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Abstract: We quantified the effects of adherence to various non-pharmaceutical interventions (NPIs)
on the seasonal influenza epidemic dynamics in Japan during 2020. The total monthly number
of seasonal influenza cases per sentinel site (seasonal influenza activity) reported to the National
Epidemiological Surveillance of Infectious Diseases and alternative NPI indicators (retail sales of
hand hygiene products and number of airline passenger arrivals) from 2014–2020 were collected. The
average number of monthly seasonal influenza cases in 2020 had decreased by approximately 66.0%
(p < 0.001) compared to those in the preceding six years. An increase in retail sales of hand hygiene
products of ¥1 billion over a 3-month period led to a 15.5% (95% confidence interval [CI]: 10.9–20.0%;
p < 0.001) reduction in seasonal influenza activity. An increase in the average of one million domestic
and international airline passenger arrivals had a significant association with seasonal influenza
activity by 11.6% at lag 0–2 months (95% CI: 6.70–16.5%; p < 0.001) and 30.9% at lag 0–2 months
(95% CI: 20.9–40.9%; p < 0.001). NPI adherence was associated with decreased seasonal influenza
activity during the COVID-19 pandemic in Japan, which has crucial implications for planning public
health interventions to minimize the health consequences of adverse seasonal influenza epidemics.

Keywords: COVID-19; SARS-CoV-2; seasonal influenza; NPIs; epidemics

1. Introduction

Seasonal influenza viruses are major causes of respiratory infections worldwide. Se-
vere acute lower respiratory tract infections contribute to hospitalizations and mortality in
both children and adults and represent a major threat to public health owing to annual epi-
demics and the potential to cause pandemics [1]. Globally, in 2018, among children under
5 years of age, there were an estimated 109.5 million influenza virus infections, 0.9 million
hospital admissions, and up to 34,800 overall influenza-associated deaths [2]. Moreover,
epidemics affect economic activity and, in some instances, social stability [3]. Generally, the
epidemiology of influenza is seasonally driven, with the majority of transmission occurring
during winter in temperate zones, including Japan [4]. Monitoring circulation patterns of
seasonal influenza viruses is an essential component of the annual planning for national
prevention and response activities in countries worldwide.

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative
virus of coronavirus disease (COVID-19) was first reported in Wuhan, China, at the end
of 2019. Following which, the COVID-19 pandemic rapidly became an unprecedented
global health threat, which continues today [5]. By the end of 2020, more than 82.6 million
confirmed cases were reported worldwide, causing more than 1.8 million deaths, resulting
in a substantial burden of disease [6]. To reduce the transmission of respiratory infections,
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including COVID-19, it is crucial to adopt non-pharmaceutical interventions (NPIs), encom-
passing personal protective measures (e.g., hand hygiene and face masks), social distancing
measures (e.g., isolation of the ill and quarantine of exposed individuals, prevention of
mass gatherings, and school and workplace closures), and travel-related measures (e.g.,
travel restrictions and border closures), especially before an effective specific intervention
(e.g., vaccine conferring long-lasting protective immunity) becomes widely available [7–10].
The World Health Organization has recommended NPIs to reduce the transmissibility of
COVID-19 [11]. Indeed, the potential effect of these NPI strategies provides a valuable
opportunity to promote and assess universal disease control and prevention measures in
community settings.

Most recently, the transmission of seasonal influenza has been described to have
dramatically declined in European countries, the United States (US), China, and Japan
during the COVID-19 pandemic, with seasonal influenza infections in 2020 being lower
than those in preceding epidemiologic years [12–16]. This is further reflected in countries
in the Southern Hemisphere, such as Australia and South Africa, where no historic sum-
mer epidemics have been observed and the incidence of seasonal influenza infections has
remained relatively low [17,18]. This reduction in influenza has hindered the ability to
provide information on circulating viruses to inform annual seasonal influenza vaccine
strain selection. Remarkably, the adoption of NPIs aimed at reducing the transmissibility of
COVID-19 may also contribute to variations in the epidemic dynamics of other respiratory
infections, including seasonal influenza viruses and human respiratory syncytial viruses
(HRSVs) [19,20]. Nevertheless, quantitative evidence of changes in the transmission dy-
namics of seasonal influenza in relation to these public health interventions during the
COVID-19 pandemic in Japan is limited and unclear.

Th present study aimed to analyze sentinel surveillance data of seasonal influenza
and alternative indicators of NPIs in Japan to critically assess the potential effect of changes
in adherence to various NPIs on the transmission dynamics of seasonal influenza after the
COVID-19 pandemic started in 2020. By exploring the associations between indicators
of NPIs and seasonal influenza transmission, it is possible to evaluate the underlying
mechanisms of transmission and provide insights for current and future public health man-
agement. Indeed, a detailed understanding of the epidemiological dynamics of seasonal
influenza viruses in this long series could be fruitful for understanding temporal changes
in the transmissibility of infectious diseases. Here, we first compared the incidence of
seasonal influenza infections in Japan in 2020 to that in the preceding six epidemiological
years (2014–2019). We then quantified the time-series monthly associations between the
incidence of seasonal influenza infections and adherence to alternative indicators of NPIs,
including the retail sales of hand hygiene products and the number of international and
domestic airline passenger arrivals in Japan over the study period (2014–2020).

