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Abstract

Late-life depression (LLD) is a common disorder associated with emotional distress, cognitive impairment and somatic
complains. Structural abnormalities have been suggested as one of the main neurobiological correlates in LLD. However the
relationship between these structural abnormalities and altered functional brain networks in LLD remains poorly
understood. 15 healthy elderly comparison subjects from the community and 10 unmedicated and symptomatic subjects
with geriatric depression were selected for this study. For each subject, 87 regions of interest (ROI) were generated from
whole brain anatomical parcellation of resting state fMRI data. Whole-brain ROI-wise correlations were calculated and
compared between groups. Group differences were assessed using an analysis of covariance after controlling for age, sex
and education with multiple comparison correction using the false discovery rate. Structural connectivity was assessed by
tract-based spatial statistics (TBSS). LLD subjects had significantly decreased connectivity between the right accumbens area
(rA) and the right medial orbitofrontal cortex (rmOFC) as well as between the right rostral anterior cingulate cortex (rrACC)
and bilateral superior frontal gyrus (bsSFG). Altered connectivity of rrACC with the bsSFG was significantly correlated with
depression severity in depressed subjects. TBSS analysis showed a 20% reduction in fractional anisotropy (FA) in the right
Forceps Minor (rFM) in depressed subjects. rFM FA values were positively correlated with rA-rmOFC and rrACC-bsFG
functional connectivity values in our total study sample. Coordinated structural and functional impairment in circuits
involved in emotion regulation and reward pathways play an important role in the pathophysiology of LLD.
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Introduction

As a common psychiatric disorder in older adults, late-life

depression (LLD) has a negative impact on the lives of the elderly

by adversely affecting cognitive, emotional and somatic aspects of

their mental and physical health [1]. LLD is typically defined as

the presence of major depressive disorder after age 60–65 and is

comprised of early-onset and late-onset subtypes. Early-onset LLD

represents the first age of depression onset early in life, in addition

to episodes that occur in the geriatric age range, whereas late-onset

LLD is defined as new onset depression after age 60 [2]. Different

neurobiological etiologies have been suggested in LLD including

structural abnormalities due to underlying vascular and neurode-

generative factors, hypothalamo-pituitary-adrenal (HPA) axis

dysfunction and neurotransmitter dysregulation [3]. By disturbing

the normal function and dynamics of different brain networks,

those pathophysiological mechanisms may generate different

specific clinical symptoms.

Among the abnormalities associated with LLD, structural

alterations, including gray matter volume and shape alterations,

and white matter micro- and macrostructural changes in

frontolimbic circuitry which have received a great deal of attention

and have been widely shown in several structural imaging studies

in LLD [1,4–7]. Commonly two imaging approaches are used to

investigate the changes in white matter structure and integrity.

Macrostructural changes characterized by increased white matter

hyperintensities (WMH) volume are identified with magnetic

resonance imaging (MRI) [8,9]. Diffusion tensor imaging (DTI) is

used to detect microstructural abnormalities by quantifying the

integrity of axon tracts indicated by fractional anisotropy (FA).

DTI studies in LLD have typically focused on specific predeter-

mined regions of interest and found FA reductions predominately

in the frontal lobe and to a lesser extent in temporal regions [10–

14].

Neuroimaging studies of LLD have been primarily focused on

structural brain alterations and an increasing effort has been made

in understanding the mechanism of LLD at the functional network

level. Classically, the function of a given network is tested by

measuring the level of activity in terms of oxygen or glucose

utilization in connected brain regions during the performance of a

specific task. Task-based functional magnetic resonance imaging

(fMRI) studies in LLD have revealed abnormal activity in several

key regions of frontostriatal-limbic circuitry during cognitive and

emotion tasks [1]. In frontal regions, altered activity was reported

in the dorsolateral prefrontal cortex (dlPFC) during preparation to

overcome prepotency and explicit learning tasks [14–16], in the

ventromedial prefrontal cortex (vmPFC) in response to emotion-

ally negative stimuli [17], and in the bilateral superior frontal gyrus

(sFG) and orbitofrontal cortex (OFC) during the stop signal task

(SST) [18] in patients with LLD compared to healthy control

subjects.
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Another method for exploring the dynamics of brain networks is

