model and method we put forward mainly
realize the neural expression of position information and the
integration of the path. The realization of this part is to provide
the basis for the subsequent research on the neural-inspired
robot situational recognition algorithm. In the traditional SLAM
algorithm, the spatial information is expressed by the symbolic
value in the Cartesian coordinate system, and the integral
of the path is the accumulation of the symbolic value. The
method proposed in this paper has the following advantages:
(1) The spatial information based on neural expression has
a stronger anti-interference ability. As shown in Figure 18,
Gaussian noises are added to the grid cells, then the position
error is very little disturbed; (2) The spatial cognition model
we proposed can achieve error correction through boundary
information, and the sensor (ultrasonic rangefinder) used is
cheaper than methods based on vision or laser; (3) Spatial
expression based on grid cells is proved to be more suitable
for the learning of artificial neural networks (Banino et al.,
2018); (4) In the research field of bionic topology and vector
navigation, the neural expression of grid cells and position
cells is the basis of path planning and navigation. Compared
with the navigation method of tradition, bionic topology and
vector navigation are more suitable for wide-area, dynamic, and
complex environments (Erdem and Hasselmo, 2012; Edvardsen
et al., 2020).

Current Deficiencies and Follow-Up
Research
The experimental environment preset in this research is a small
space area with a boundary. However, in the actual environment
of mammals or mobile robots, the space area may be much
larger or even without obvious environmental boundaries. When
the space exceeds the maximum grid period, there is more
than one decoded value from grid cells to place cells. The low-
frequency path correction by the boundary cell will make the
cumulative error greater and greater. So it is impossible to obtain
accurate spatial cognition for the scenes which are too large or
without boundaries. It is necessary to obtain a higher level of
environmental cognition by combining more external perception
information, such as vision, hearing, magnetic field, and other
information, which will be solved in subsequent research.

CONCLUSION

The three main contributions of this paper: (1) Based on the
continuous attractor net theory, the working mechanism of the
hippocampus was simulated and a series of spatial cell models
was built, realizing the integration of the spatial information
of the environment. (2) The memory capacity of boundary
cells was imitated to realize the correction of spatial cognition
information. (3) A set of methods was proposed for decoding and
expressing the place information of grid cells to realize the one-
to-one correspondence between the place cells and the physical
space. In summary, the spatial cognition model and method
based on hippocampus proposed in this paper are significant
to intelligent robot navigation, environmental cognition, and
map construction.
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