2. Materials and Methods
2.1. National Seasonal Influenza Surveillance Data

The notifications of influenza used in this study were obtained from the Infectious
Disease Weekly Report (IDWR), which was sourced from the National Epidemiological
Surveillance of Infectious Diseases (NESID) data published by the National Institute of
Infectious Diseases, Japan (NIID) under the Ministry of Health, Labor and Welfare, Japan
(MHLW) [21]. The MHLW manages approximately 5000 sentinel sites (i.e., hospitals and
clinics) in Japan, which reports the number of patients diagnosed with a seasonal influenza
infection on a weekly basis to the prefectural or municipal public health sectors in Japan.
Seasonal influenza falls under the sentinel surveillance arm of the program [22]. Generally,
the number of sentinels designated to each public health service area is determined based
on population size: a public health center with <30,000 individuals has one sentinel; a center
with 30,000–75,000 individuals has two sentinels; and one with >75,000 individuals has ≥3
sentinels, as determined by the following formula: 3 + (population-75,000)/50,000 [20,23].
These sentinels use the following criteria to notify patients of seasonal influenza-like illness
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(ILI): (1) sudden onset of illness, (2) fever >38 ◦C, (3) symptoms of upper respiratory
inflammation, and (4) systemic symptoms, such as general fatigue. A confirmed case of
seasonal influenza infection was defined by the reporting criteria if the patient met all
symptoms from (1) to (4) or had at least one of the symptoms combined with a positive
rapid diagnostic test kit [22]. These sentinel sites forward clinical data to approximately
60 prefectural or municipal public health sectors, which were then electronically transferred
to the NIID, where the number of seasonal influenza cases is released weekly through
its website (https://www.niid.go.jp/niid/en/idwr-e.html, accessed on 25 May 2022). To
elucidate the epidemiological dynamics of seasonal influenza in Japan, we extracted the
total number of seasonal influenza cases per sentinel site at the national level in Japan
(hereafter referred to as “seasonal influenza activity”) recorded in weeks 1–52 in 2014–2020
from the NESID, and compiled the monthly seasonal influenza activity based on these
weekly data. The monthly seasonal influenza activity for the seven epidemiologic years
studied (2014–2020) was used as the dependent variable in the time-series statistical models
presented here.

2.2. Alternative Indicators of NPIs
2.2.1. Retail Sales of Hand Hygiene Products

To assess the level of personal hand hygiene behavior (i.e., potential effect of sanitary
measures), we used data on the monthly retail sales of hand hygiene products (i.e., hand
soap and ethyl alcohol) per ¥1 billion (approximately £6,800,000/$9,000,000) (units: yen) at
the national level in Japan for seven epidemiologic years (2014–2020) as an independent
variable in the time-series statistical models presented here. These data were extracted
from the statistics of production in chemical industries under the Ministry of Economy,
Trade, and Industry, Japan (METI) [24]. In view of the missing published data on the
monthly number of hand hygiene products for long time-series at national level in Japan
and the comparability with several previous literatures conducted in Japan, we utilized
retail sales of hand hygiene products as a proxy variable associated with seasonal influenza
activity [20,25]. Unfortunately, we could not also obtain a dataset on the retail sale of masks
by month; therefore, we did not incorporate this indicator into the analyses.

2.2.2. International and Domestic Airline Passenger Arrivals Data

To assess the level of travel restrictions, we used the monthly number of international
and domestic airline passenger arrivals per one million population (units: person) at the
national level in Japan for the seven epidemiologic years (2014–2020) as an independent
variable in the time-series statistical models presented here. These data were extracted
from the statistics of air transport from the Ministry of Land, Infrastructure, Transport and
Tourism, Japan (MLIT) [26].

2.2.3. Meteorological Data

Meteorological driving factors, such as the average ambient temperature (units: ◦C)
and relative humidity (units: %), are thought to be associated with the dynamics of seasonal
influenza transmission in temperate regions [27–29]. Therefore, we used monthly meteo-
rological data (i.e., average ambient temperature and relative humidity) published by the
Japan Meteorological Agency as independent variables in the time-series statistical models
presented herein [30]. Monthly meteorological data collected from meteorological observa-
tories located in the prefectural capital city were used for each prefecture. We extracted
the monthly average ambient temperature and relative humidity for seven epidemiologic
years (2014–2020). Two meteorological observatories had missing data on relative humid-
ity (Saitama and Shiga Prefectures); therefore, we selected observatories at the nearest
distance (≤50 km) from the prefectural capital by substitution. The average temperature
and relative humidity over Japan were calculated using monthly meteorological data for
each prefecture.

https://www.niid.go.jp/niid/en/idwr-e.html
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2.3. Statistical Analysis
2.3.1. Descriptive Statistics

Descriptive statistics were first assessed to clearly describe the temporal dynamics of
the multitudes of epidemiological datasets. We visually assessed the trends of time-series
variations in seasonal influenza activity, alternative indicators of NPIs (i.e., retail sales
of hand hygiene products and number of international and domestic airline passenger
arrivals), and meteorological conditions (i.e., average ambient temperature and relative
humidity) during the study period (2014–2020) to assess the basic characteristics of the
included dataset. Additionally, the mean and standard deviation (SD) of these dependent
and independent variables are described. To quantify the transmission dynamics of seasonal
influenza in 2020 in Japan, we compared the monthly seasonal influenza activity in 2020
with the average seasonal influenza activity in the corresponding period in the six preceding
epidemiologic years (2014–2019) using a monthly paired t-test.