measuring the correlation and synchronicity of activity between

brain regions at rest using functional connectivity (FC) analysis

[19]. This approach has been used widely in the hope of finding

objective reliable biomarkers of pathophysiology, disease and

treatment response in different neurological and psychiatric

disorders [20]. Methodologically, two main approaches are

applied for FC analysis: hypothesis-driven and data-driven. In

hypothesis-driven approaches, a ‘‘seed’’ region of interest is

selected first and then correlation of activity of that seed with

pre-defined region(s) or all brain voxels is measured during the

resting state. In contrast, data-driven methods of FC analysis place

no emphasis on a specific brain region and the whole brain is

investigated for detecting significant correlation patterns. Over the

past few years, some FC analysis studies in LLD have been

conducted using resting-state fMRI (rs-fMRI) [14,21–25]. These

studies have revealed significant correlations between FC measures

and the severity of clinical symptoms [14,26]. Commonly, the

hypothesis-driven method was used in those studies and in some

studies medicated or remitted individuals were used as participants

[22,23,25]. Their results have primarily shown abnormal changes

in FC between nodes belonging to default mode network (DMN)

and cognitive control network (CCN) [21,24].

The relationship between aforementioned structural changes in

LLD and FC alterations remains poorly understood. In healthy

individuals, a strong relationship has been demonstrated between

anatomical and resting state functional connectivity [27]. In

addition, in midlife depression, some studies have reported

significant correlations between pathologic changes in gray matter

volume or white matter integrity and functional abnormalities in

depression-related neurocircuitries [28,29]. There have only been

two preliminary studies that examine the relation between white

matter integrity and functional connectivity in restricted pre-

defined ROIs in subjects with LLD [24,30]. None of those studies

compared their results with a healthy comparison group.

To our knowledge, no study has explored whole brain rs-fMRI

functional connectivity changes in unmedicated and symptomatic

patients with LLD. Furthermore, there have been no studies to

date that have investigated the relationship between whole brain

white matter tract integrity and FC values in patients with LLD

compared to healthy control subjects. The purpose of our study

was to examine FC alterations using rs-fMRI in association with

white matter integrity measured by DTI in unmedicated patients

with LLD. We hypothesized that abnormal changes in brain

network FC and pathologic alterations in white matter integrity

can occur in concert in LLD and relate to symptom severity in

unmedicated patients suffering from geriatric depression. We also

hypothesized that there will be a significant correlation between

structural connectivity assessed by FA and functional connectivity

assessed by rs-fMRI in unmedicated elderly with LLD. To test our

hypotheses, a data-driven method was applied for FC analysis of

rs-fMRI data acquired from unmedicated and symptomatic

patients with LLD and a group of healthy comparison subjects.

Changes in integrity of whole brain white matter tracts were also

tested by applying an automated tract-based spatial statistics

(TBSS) method to analyze diffusion tensor imaging (DTI) data

[31] obtained from depressed and comparison subjects.

Methods

We studied 25 subjects 60 years of age and older. Of these, 10

were unmedicated subjects with unipolar major depression (LLD)

and 15 were nondepressed comparison subjects (HC). All study

subjects were recruited from the local community through

advertisements in flyers, newspapers, and radio. The inclusion

criteria for all subjects were 60 years of age and older,

antidepressant-naive or free of antidepressant use for at least two

weeks and no history of unstable cardiac or neurological diseases.

Six LLD subjects were treatment-naı̈ve. For the remaining four,

there have been varying degrees of antidepressant exposure. One

subject started citalopram and bupropion 6–7 years ago and

discontinued the medication 6 months prior to study entry.

Another subject had been on venlafaxine for 4 years stopped 6

years before study entry. One subject had been on sertraline for

unknown duration prior to study entry and the last subject stopped

fluoxetine 9 years prior to study entry. The exclusion criteria

included: schizophrenia, bipolar or any psychotic disorders;

history of anxiety disorder outside of major depressive episodes;

history of head trauma or loss of consciousness; history of

substance abuse; contraindications to MRI such as metal implants;

Mini Mental Status Exam (MMSE) Score # 24. This study was

approved by the University of Illinois-Chicago Institutional

Review Board, and written informed consent was obtained from

each participant in accordance with the Declaration of Helsinki.

