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Abstract: Anaerobic digestion (AD) is a microbially-driven process enabling energy production.
Microorganisms are the core of anaerobic digesters and play an important role in the succession of
hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes. The diversity of participating
microbial communities can provide new information on digester performance for biomass valoriza-
tion and biofuel production. In this study anaerobic systems were used, operating under mesophilic
conditions that realized biodegradation processes of waste wheat straw pretreated with NaOH—a
renewable source for hydrogen and methane production. These processes could be managed and
optimized for hydrogen and methane separately but combining them in a two-stage system can lead
to higher yields and a positive energy balance. The aim of the study was to depict a process of biohy-
drogen production from lignocellulosic waste followed by a second one leading to the production
of biomethane. Archaeal and bacterial consortia in a two-stage system operating with wheat straw
were identified for the first time and the role of the most important representatives was elucidated.
The mixed cultures were identified by the molecular-biological methods of metagenomics. The
results showed that biohydrogen generation is most probably due to the presence of Proteiniphilum
saccharofermentans, which was 28.2% to 45.4% of the microbial community in the first and the second
bioreactor, respectively. Archaeal representatives belonging to Methanobacterium formicicum (0.71%
of the community), Methanosarcina spelaei (0.03%), Methanothrix soehngenii (0.012%), and Methanobac-
terium beijingense (0.01%) were proven in the methane-generating reactor. The correlation between
substrate degradation and biogas accumulation was calculated, together with the profile of fatty
acids as intermediates produced during the processes. The hydrogen concentration in the biogas
reached 14.43%, and the Methane concentration was 69%. Calculations of the energy yield during
the two-stage process showed 1195.89 kWh·t−1 compared to a 361.62 kWh·t−1 cumulative yield of
energy carrier for a one-stage process.

Keywords: anaerobic digestion; wheat straw; two-stage performance; microbial consortia; metagenomics

1. Introduction

As the available oil reserves continue to be depleted, it is necessary to find alternative,
sustainable energy sources that compensate for the growing energy demands worldwide.
Although there are many different types of industries across the world, agriculture, together
with the pulp and paper industries are to a great extent the major source of environmental
pollution that produces large amounts of lignocellulosic wastes [1]. Lignocellulose is the
main component of plant biomass and is, hence, ubiquitous. Lignocellulosic biomass has
attracted great interest in recent years for energy production due to its renewability and
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carbon-neutral nature [2]. A more detailed knowledge of lignocellulosic waste utilization
will facilitate managing this problem in the environment to reach sustainable development.
Lignocellulosic substrates are not easy for biodegradation on account of their complex
structure. Lignin can be partially removed by chemical or physical pretreatment, which
could favor efficient bioconversion [3]. Effective pretreatment before anaerobic digestion
could break down the linkage between polysaccharides and lignin and make cellulose and
hemicelluloses more accessible to bacteria [4].

Anaerobic digestion (AD) of organic wastes is an attractive biotechnological alterna-
tive in the field of renewable energy source utilization with the aim of biofuel production.
Generally, this process consists of liquefaction and hydrolysis of insoluble compounds and
gasification of intermediates, which is accompanied by the partial or complete mineral-
ization and humification of the organic substance [5,6]. Microbial cellulose utilization is
responsible for one of the broadest material flows in the biosphere [7]. Waste treatment
helps solve some ecological problems by reduction of their hazardous effects on the bio-
sphere. Anaerobic digestion is a multi-step process leading to hydrogen production as an
intermediate product and methane released that could be used as an energy carrier.