2.3.2. Identification Strategy of the Time-Series Statistical Regression Model

We next formulated a time-series association between monthly seasonal influenza
activity and long-term exposure to alternative indicators of NPIs at the national level in
Japan during the study period (2014–2020) by running a time-series statistical model for
seasonal data. Several steps were taken to build a robust and reliable statistical model.
First, we adopted an independent approach using the alternative indicators of NPIs and
meteorological conditions as independent variables when relating the alternative indicators
of NPIs to seasonal influenza activity. Prior to constructing the model, we checked the
probability distribution of the dependent variable, the monthly seasonal influenza activity
(the normality of probability distribution was assessed by the Shapiro–Wilk test) (Figure S1),
and assessed the linearity between seasonal influenza activity and each independent
variable. All independent variables included in the statistical model were assessed for
multicollinearity using the pairwise Spearman’s rank-order cross-correlation coefficient
(ρ). If the variables were found to be highly linearly correlated (cut-off of |ρ| > 0.8), the
variable with the largest mean absolute statistical correlation with the other independent
variables was removed [31]. Based on the preliminary analysis results, no independent
variables showing strong statistical linear correlations were observed (Table S1).

To address the delayed heterogeneity of meteorological variables on the dynamics
of seasonal influenza transmission, we considered temporal lags (i.e., delays in potential
effect) of up to 4 months from several previous studies [20,27,32–36]. We used standard
time-series generalized linear regression models (GLMs) with a gamma distribution and
natural logarithmic link function. Robust error variances between the monthly seasonal
influenza activity and single variables of meteorological conditions (average ambient
temperature and relative humidity) with lags of 0–4 months were assessed based on the
Akaike information criterion (AIC) [37]. Generally, the AIC is described as –2 log (L) + 2 K
where log (L) is the maximum value of the natural logarithmic-likelihood function of the
statistical model and K represents the number of parameters. Based on the preliminary
analysis results, we considered meteorological conditions with optimal delayed effects
(i.e., the average ambient temperature at lag 0–1 months and the relative humidity at lag
0 months), which minimized the AIC, and developed a core statistical model (Table S2).
After establishing the optimal lag setting of meteorological variables in the core model,
different lag structures in the associations between monthly seasonal influenza activity and
NPI indicators were explored using single lag months (lag 0, 1, 2, 3, and 4 months) and
cumulative lag months (lag 0–1, 0–2, 0–3, and 0–4 months moving average). The cumulative
lag months were considered to extract the overall trend of the time series without being
influenced by the month time-dependent noise. Indeed, assessments of temporal lags
before modeling were used to account for the biological processes and natural history of
the virus, host reservoir population dynamics, and the infection incubation periods prior to
the onset of symptoms of notified cases.
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We then formulated a standard time-series GLM with a gamma distribution and
logarithmic link function with robust error variances, allowing for overdispersion, to
critically investigate the time-series association between monthly seasonal influenza activity
and alternative indicators of NPIs at the national level in Japan; this was conducted
while adjusting for meteorological conditions with optimal delayed effects (i.e., average
ambient temperature at lag 0–1 months and relative humidity at lag 0 months) and seasonal
variations and cycles of infectious diseases. Specifically, monthly seasonal influenza activity
(continuous variable) was the dependent variable, and monthly retail sales of hand hygiene
products per ¥1 billion (continuous variable) at the national level in Japan during 2014–2020,
monthly number of international and domestic airline passenger arrivals per one billion
populations (continuous variable) at the national level in Japan during 2014–2020, and
meteorological conditions with optimal delayed effects (continuous variable) were included
as independent variables driving the dynamics of seasonal influenza transmission. The
statistical model was adjusted using year variables (2014, 2015, 2016, 2017, 2018, 2019, and
2020) (categorical variables) as covariates to control for long-term seasonal variations and
cycles of infectious diseases. One year was defined as January–December. Additionally, as
autocorrelation of residuals in the case of infectious disease is pathogen-specific and needs
to be accounted for, autoregressive terms of order one (i.e., one month) were incorporated
into the statistical models [38]. The goodness-of-fit of the statistical model was assessed
in a combined manner using the dispersion parameter (α) and AIC [37,39]. Generally, α is
the variance parameter of the model, with an α value of <1.5 suggesting that the deviation
of the observed data from the model is not too large (i.e., the model fits the observed
data well). Although there is no theoretical basis for this criterion, it has been reported
that α < 1.5 can significantly improve the degree of overdispersion [39,40]. In the present
analysis, the overdispersion of each model was mitigated using gamma distribution to
ensure that α was <1.5. Generally, the best model with a lower AIC value is preferred, as it
achieves a better combination of goodness-of-fit and parsimony.