All eligible subjects were assessed by a trained research assistant

with the Structured Clinical Interview for Diagnostic and

Statistical Manual of Mental Disorders, Fourth Edition[32]. The

severity of depression was quantified by a board-certified/board-

eligible psychiatrist (AK or OA) using the 17-item Hamilton

Depression Rating Scale (HAM-D) [33]. At the time of

enrollment, depressed subjects met DSM-IV criteria for MDD

and required a score of 15 or greater on the HAM-D. Subjects

were also administered the Geriatric Depression Scale (GDS) scale

as an independent measure of depression severity [34]. The GDS

was used for correlation analyses as the HAM-D was the measure

used in the determination of subject eligibility for depression.

MRI Acquisition
Brain MRI data were acquired on a Philips Achieva 3.0T

scanner (Philips Medical Systems, Best, The Netherlands) using an

8-channel SENSE (Sensitivity Encoding) head coil. Participants

were positioned comfortably on the scanner bed and fitted with

soft ear plugs; foam pads were used to minimize head movement.

Participants were instructed to remain still throughout the scan.

High resolution three-dimensional T1-weighted images were

acquired with a MPRAGE (Magnetization Prepared Rapid

Acquisition Gradient Echo) sequence (field of view:

FOV = 240 mm; 134 contiguous axial slices; TR/TE = 8.4/

3.9 ms; flip angle = 8o; voxel size = 1.1 6 1.1 6 1.1 mm).

Resting-state data were acquired with the following parameters:

Single-shot gradient-echo EPI sequence, TR/TE = 2000/30 ms,

Flip angle = 80 degree, EPI factor = 47, FOV = 23 6 23 6
15 cm3, in-plane resolution = 363 mm2, slice thickness/gap =

5/0 mm, slice number = 30, SENSE reduction factor = 1.8,

NEX = 200, total scan time = 6:52. Subjects were instructed to

keep their eyes close and ‘‘not think of anything in particular’’.

DTI images were acquired using single-shot spin-echo echo-planar

imaging (EPI) sequence (FOV = 240 mm; acquired voxel size =

2.1462.1462.20 mm3; reconstructed voxel size = 0.8360.836
2.2 mm3; TR/TE = 6994/71 ms; flip angle = 90o). Sixty seven

contiguous axial slices aligned to the anterior commissure–

posterior commissure (AC-PC) line were collected in 32 gradient

directions with b = 700 s/mm2 and one acquisition without

diffusion sensitization (B0 image). Parallel imaging technique was

utilized with factor at 2.5 to reduce scanning time to approxi-

mately 4 minutes.
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Data preprocessing
Functional connectivity was measured using the resting-state

fMRI toolbox, CONN v.1.2 (http://www.nitrc.org/projects/

conn;[35]). Using pre-processing tools from Statistical Parametric

Mapping 8 [36], raw EPI images were realigned, co-registered,

normalized, and smoothed with a smoothing kernel of 8 mm

before analyses. In addition, the artifact detection tool (ART:

http://www.nitrc.org/projects/artifact_detect) was used to mea-

sure motion artifacts in all subjects. There was no significant

difference in composite motion between groups (means 6

standard deviation; HC:.2756.142, LLD:.2926.143, p = .77),

nonetheless we controlled for any motion artifacts using realign-

ment parameters detected by ART. The principal components of

the white matter and CSF signal were regressed out of the signal

using the CompCor method [37]. BOLD signal data was passed

through a band-pass filter of.008 to.09 Hz. Using 87 regions of

interest (ROIs) defined by the Freesurfer Desikan atlas [38],

functional connectivity measures were derived using pairwise

BOLD signal averages correlations after Fisher’s r-to-z transfor-

mations. An 87687 connectivity matrix or connectome was

created and analyzed as part of the second level analyses

completed in CONN.

Voxelwise statistical analysis of the FA data was carried out

using TBSS (Tract-Based Spatial Statistics)[31], part of FSL [39].