A number of microorganisms are reported that have the capability to degrade and
utilize cellulose and hemicellulose as carbon and energy sources [8,9]. For increasing the
efficiency and stability of AD, many efforts on the exact identification of the microorganisms
from a variety of microbial groups have been made, as such discoveries on the structure
and diversity of participating microbial communities can provide new information on
digester performance for biogas and energy production. Knowing the connections between
operational conditions, process stability, and microbial community dynamics is essential to
enhance AD process efficiency and management [10]. Consecutive cooperation of the pop-
ulation of microorganisms enables the synthesis of certain products that are then used by
another group of bacteria [11] comprising the four groups of microorganisms: hydrolyzers,
acidogenic microorganisms, acetogens, and methanogens [12]. Mixed cultures often present
improved performance over corresponding monocultures, as microorganisms sometimes
lack some key metabolic pathways, which may be supplemented by others [13]. The great
variety of microbial groups are the core of the digesters [14], increasing the efficiency and
stability of AD, so many efforts on elucidating the participating microorganisms, their
role, and relations have been made in this field [15]. In the hydrolysis and acidogenesis
process, there are about 50 kinds of bacteria, such as Clostridium, Bacteroides, Bifidobacterium,
Butyrivibrio, Proteobacteria, Pseudomonas, Bacillus, Streptococcus, Eubacterium, and so on [16].
Methanobacterium, Methanococcus, Methanobrevibacter, Methanomicrobium, Methanosarcina,
and Methanosaeta are the main microorganisms responsible for the methane production [17].
One key point is the requirement to find which one is the key component of the microbial
community and which conditions are the most appropriate to achieve a high-efficiency pro-
cess or lead to a failure process. Different groups of anaerobic microorganisms with specific
growth and development conditions, physiological properties, and metabolic activities are
involved [18]. Enhancement of the biodigestibility of lignocellulose by biological processes
is a promising strategy because of its low capital cost, and low consumption of energy
and chemicals. Symbiotic multi-species cellulose-degrading consortia, ranging from dual-
species systems to complex microcosms, represent a good candidate for enhancing biomass
degradation during biotechnological processes [19,20]. Although a defined consortium of
microbes is desirable, the ecological complexity of consortia makes isolation of the required
species difficult. Several methods have been applied to investigate the microbial diversity
in the anaerobic digesters: a clone library of 16S rRNA genes, denaturing gradient gel elec-
trophoresis (DGGE) analysis, fluorescence in situ hybridization (FISH), etc. Metagenomics
is an efficient method for determining the complex microbiota structure and performing
metabolic mechanism analysis. It is applied for elucidation of the community structure,
and a metabolic pathway analysis can determine the mechanism of lignocellulosic substrate
degradation [21,22].
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This study aimed to analyze the processes of biohydrogen and biomethane production
by wheat straw utilization with the participating microbial consortia therein to create
a stable and effective two-stage process of anaerobic digestion, as by controlling and
monitoring each of the microbiological, operational, and chemical parameters of AD, its
performance may be enhanced.

2. Materials and Methods
2.1. Experimental Setup

Laboratory bioreactors, constructed in the Laboratory of Bioremediation and Biofuels
(Institute of Microbiology, Bulgarian Academy of Sciences) with working volumes of 10 dm3

and 80 dm3 and 50 rpm stirrers were used. Both operated in a mesophilic mode (35–37 ◦C).
Electronic regulators were used for measuring and controlling the temperature. The
accuracy of the regulation under normal operation was ± 0.5 ◦C. Stirring was performed
by constant electric motors and was about 100 rpm for both bioreactors. After each feeding,
a purge was carried out to ensure an anaerobic environment. The substrate used was wheat
straw pretreated with NaOH water solution that contained 4 g of NaOH for 100 g straw for
24 h at 55 ◦C [23]. Anaerobic cultivation conditions were provided using the corresponding
techniques and appliances.

2.2. Inoculum Preparation

A working methane-generating anaerobic digester was used as a source of bacterial
inoculum. This digester was operated at a mesophilic temperature in a fed-batch mode with
native wheat straw as the sole substrate. As an inoculum for the hydrogen-producing pro-
cess (in the first bioreactor), a pretreated digestate from the same methanogenic reactor was
used. The preparation of the inoculum comprised a few steps: filtration, washing (saline
solution), centrifugation (3000× g rpm), and, the most important, a thermal pretreatment
at 80 ◦C for 15 min for the inactivation of methanogens. For the start-up of the methane
fermentation process in the second bioreactor, digestate from the already-working methane
tank was used. In all experiments, the inoculum was added in 10% (v/v) regarding the
working volume of each bioreactor.

2.3. Analytical Methods
2.3.1. Biogas Volume Measurement

The biogas volume was measured using a water displacement system, where the gas
bubbled into the graduated measuring cylinder displaced the water from the cylinder into
the container. The concentration of methane (CH4) was measured with an automatic gas
analyzer “Dräger“, X-am 7000 (Lubeck, Germany). Carbon dioxide (CO2) and hydrogen
(H2) were followed using a Gasboard gas analyzer (Wuhan, China, 3100D).