Formally, the general algebraic definition of time-series statistical models is as follows:

P(yi,t|ei,t) ∝ Gamma (ei,t),
log (ei,t) ' α + βxi,t + ∑

j
fG
(
zi,j,t

)
+ φi,t + ei,t−1 + sin

(
2π· θi,t

12

)
+ cos

(
2π· θi,t

12

)
+ εi,t

(1)

where yi,t denotes the outcome time-series; ei,t denotes the expected time-series of the
monthly seasonal influenza activity in month t (t = 1, 2, . . . ); xi,t denotes the ith alternative
indicator of NPIs (the retail sales of hand hygiene products and the number of international
and domestic passenger arrivals) with different lag strictures, including each single lag
month and cumulative lag months for monthly seasonal influenza activity (i = 1, 2, . . . );
fG (zi,j,t) denotes the jth meteorological variables (the average temperature and the relative
humidity) with optimal delayed effects based on minimized AIC, respectively (j = 1, 2, . . . );
φi,t denotes indicator variables of year; ei,t−1 denotes autoregressive terms at order one,
accounting for potential serial correlation; and the statistical model includes the periodic
harmonic functions called the Fourier series, which is formed by the sum of sines and
cosines of month θi,t [41,42]. The Fourier series terms can be used to recreate any periodic
signal (such as a consistent seasonal pattern) using a linear combination of sine and cosine
waves of varying wavelengths. Indeed, the φi,t, ei,t−1, and Fourier series terms were
included to capture the long- and short-series seasonal variations and cycles of infectious
diseases and to minimize residual autocorrelations of infectious diseases, respectively. The
linear term α corresponds to the overall intercept, the linear term β indicates adjusted
linear regression coefficients (continuous or categorical variables with adjusted linear
regression coefficients), and the term εi,t corresponds to the intercept. Indeed, by including
all variables of interest in the same regression equation, we strengthen the interpretation of
the effects as independent and additive, based on accumulated empirical knowledge.

In the present study, a series of time-series statistical models was developed to assess
the direct effects of each alternative indicator of NPIs on monthly seasonal influenza activity.
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The maximum likelihood method was used for the model. To examine the robustness of
the main findings, we performed sensitivity analyses using an extended study period until
December 2021 to account for the long-term effects of alternative indicators of NPIs on
monthly seasonal influenza activity (i.e., the latest date for which the all variables of dataset
are available in Japan as of June 2022). Statistical significance was set at a p-value of <0.05
(type I error), on a two-tailed test. All statistical analyses were performed using STATA
version 15.1 statistical software (Stata Corp, College Station, TX, USA).

2.4. Ethical Considerations

The present time-series ecological modeling study analyzed publicly available data.
The datasets used in our study were de-identified and fully anonymized in advance, and,
as such, the analysis of publicly available data without any identifiable information did
not require ethical approval. The present study was conducted in accordance with the
Declaration of Helsinki (revised in 2013).

3. Results
3.1. Descriptive Description

We first performed a descriptive analysis of the monthly time-series variations in
the total number of seasonal influenza cases per sentinel site at the national level in
Japan (i.e., seasonal influenza activity), alternative indicators of NPIs (retail sales of hand
hygiene products and number of international and domestic airline passenger arrivals),
and meteorological conditions (average ambient temperature and relative humidity) at the
national level in Japan during 2014–2020 (Figure 1 and Table S3). To better understand
the temporal dynamics, the seasonal influenza activity for seven epidemiologic years
(2014–2020) is displayed in Figure 1A, illustrating an abrupt decrease during the 2020
COVID-19 pandemic in Japan. Before the COVID-19 pandemic, the mean monthly seasonal
influenza activity was relatively similar between years: 29.30 cases in 2014, 19.75 cases in
2015, 29.42 cases in 2016, 27.08 cases in 2017, 31.92 cases in 2018, and 31.50 cases in 2019.
However, 2020 showed the lowest activity, with 9.51 cases (Table S3). Focusing on the
epidemic curve for 2014 and 2017, it was observed that peaks of seasonal influenza activity
were relatively low compared to other epidemiologic years (i.e., 2015, 2016, 2018, and 2019).
However, according to NIID, the peaks for weekly number of out-patient visits in 2014
(34.4 visits/clinic/week) and 2017 (39.4 visits/clinic/week) were not different from the
mean for 7 epidemiologic years (mean: 39.7 visits/clinic/week; SD: 13.1 visits/clinic/week),
suggesting the epidemic in the two years were within seasonal range [43]. The average
monthly seasonal influenza activity in 2020 in Japan was estimated to have decreased by
approximately 66.0% (monthly paired t-test, p < 0.001) compared to those in the preceding
6 epidemiologic years (2014–2019).

Interestingly, during the study period (2014–2020), the variations in the alternative
indicators of NPIs (retail sales of hand hygiene products and number of international and
domestic airline passenger arrivals) showed distinct changes around 2020 (Figure 1B–D).
The monthly retail sales of hand hygiene products remained broadly consistent at ap-
proximately ¥7 billion (£47,600,000/$63,000,000) for the preceding 6 epidemiologic years
(2014–2019), but showed a sharp upward trend in 2020, steadily remaining at approximately
¥10 billion (£68,000,000/$90,000,000) (Figure 1B and Table S3). During the preceding 6 epi-
demiologic years (2014–2019), the monthly number of domestic and international airline
passenger arrivals was approximately 8.0 million and 1.7 million, respectively, before falling
sharply to approximately 3.8 million and 0.3 million, respectively, in 2020 (Figure 1C,D
and Table S3). In contrast, there was a clear annual seasonality and cycle in the series
of variations in meteorological conditions, with the mean average ambient temperature
and relative humidity throughout Japan being approximately 17 ◦C and 71%, respectively;
however, there was no marked change in 2020 (Figure 1E,F and Table S3). The detailed
numerical statistics by year are presented in Table S3.
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Figure 1. Time-series variations in monthly seasonal influenza activity, alternative indicators of NPIs,
and meteorological conditions at the national level in Japan during 2014–2020. (A) Monthly seasonal
variations in the total number of seasonal influenza cases per sentinel site at the national level in
Japan during 2014–2020. (B) Monthly seasonal variations in retail sales of hand hygiene products
per ¥1 billion (units: yen) at the national level in Japan during 2014–2020. (C) Monthly seasonal
variations in the number of domestic airline passengers per one million population (units: person)
at the national level in Japan during 2014–2020. (D) Monthly seasonal variations in the number of
international airline passengers per one million population (units: person) at the national level in
Japan during 2014–2020. (E) Monthly seasonal variations in the average ambient temperature (units:
◦C) throughout Japan during 2014–2020. (F) Monthly seasonal variations in the relative humidity
(units: %) throughout Japan during 2014–2020. Detailed numerical statistics by year are described
in Table S3.
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3.2. Identifying the Association between Seasonal Influenza Transmission and Alternative
Indicators of NPIs