First, FA images were created by fitting a tensor model to the raw

diffusion data using FDT, and then brain-extracted using BET. All

subjects’ FA data were then aligned into a common space using

the nonlinear registration tool FNIRT[40,41], which uses a b-

spline representation of the registration warp field [42]. Next, the

mean FA image was created and thinned to create a mean FA

skeleton which represents the centers of all tracts common to the

group. Each subject’s aligned FA data was then projected onto this

skeleton and the resulting data fed into voxelwise cross-subject

statistics.

Statistical Analysis
Demographic, clinical, and network variables were analyzed for

between-group differences using an independent sample t-test for

continuous variables and chi-squared test for categorical variables.

Levene’s test was used to test the equality of variance. FC and FA

group differences were analyzed using univariate analysis of

covariance with age, sex, and education as covariates. Multiple

comparison correction for FC measures at the connection level

was conducted using the false discovery rate (FDR), implement in

CONN [43]. In CONN, FDR at the connection level takes into

multiple comparisons when exploring the entire connectome.

Effect sizes for significant FC measures were calculated using the

partial eta squared. Given on a priori assumptions based on FC

measures, we used an uncorrected significance threshold of p,

.001 for TBSS results. Pearson’s correlations were used to analyze

the relationship between FC measures, FA and depression severity.

Results

Subjects
Compared to the comparison group, patients with LLD had a

significantly lower mean age (HC: 71.766.8 years; LLD:

62.962.5 years; t = 4.34, df = 19, p = .001). The mean age of

onset for LLD subjects was 39.6619.9 years of age. 2 of the 10

subjects had late-onset depression (at 60 years of age or older).

There were no significant differences between the two groups in

gender (HC: 7 males/8 females; LLD: 4 males/6 females;

X2 = .11,df = 1, p = .74), MMSE (HC: 29.0 61.1; LLD:

28.961.2; t = .22, df = 23, p = .83) or education (HC: 14.362.1

years; LLD: 14.562.6 years,;t = 2.25, df = 23, p = .81). As

expected, depressed subjects scored significantly higher on both

measures of depression severity (HAM-D, HC: 1.661.6., LLD:

19.663.5; t = 217.5, df = 11.71, p,.001; GDS, HC: 2.663.1,

LLD: 22.264.6, t = 211.86, df = 20, p,.001) (Table 1).

Differences in resting state FC values between patients
with LLD and comparison subjects

Compared to the healthy comparison group, depressed subjects

had significantly lower connectivity between the right rostral

anterior cingulate cortex (rrACC) and bilateral superior frontal

gyrus (bsFG) (Figure 1,connection-level FDR corrected p = 0.006,

additional seed-level corrected p = 0.6, partial g2 = .53) as well as

between the right Accumbens area (rA) and the right medial

orbitofrontal cortex (rmOFC) (Figure 2, connection-level FDR

corrected p = 0.035, additional seed-level corrected p = 0.95,

partial g2 = .47). Our results revealed a significant negative

correlation between rA-rmOFC connectivity and depression

severity across the whole sample (r = 20.488; p = 0.034) but not

among depressed subjects (r = 20.241; p = 0.602). In the whole

sample and in the depressed group, a significant negative

correlation was also detected between rrACC-bsFG connectivity

and GDS score (r = 20.704; p = 0.001 for whole sample and r = 2

0.771; p = 0.043 for depressed group).

FA changes and its correlation with resting state FC
changes in LLD

Our results revealed a 20% reduction in FA in the right Forceps

Minor (rFM) in depressed subjects relative to healthy subjects (HC:

Table 1. Demographic and clinical characteristics (MMSE: Mini Mental Status Examination; HAM-D: Hamilton Rating Scale for
Depression; GDS: Geriatric Depression Scale).