2.3.2. Microscopic Observation

Microscopy examination and Gram staining were conducted under a Leika micro-
scope (Wetzlar, Germany) with × 1000 magnification. All information gathered from the
microscopy examinations was used to characterize the participating species. A digital
camera was used for documentation of the microscopic images.

2.3.3. Cellulose Concentration Estimation

The cellulose concentration was estimated by a spectrophotometer (JENWAY 6305,
Dunmow, Essex, UK) using an anthrone reagent according to Updegraff [24].

2.3.4. Volatile Fatty Acid Determination

Volatile fatty acid concentrations were measured by a Focus GC gas chromatograph
(Thermo Scientific, Waltham, MA, USA), equipped with a split/splitless injector, TG-
WAXMS (length: 30 m, ID: 0.25 mm, film: 0.25 µm) column, and FID (Zurich, Switzerland).
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2.4. Metagenome Sequencing and Bioinformatics Analysis

The metagenome library construction and sequencing were conducted by Macro-
gen Inc. (Seoul, Korea). For library construction, total DNA was extracted from a
sample using a GeneJET Genomic DNA Purification Kit (Thermo Scientific™, Waltham,
MA, USA). The preparation of the 16S metagenomic sequencing library for bacteria was
performed using a primer pair that targeted the V3-V4 region (Macrogen primer set),
while the archaeal metagenomic library was constructed using the primers 519F_Arch
5′CAGCMGCCGCGGTAA3′ and 806R_Arch 5′GGACTACVSGGGTATCTAAT3′ [25]. Both
libraries were created the with Herculase II Fusion DNA Polymerase Nextera XT Index Kit
V2. The sequencing (Illumina platform) was conducted with a reading length of 301 bp
and FastQC quality control. The total reads were 5,402,112 bases. The percentage of Q20
quality reads was 91.02%.

2.5. Statistical Analysis

All statistical analyses were performed using Microsoft Excel software. The data are
reported as means ± SD. A p-value lower than 0.05 was considered statistically significant.

3. Results and Discussion

Microbial fermentation processes in the biosphere are responsible for the greater part
of the biologically produced hydrogen. Biohydrogen is defined as hydrogen produced
by bacteria, archaea, or algae from cultivations and waste organic materials [26]. These
organisms decompose organic matter into carbon dioxide and hydrogen. The microbiome
residing in anaerobic digesters drives the anaerobic digestion process. All strains of
methanogenic bacteria utilize H2 as an electron donor for methanogenesis and growth.
Otherwise, various complex substrates could not be converted to biogas as a renewable
source of energy. We have analyzed the process of two-stage anaerobic digestion enabled
by the complex communities of microorganisms present in both AD bioreactors. Using
this approach, we tried to obtain new information on the composition and diversity of the
biogas-producing microbial consortia with the aim to improve AD efficiency and stability.

3.1. Biogas Production Using Cascade Bioreactors

NaOH pretreated wheat straw with a loading of 10 g/L was the substrate subjected to
anaerobic digestion in the system of two bioreactors (BR). The experiments were carried out
in a semi-continuous mode. The released gas volume and hydrogen therein are presented
in Figure 1.
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Figure 1. Dynamics of biogas (biohydrogen) production in the first BR of the cascade.
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The pH was maintained in the range of 4.9 to 5.5 and controlled during the whole
process. The hydrogen concentration in the biogas reached 14.43%. The yields of biogas
were also measured in the second BR of the cascade and were estimated after the addition
of 170 mL of liquid from the hydrogen-generating BR from the process, operating with
wheat straw pretreated with NaOH (BR1). The maximum content of methane reached 69%
(Figure 2).
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Figure 2. Biomethane production in BR2 of the cascade.

The pH in the second BR was maintained in the range of 5.5 to 7.0 during the whole
process. For comparison, performing the process with the same substrate, pretreatment,
and loading in a single-stage system realized the highest methane value of 58% (Figure 3).
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Figure 3. Biomethane production in a single methanogenic BR.