Figure 2 displays the overall percentage changes in monthly seasonal influenza activity
associated with per 1-unit increase in each alternative indicator of NPIs (the retail sales of
hand hygiene products and the number of international and domestic airline passenger
arrivals) with different lag structures selected a priori (i.e., the single lag months (lag 0,
1, 2, 3, and 4 months) and the cumulative lag months (lag 0–1, 0–2, 0–3, and 0–4 months
moving average)) based on the standard time-series GLMs with gamma distribution and
logarithmic link function with robust error variances. After controlling for the effect of po-
tential confounders, we observed a negative overall association between monthly seasonal
influenza activity and retail sales of hand hygiene products, and a positive association
between international and domestic airline passenger arrivals with monthly seasonal in-
fluenza activity and throughout different lag structures in each statistical model (Figure 2
and Table S4). Specifically, we found that for every ¥1 billion spent on retail sales of hand
hygiene products, there was a 7.0% to 4.5% decrease in seasonal influenza notifications
in between 0- to 4-month lags (Figure 2A and Table S4). An increase of one million do-
mestic and international airline passenger arrivals was found to increase cases of seasonal
influenza by 5.3–8.8% and 20.5–29.3%, respectively, in lags from 0 to 4 months (Figure 2B,C
and Table S4).

Subsequently, we assessed the shape of the cumulative lag effect as an alternative
indicator of NPIs in relation to monthly seasonal influenza activity (Figure 2 and Table S4).
We found that the effects generally increased within a 3-month lag in retail sales of hand
hygiene products associated with seasonal influenza activity (varied from approximately
15.5% to 7.8%) (Figure 2A and Table S4). The largest cumulative lag effect estimate for all
groups within retail sales of hand hygiene products was at lag 0–3 months, with a signif-
icant negative association of –15.5% (95% confidence interval [CI]: 20.0–10.9%; p < 0.001;
AIC = 4.01; α = 0.95) in monthly seasonal influenza activity for every ¥1 billion increase in
retail sales of hand hygiene products. This suggests that the medium- to long-term effects
of sanitary measures are relatively large (approximately 3 months). However, the monthly
seasonal influenza activity attributable to the cumulative lag structure of airline passenger
arrivals remained constant and with minimal variation (varied from approximately 9.5% to
11.6% for domestic airline passenger arrivals from 27.8% and 30.9% for international airline
passenger arrivals, respectively). Specifically, an increase in the average of one million
domestic and international airline passenger arrivals had a significant positive association
with seasonal influenza activity by 11.6% at lag 0–2 months (95% CI: 6.70–16.5%; p < 0.001;
AIC = 3.99; α = 1.12) and 30.9% at lag 0–2 months (95% CI: 20.9–40.9%; p < 0.001; AIC = 4.12;
α = 0.89) with the largest cumulative lag effect (Figure 2B,C and Table S4). By assessing
these differently shaped single and cumulative lag structures, we were able to quantify
the range of immediate and delayed effects of the alternative indicators of NPIs associated
with seasonal influenza activity and explore detailed exposure–response relationships.

3.3. Further Investigations

In addition, we conducted sensitivity analyses to verify the robustness of our main
findings. It should be noted that the time-series association between seasonal influenza
activity and alternative indicators of NPIs at the national level in Japan did not change
substantially and remained robust when the study period was expanded until December
2021 (Table S5).
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Figure 2. Overall percentage change (mean and 95% CI) in seasonal influenza activity associated
with an increase of 1-unit change in alternative indicators of NPIs at different lags at the national level
in Japan during 2014–2020. (A) Percent change in retail sales of hand hygiene products per ¥1 billion
at the national level in Japan during 2014–2020 for monthly seasonal influenza activity. (B) Percent
change in the number of domestic airline passengers per one million population at the national level
in Japan during 2014–2020 for monthly seasonal influenza activity. (C) Percent change in the number
of international airline passengers per one million population at the national level in Japan during
2014–2020 for monthly seasonal influenza activity. Whiskers show 95% confidence intervals (CIs).
The relevant estimates (coefficients, 95% CIs, and p-values) for this figure are provided in Table S3.
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4. Discussion