HC (n = 15) LLD (n = 10) P values

Age 71.266.8 62.962.5 0.001a

Sex (M/F) 7/8 4/6 0.11b

Education 4.362.1 14.562.6 0.81a

MMSE 29.06 1.1 28.9 61.2 0.83

HAM-D 1.661.6 19.663.5 ,0.001 a

GDS 2.663.1 22.264.6 ,0.001a

aThe P values were obtained by sample t-test.
bThe P value was obtained by chi-square test.
doi:10.1371/journal.pone.0096033.t001
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Figure 1. Illustration of areas in the bilateral superior frontal cortex showing decreased connectivity with the right rostral anterior cingulate cortex
(indicated by the purple sphere) in unmedicated patients with late-life depression (a). Note these areas encompass the bilateral dorsolateral and
dorsomedial prefrontal cortex regions. The colorbar indicates p-values (,.05). Scatterplot displaying group differences in individual functional
connectivity values represented by z-scores (FDR corrected p = .006) (b).
doi:10.1371/journal.pone.0096033.g001
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0.4716.085, LLD: 0.3766.060, uncorrected p,0.0005) (Figure 3).

We found strong positive correlations between rFM FA and rA-

rmOFC across total sample (r = 0.623, p = 0.003) and between

rFM FA and rrACC-bsFG FC across the total sample (r = 0.627,

p = 0.003) and within the depressed subjects group (r = 0.800,

p = 0.031). In comparison subjects, our analysis did not show any

significant correlation between rFM FA and rA-rmOFC or

rrACC-bsFG connectivity. Figure 4 shows the regions of FA

alterations relative to the areas of decreased FC.

Discussion

To the best of our knowledge, this is the first study investigating

whole-brain rs-fMRI FC changes and DTI in unmedicated and

symptomatic patients with late-life depression. Our data-driven rs-

fMRI FC analysis revealed significant decrease in connectivity

between the right rostral ACC and bilateral superior frontal gyrus

as well as between the right Accumbens area and the right mOFC.

TBSS analysis revealed in LLD subjects a significant decrease in

Figure 2. Illustration of areas in the medial orbitofrontal cortex with decreased connectivity with the right accumbens area
(indicated by the purple sphere) in unmedicated patients with late-life depression. The colorbar indicates p-values (,.05) (a). Scatterplot
displaying group differences in individual functional connectivity values represented by z-scores (FDR corrected p = .035) (b).
doi:10.1371/journal.pone.0096033.g002
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the FA value of the right FM hat correlated with observed

alterations in FC.

sFG and rACC interactions in emotion regulation and
depression

We found reduced functional connectivity between the right

rACC and bilateral sFG in LLD. Based on the results of several

functional brain imaging studies in healthy subjects and patients

with mood and anxiety disorders, both the sFG and rACC

participate in a complex frontolimbic circuit suggested as the

neural correlate of emotion regulation. Coactivation of the right

sFG and the right rACC was detected during a task that required

emotional self-regulation in normal participants [44]. Mies et al

reported an increase in activity of the rACC, right sFG and

posterior cingulate cortex (PCC) when subjects needed to process

the valence of performance feedback in a time-estimation task

involving emotion-cognition interaction [45]. In another study in

line with our results, Aizenstein et al detected lower DLPFC-dorsal

anterior cingulate cortex (dACC) connectivity during performance

of an executive-control task in depressed patients in relative to

control elderly subjects [14]. Alexopoulos and his colleagues

showed a decrease in FC between the dACC and DLPFC and also

Figure 3. Reduced FA in the right forceps minor (in red-orange) in unmedicated depressed elderly compared to healthy
comparison subjects. The mean FA skeleton is shown in green superimposed onto the standard MN152 brain temple (upper left: coronal view,
upper right: sagittal, lower left: axial, lower right: 3D view). The colorbar indicates p-values (,.05) (a). Scatterplot displaying group differences in
individual FA values for the masked region in the right forceps minor (uncorrected p,0.0005) (b).
doi:10.1371/journal.pone.0096033.g003
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between dACC and bilateral inferior parietal cortices in patients

with LLD in relative to healthy control group [21]. Interestingly,

their study revealed low FC of DLPFC with dACC as a significant

predictor for depressive symptoms persistence, low remission rate,

apathy and dysexecutive behavior in depressed subjects. They also

found reduced connectivity of the right nucleus accumbens

(rNAcc) and OFC in LLD, which is consistent with our results

[26].

The subgenual anterior cingulate cortex (sgACC) is located in

the ventral part of rACC. A set of neuropathological, structural

and functional brain imaging and animal lesion studies have

suggested a strong involvement of the sgACC in depression and

mania [46]. PET and fMRI studies have shown increased

metabolic activity in the sgACC during depression that correlates

with symptoms severity [47,48]. Furthermore, a decrease in

activity of the sgACC was reported in response to various

treatment modalities including direct deep brain stimulation (DBS)

of sgACC [46,49–51]. The DLPFC, a part of sFG that showed

reduced FC with rACC in the present study, has also been

implicated in midlife and late-life depression [14,51,52]. Interest-

ingly, the pattern of depression-related abnormalities in the

DLPFC and sgACC are in opposite directions. Unlike sgACC,

hypoactivity in DLPFC has been found during the depressive

period [51]. In a TMS/rs-fMRI FC study by Fox et al, better

treatment responses were reported by transcranial magnetic

stimulation of DLPFC sites with higher anticorrelation with

sgACC suggesting the modulatory effect of DLPFC on sgACC for

treating depression [53,54]. In a recent ECT/RS-fMRI FC study,

a significant increase in connectivity between the ACC and the

right DLPFC was found after ECT treatment of depressed subjects

[55]. Interestingly, in that study a strong linear correlation was

observed between change of ACC-right DLPFC connectivity and

change of depression severity measured by HAM-D scores, which

is in line with our results. Based on the detected FC decrease

between sFG and rrACC in the present study, we are suggesting

impairment in regulatory effect of sFG (especially the DLPFC) on

limbic regions like the sgACC as a circuit-based mechanism

mediating LLD.

OFC and NAcc in reward processing and depression
The NAcc and the OFC comprise part of the ‘‘reward network’’

involved in reward processing and hedonic experience. Accumu-

lating findings from neuroimaging, neuropsychology and neuro-

physiology studies link the OFC to sensory integration, reward

value processing, decision making and subjective pleasantness

[56]. Structural and functional abnormalities in the lateral

posterior and mOFC have been implicated in the pathophysiology

of mood disorders [57]. As a key node in reward neurocircuitry,

the NAcc is located in the ventral striatum and serves important

functional roles in reward and motivational processing, reward-

based decision making, learning and hedonic experience [58,59].

Results of several human brain imaging and animal studies have

strongly suggested the involvement of neurochemical and func-

tional disturbances in the NAcc in the genesis of drug seeking

behavior and depression [60,61].

The OFC and medial prefrontal cortex sends direct afferent

projections to the NAcc [62]. The NAcc sends its output to the

prefrontal cortex indirectly through the ventral pallidum (VP) and

the medial dorsal nucleus of the dorsal thalamus. rs-fMRI FC

analysis in healthy subjects showed strong FC between the NAcc

and the orbitomedial prefrontal cortex (Brodmann areas 11, 13,

24, 25, and 32)[63]. The literature indicates that this FC is

impaired in depression. In a recent study by Alexopoulos and

colleagues, the FC pattern of the NAcc was investigated in

apathetic and non-apathetic patients with LLD [26]. They found

FC values of the NAcc with several areas including striatum,

prefrontal cortex and insula differed between apathetic and non-

apathetic depressed subjects. Consistent with our results, their

results also revealed lower FC between the right NAcc and

bilateral OFC in typical non-apathetic but depressed subjects

compared to a healthy control group. In line with Alexopoulos et

al results, our findings suggest functional disturbances in the

reward network due to impaired interaction of two key nodes of

this circuitry may serve as another network-based mechanism of

pathology in LLD.

Relation between structural and functional connectivity
in LLD

In a recent structural/functional connectivity study of adults

with MDD, Kwaasteniet et al, showed a negative correlation

between uncinate fasciculus integrity and subgenual ACC

functional connectivity with the bilateral hippocampus in subjects

with MDD compared to a healthy control group. They also found

a positive correlation between this reported negative structure-

function relationship and depression severity in depressed patients

[64]. Only two studies have examined the relationship between

white matter integrity and FC in LLD. In one study of Wu et al, a

negative correlation was reported between whole brain white-

matter hyperintensities burden and resting state connectivity in the

medial frontal region in unmedicated elderly patients with LLD

[24]. In another study by Steffens et al, uncinate fasciculus (UF)

tract was selected as the predefined region of interest for DTI

study and positive correlations were found between the left

uncinate fasciculus (UF) FA and left ventrolateral PFC-left

amygdala as well as left ventrolateral PFC- left hippocampus

resting state functional connectivity [30]. In both studies, the

structural connectivity- functional connectivity relationship was

only investigated in elderly subjects with LLD with no healthy

comparison group. The present study extends these finding by

integration our FC analysis with TBSS whole brain DTI in

unmedicated and symptomatic subjects with LLD and a healthy

comparison group.