The present study aimed to quantitatively assess the potential causal effect of changes
in adherence to various NPIs (retail sales of hand hygiene products and number of interna-
tional and domestic airline passenger arrivals) for COVID-19 suppression on the incidence
of seasonal influenza infections at the national level in Japan. Despite these simplified
assumptions, our findings objectively suggest that the adoption of NPIs at the national level
in Japan may have had a beneficial effect on reducing the transmission of seasonal influenza
viruses. Indeed, the total number of seasonal influenza cases per sentinel site at the national
level in Japan (i.e., seasonal influenza activity) was similar in the preceding 6 epidemiologic
years (2014–2019); however, a marked downward trend was observed after 2020, with
an estimated decrease of approximately 66%. Notably, employing a standard time-series
GLM, with a gamma distribution and logarithmic link function with robust error variances,
demonstrated statistically significant immediate and delayed association effects between
the overall transmission dynamics of seasonal influenza and the change in adherence to
each NPIs; this was true even after accounting for different lag structures, including single
and cumulative lag months. Assuming causality, the range of actual changes in the trans-
mission dynamics of seasonal influenza in Japan during the study period (2014–2020) was
estimated to range from approximately 4.5% to 1.5% for every average one billion increase
in spending on retail sales of hand hygiene products, and from approximately 5.3% to 30.9%
for every one million increase in the number of domestic and international airline passenger
arrivals, respectively. Furthermore, our main findings did not substantially change and
remained robust by sensitivity analyses when extending the period covered to December
2021, suggesting that a long-term temporal association between the transmission dynamics
of seasonal influenza and adherence to NPIs had a long-term effect beyond the study period
in this study. Assessing such time-series associations using our simple statistical modeling
can contribute to successfully (at least partially) capturing the observed decreasing patterns
of seasonal influenza activity during the COVID-19 pandemic in Japan, demonstrating
that the decrease could be largely explained by the changes in adherence to more NPIs
such as hand hygiene measures and travel restrictions. The performance of the proposed
model suggests that our framework can provide a plausible proxy for average stochastic
variations in the dynamics of seasonal influenza transmission using readily accessible data.

As a remarkable finding, the present preliminary analysis also justified the medium-to-
long-series benefits of hand hygiene measures (i.e., approximately 3 months) and described
the importance of continuing implementation of adherence to hand hygiene strategies in
such a way that supplements existing knowledge. Hand hygiene is a simple, low-cost,
and widely adopted NPIs to reduce disease transmission (especially targeting the route
of physical contact) and is recommended as a standard precaution for the care of infected
persons in the community [44,45]. Indeed, there is mechanistic evidence that hand hygiene
inactivates bacteria and viruses [46], and several systematic reviews of observational studies
and randomized trials describe that hand hygiene alone is significantly associated with a
reduction in many human respiratory diseases in community settings [47,48]. Although
much of the literature qualitatively reports the effectiveness of hand hygiene strategies
on the dynamics of seasonal influenza transmission, one impressive case–control study
reported in Spain successfully quantified the effectiveness of adherence to hand hygiene
on the incidence of seasonal influenza infections [49]. Specifically, hand washing more
than five times per day was a statistically significant protective factor, suggesting the
need for frequent handwashing to prevent seasonal influenza transmission in community
settings. Taken together, it is essential to reaffirm the versatile and attractive benefits
of adherence to common hand hygiene practices in controlling the spread of seasonal
influenza transmission during the COVID-19 pandemic, even considering the uncertainty
of effectiveness of hand hygiene [45,47].

Another crucial contribution of the present study is the confirmation of the existence
of a decrease in the incidence of seasonal influenza infections at the national level in Japan,
following the changes in the number of domestic and international airline passengers
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attributable to adherence to travel restrictions. Indeed, previous studies have highlighted
the effectiveness of travel restrictions owing to the COVID-19 pandemic, providing a valu-
able opportunity to assess the effect of human mobility behavior changes on other human
respiratory infections [50–57]. Previous studies assessing the effectiveness of international
travel restrictions by mainland China on the risk of COVID-19 outbreaks in other overseas
countries focusing on early 2020 reported that a reduction in export volume could delay the
importation of cases to cities not affected by the epidemic [51]. Specifically, it describes an
average reduction of 81.3% (95% CI: 80.5–82.1%) in daily exports owing to travel restrictions
during the first 3.5 weeks of implementation. Additionally, another study by Nishiura et al.
reported that border quarantines (i.e., travel restrictions) may contribute significantly to
preventing (or at least delaying) the arrival of the virus, especially in small island countries
such as Japan. The religious importance of international human mobility restrictions on
the transmission dynamics of infectious diseases has also been discussed [56]. However,
only a limited number of studies have reported the impact of domestic travel restrictions
on the spread of the virus. A recently published study from Japan quantified the effect of
domestic travel restrictions and the spread of COVID-19 in Japan and provided impressive
insights into the transmission dynamics of other respiratory infections, including seasonal
influenza viruses [57]. Specifically, the infection dynamics showed a relative risk reduction
(approximately 35–48%) in most prefectures with travel restrictions, suggesting that the
degree of passenger volume has a significant impact on risk reduction and that specific
airports and their optimal size may be strongly dependent on the domestic network. It was
concluded that there may be a strong dependence on specific airports and their optimal size
in the domestic network. Based on our present findings and previous empirical literature,
we speculate that strategies to restrict the airline network may reduce the risk of seasonal
influenza transmission at certain risk-sensitive airports, resulting in a significant reduction
in contact patterns between infected and susceptible individuals.