Figure 4. Functional connectivity (FC) and fractional anisotro-
py (FA) differences indicated on a 3D view of the brain. Regions
in yellow represent areas of decreased FC with the right accumbens
area, regions in blue indicate areas of decreased FC with the right
rostral ACC, and reduced white matter FA in LLD is shown in green.
doi:10.1371/journal.pone.0096033.g004
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Interestingly, our main TBSS finding of LLD-related alteration

in the rFM is consistent with our FC results. The forceps minor is

the anterior extension of corpus callosum in the frontal lobes

connecting the lateral and medial regions of frontal lobes and

extends to the striatum and limbic areas. It is very likely that the

disruption in integrity of this fiber bundle compromises the axonal

tracts mediating both bsFG-rACC and OFC-NAcc anatomical

connections. This possible white matter structural abnormality can

reasonably be suggested as an underlying etiological mechanism

for observed FC changes in our depressed subjects and explains

the significant correlation between structural and functional

connectivity values reported in the present study. However,

prospective longitudinal studies are needed to determine causality.

Limitations and methodological considerations
A limitation of the present study is the small sample size. Despite

the small sample size, the results demonstrated a very robust effect

size based on the partial g2 values. Approximately half the

variance in FC values for the rrACC – bilateral SFG and rA–

rmOFC was explained by group differences. Another limitation is

the use of anatomical ROIs instead of functional ROIs. The use of

anatomical ROIs can result in the combination of multiple

functionally distinct regions and thus confound our results.

Notwithstanding this caveat, there are several methodological

strengths to consider. In addition, rather than examine a selected

set of predefined brain regions of interest, we applied a

comprehensive data-driven connectome method for broadly

exploring whole brain FC changes in LLD. Compared to a priori

hypothesis-based methods, our approach for data analysis was not

biased by the choice of seed selection and therefore has higher

sensitivity without compromising specificity. Another strength of

the present study is our subject selection which involved

unmedicated and symptomatic depressed participants. Several

studies have shown significant effect of psychotropic medications

including SSRIs on brain networks dynamics and FC in

depression [65,66]. Furthermore, the pattern and values of FC

were reported to be sensitive and correlated to depression severity

[67,68] as well as altered after symptoms remission in LLD [24].

To limit potential medication-related and remission-related FC

confounds, we chose a group of unmedicated (60% were

treatment-naı̈ve) and symptomatically depressed subjects for the

current study. While the study is limited by the small sample size,

the FC findings were all statistically significant after FDR

correction for multiple comparisons. Multiple comparison correc-

tion was not used for the TBSS analysis since we had an a priori

region of interest based on the FC findings. However, the

uncorrected threshold for significance was set at p = .0005. Future

studies expanding the sample size would strengthen the validity of

our findings. Another limitation is the relatively older age of our

comparison subjects compared to the depressed patients. To

address this issue, we carefully corrected all significant group

differences for age. Furthermore, it should be noted that the older

age in the comparison group would likely have a mitigating effect

on our results.

Conclusion
Based on the findings of the present study, we propose two main

circuit-based mechanisms for LLD at the network functional level:

impairment in top-down frontolimbic emotion regulation circuitry

and frontostriatal reward networks reflected respectively in the

associated decrease in bsFG-rrACC and rA-rmOFC connectivity.

We found those FC changes serve as significant biological markers

for symptom severity in unmedicated and symptomatic subjects

with LLD. Our DTI structural imaging results detected a

pathologic white matter integrity measure alteration in the rFM

that significantly correlated with above-mentioned FC differences

and depression severity. This correlation suggests an interesting

relationship between structural and functional connectivity in

LLD. The association of structure-function alterations with

specific cognitive, affective and somatic depressive symptoms will

be an important direction for this line of study in the future.
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