Although the present study focused on the need to identify the potential effect of
adherence to NPIs on the transmission dynamics of seasonal influenza in Japan, several
caveats must be noted when interpreting the estimates and applying the present results
to the assessments. It should be noted that this study is a preliminary finding describing
the association between transmission dynamics of seasonal influenza and adherence to
NPIs at the national level in Japan in a long series during 2014–2020, including under the
COVID-19 pandemic, based on the analysis of observational data, and is regarded as a
type of ecological study in causal inference. That is, our findings are likely vulnerable to
confounding, and indeed, the biological mechanisms and natural histories behind both
social/behavioral and biological/intrinsic factors (e.g., clinical course of patients in charac-
terizing secondary transmission, increased viral replication, high frequency and dose of
pathogen shedding, or some other unknown host–pathogen relationships) have not been
assessed. Second, because the present study used retail sales of hand hygiene products
and domestic and international airline passengers as alternative indicators of NPIs using
published observational data available in Japan, these alternative indicators may not reflect
the actual effects of adherence to NPIs. In particular, the observed time-series of monthly
retail sales of hand hygiene products do not reflect actual numbers and may be affected
by potential variations in economic inflation in Japan over the past decade [58]. Third,
several other key driving NPIs that decrease transmission, such as education, voluntary
self-isolation, school closures, and voluntary mask wearing, were not considered in the
present study because of the lack of publicly available epidemiological data at the national
level in Japan [59–63]. In particular, it is expected that the habit of voluntary mask wearing
in Japan before the pandemic, which is common East Asia, may have contributed signifi-
cantly to the reduction in transmission of respiratory infections in communities compared
to other countries (e.g., US and European countries); unfortunately, we were unable to
evaluate this possibility [64]. Indeed, Cowling and Leung described the accumulation of
compelling evidence of masks [65], with one impressive study in Europe describing a 12.0%
(95% CI: 7.0–17.0%) reduction in time-varying effective reproduction R (t), the average
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number of secondary cases produced per primary case in the presence of interventions
and immune individuals in a given time period, associated with the introduction of a
policy requiring the wearing of masks in all common and public spaces [66]. Interestingly,
a decreasing trend in seasonal influenza activity in Japan was observed around January
2020, before the COVID-19 pandemic (Figure 1). The retail sales of hand hygiene products
were low, and domestic and international airline passenger arrivals were high just as the
pre-COVID-19 pandemic period. Japanese people may have started the self-protection like
voluntary mask wearing from mid-January since the first imported case of COVID-19 was
identified on 16 January 2020 in Japan, and the broadcasting media reported sensationally
about this newly identified viral pneumonia [53]. Those early behavioral changes may have
affected the decreased trend of influenza activity during January 2020. Additionally, other
driving factors, such as the adaptive evolution among multiple variants of SARS-CoV-2 as
variants of concern (i.e., Alpha [B.1.1.7], Beta [B.1.351], Gamma [P.1), Delta [B.1.617.2], and
recently Omicron [B.1.1.529]), viral interference (i.e., one virus being prevented from multi-
plying by another), founder effects (i.e., variants introduced into populations with locally
elevated transmission can increase in proportion at a national level without a bona fide
transmission advantage), and immune escape attributable to vaccinations have not been
assessed [67–71]. Consideration of these possible driving factors affecting the transmission
dynamics of COVID-19 and improving the stability of the estimates is crucial for future
studies. Forth, airline passenger arrivals are not the only force driving the spread of the
virus transmission [54]. In countries (or prefectures) sharing a land border or separated by
a small stretch of water, the effect of sea and land travel on the spread (e.g., via train and
road traffic) of the virus could be greater than that of air travel. We propose further detailed
research considering transportation data from air, sea, and land travel to accurately capture
the observed hypothetical variations in Japan. Fifth, although the current statistical model
used average ambient temperature and relative humidity as meteorological conditions,
there may be other confounding factors (e.g., rainfall, wind speed, ultraviolet (UV) radia-
tion, and air pollutants including PM2.5 and PM10) that are associated with the transmission
dynamics of seasonal influenza [72–75]. However, several previous studies have suggested
a consistent association between the dynamics of seasonal influenza transmission and
average ambient temperature and relative humidity, which may have been a highly ex-
planatory predictor [27–29]. Sixth, the epidemiological effects of adherence to NPIs have
not been fully quantified. Indeed, we were unable to fully assess the heterogeneity of
transmission dynamics in specific regions associated with alternative indicators of each NPI
because the present study covers the whole of Japan rather than each prefecture. Indeed,
the epidemiological effects of NPIs on the transmission dynamics of seasonal influenza
may have different probability distributions, as it is necessary to consider the increase in
local clusters of COVID-19 in remote prefectures of Japan [76–79]. Additionally, compared
to severe measures, such as city closures (i.e., lockdown), implemented in other countries,
the legal enforcement of the state of emergency declaration in Japan is moderate, and the
government relies on people’s voluntary action and the resulting peer pressure to reduce
contact at the community level [80]. Differences in the intensity of interventions may have
contributed to the beneficial positive effects of hand hygiene strategies and travel restric-
tions in the present study by characterizing the transmission dynamics specific to Japan.
Changes in transmission dynamics due to the intensity of adherence to NPIs may be modi-
fied in countries other than Japan, which limits the generalizability of this study. Seventh,
because we aimed to quantify the independent effects of NPI indicators on the transmission
dynamics of seasonal influenza, we failed to consider effect modification (e.g., interaction
terms) using the types and subtypes of seasonal influenza viruses (i.e., A/H1N1pdm09,
A/H3N2, B/Victoria-lineage, and B/Yamagata-lineage), sociodemographic factors (e.g.,
sex, age, and social capital in terms of social epidemiology), and spatiotemporal differences
(e.g., Tokyo, Osaka, Hokkaido, and Okinawa with distinct geographical settings). Of note,
there is a little possibility that influenza vaccination coverage affected decreased seasonal
influenza activity in 2020. According to the Ministry of Health, Labor and Welfare in
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Japan, the national influenza vaccine production in 2020, a proxy to the vaccine coverage,
was approximately 30 million vials, which remained almost the same level as in 2019
in Japan [81]. In addition, the decrease in reported cases of influenza in 2020 may be a
false decrease due to the hesitancy to visit hospitals or poor access during the COVID-19
pandemic [82]. However, overall, outpatient visits for all illnesses in Japan fell by only
10% in 2020 compared to that of 2019. Thus, the drastic decrease of influenza activity in
2020 cannot be explained by the decrease of outpatient visits, suggesting a real low level of
community circulation [83]. Further detailed studies are needed to independently assess
the effects of individual and multiple interventions and their complementarities on host
susceptibility. Eighth, we failed to consider temporal uncertainties other than variations in
the optimal lag lengths (i.e., optimal delays in effect). Although there are concerns arising
from plausible settings of the incubation period prior to the onset of symptoms of notified
cases, substantial data describing biological processes and natural history of the virus
and host reservoir population dynamics of seasonal influenza transmission have not yet
been pursued in depth [20,27,32–36]. Ninth, the unit of the lag structure introduced in this
study is by month, which does not allow for detailed time-series variation over shorter
time periods (i.e., units of days or weeks). Therefore, the quantification of the estimates of
seasonal influenza transmission dynamics according to the shape of the lag structure may
be over- or underestimated. Finally, in the present study, we focused on the identification
of changes in the incidence of seasonal influenza infections, including those highlighting
the role of NPIs; more explicit modeling for the marginal effect of adherence to NPIs of the
dynamics and the extension to projection of heterogeneity owing to localized epidemics
will be crucial to future studies. Although scientific interest has focused on identifying
the transmission dynamics of SARS-CoV-2, the epidemiological assessment of respiratory
infections during and after the COVID-19 pandemic is an urgent issue, and the specific
application and extent of consideration of more explicit methods to capture epidemic
dynamics of seasonal influenza and HRSVs is a key subject for future studies in Japan.

Lastly, further prospective design analyses describing transmissivity changes of the
virus attributable to adherence to NPIs are critical to confirm our main findings and
to approach explicit causality. Nevertheless, by using only the available national level
observational data in Japan, we demonstrated that a time-series ecological modeling design
can be exploited to examine the collective (population) impact of adherence to NPIs. We
believe that our approach will shed light on the assessment of the combined effectiveness
of adherence to NPIs in Japan.

5. Conclusions

This study provides empirical evidence of a time-series association between adherence
to more NPIs, such as sanitary measures and travel restrictions, and a reduction in seasonal
influenza activity during the 2020 COVID-19 pandemic in Japan. Our findings are based on
limited but readily available epidemiological data and conventional deductive estimation
approaches utilizing explicit ecological time-series modeling, and suggest that the public
health interventions for COVID-19 adopted by the Japanese government may have pre-
vented and reduced the dynamics of seasonal influenza transmission. Assessing the future
transmission dynamics and risks of seasonal influenza and other respiratory infections, and
communicating these probabilities, considering the detailed effects of various public health
interventions, will help guide the design of future broad-based infectious disease control
measures and provide crucial lessons for other countries worldwide. Indeed, it would be
worthwhile to conduct these analyses to identify which components of NPIs were most
effective in preventing seasonal influenza and other respiratory viruses and transmission.
In this context, this pandemic has created an incredible natural experiment on a global
scale, with similar policies enacted globally in diverse social contexts. Additionally, our
findings may enable public health agencies to take early actions regarding making better
preparations for understanding the stochastic variation in seasonal influenza disease bur-
den attributable to adherence to NPIs to meaningfully control the COVID-19 pandemic and
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future epidemics in Japan; this will be particularly important when considering vulnerable
groups (especially essential host groups), and preparing and developing optimized contain-
ment schemes of exit strategies to avoid unexpected future emergencies. Nevertheless, the
plausible reasons for the reduction in seasonal influenza infections observed in the present
study can still be multifactorial and complementary, related to hand hygiene measures and
travel restrictions. Although we were unable to purify the unique effect of each alterna-
tive indicator of NPIs alone, in future studies, several measures may be strengthened or
relaxed regionally, and the generalization of our findings may be applied by comparing the
differences in adherence to NPIs in different countries and regions. Although these strate-
gies for applying common NPIs are effective in reducing localized viral transmission in
community settings based on previous empirical studies [7,84–86], convincing mechanistic
evidence to support their effectiveness has is not yet adequately understood. Therefore,
extension to joint multi-country with different epidemiological contexts and long-term
studies are needed to clarify causality and complex interactions and to present more robust
evidence. Explicit inferential modeling (including statistical and mathematical models) that
can realistically describe the behavior of infectious diseases based on intrinsic and extrinsic
assumptions to describe the dynamics of pathogen transmission in populations pre- and
post-pandemic critically needs to be considered in detail in the future [87]. Finally, it is
crucial to develop studies on statistical causal inference in the context of infectious disease
epidemiology in Japan.
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