Involving a two-stage AD system, where the processes were divided into a cascade of
two separate bioreactors, the division of the processes into two consecutive bioreactors lead
to higher energy yields for the two-stage system, realizing higher hydrogen and methane
production compared to the traditional single-stage methanogenic process with different
types of substrates as mentioned in the literature [27,28]. The calculations for the energy
balance in the system lead to the conclusion that it is three-fold in favor of the two-stage
process (Table 1).
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Table 1. Energy yield for the single-stage and two-stage anaerobic digestion systems.

System Energy
Carrier

Cumulative Yield
(cm3) Yp *(m3·t−1) LHV *

(kWh·Nm−3)
Total Energy

(kWh·t−1)

Total Energy (per
System)

(kWh·t−1)

Single-phase Methane 29104.0 36.38 9.94 361.62 361.62

Two-phase Hydrogen 134.7 4.49 2.99 13.43 1195.89
Methane 95168.0 118.96 9.94 1182.46

* Yp, the yield of energy carrier per ton of wheat straw added; LHV, lower heating value.

The primary energy obtained during the process from untreated and pretreated
biomass (wheat straw), which was expressed as kWh·t−1 raw material, was calculated by
Equation (1):

Ee = Y. LHV. (mp/mu) (1)

where Y is the yield of the respective energy carrier in m3·t−1, LHV (lower heating value) is
assumed to be 9.94 kWh·Nm−3 (for methane) and 2.99 kWh·Nm−3 (for hydrogen), and mu
and mp are the sample masses before and after pretreatment. According to our results and
calculations, the energy yield in a two-stage system is 3.3-fold higher than the single-stage
process. The biogas production by the two-stage AD process enabled 18.5% higher energy
recovery than single-stage AD when treating high-moisture municipal solid waste [29].

Fermentation is one of the most promising methods of biohydrogen production from
industrial wastewater, owing to its ease of operation and rapid hydrogen production, where
a group of bacteria mainly carry out dark fermentation of industrial wastewater by the help
of multienzyme systems to convert organics into hydrogen without oxygen [30].

According to Hosseinzadeh et al., [31], regarding H2 production efficiency, the com-
bined dark fermentation with microbial electrolysis cell process was the best process in
relation to large-scale performance.

A prerequisite for higher methane production in the two-stage process was due to im-
proved substrate hydrolysis, with increased amounts of volatile fatty acids (VFA) produced
in the first bioreactor that were readily available in the second stage (Figures 4 and 5).
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The consortia of microorganisms during biodegradation produced the following
cocktail of VFA (Figures 6 and 7).
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The major volatile fatty acids produced during fermentation were essentially acetate
and butyrate, suggesting that the typical butyrate-type fermentation could be achieved
by the participating microbial consortia. Similar results were obtained using a different
substrate, a mix of fruits and vegetables, as a carbon source by Likata et al., 2011 [32].

The main pathway of acidogenesis is through acetate, carbon dioxide, and hydrogen.
An accumulation of lactate, ethanol, propionate, butyrate, and higher volatile fatty acids is
the response of the bacteria to an increased hydrogen concentration in the medium [33].
In the absence of methanogens to utilize these substrates, hydrogen supports the overall
degradation process, and organic acids accumulate, causing a decrease in pH, which could
inhibit fermentation unless controlled. The overall performance of the anaerobic digestion
system is affected by the concentration and proportion of the individual volatile fatty acids
formed during the acidogenic stage because acetic and butyric acids are the preferred
precursors for methane production [34].

3.2. Microbial Communities in the Two-Stage Anaerobic System Identified by Metagenomics

In many studies, the microbial community analysis provided crucial information to un-
derstand the anaerobic digestion process, which may help to improve its efficiency [35–37].
The main acidogenic and methanogenic species in the community of microorganisms in
AD differ in the optimal conditions for their growth and development. Therefore, in AD in
a single bioreactor (BR) with a one-stage process, the optimal conditions are selected, taking
into account the slow-growing methanogens at the expense of the fast-growing acidogens,
which affects the process efficiency.

Figure 8 reveals the microbes inhabiting the system of BRs by light microscopy. While
in the first bioreactor the short rods and coccoid forms predominate, in the second BR, longer
rod-shaped clostridial forms appeared. Indeed, the participating microbial community had
a complex structure and probably used synergetic mechanisms in utilizing the wheat straw.
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Figure 8. Gram-stained bacterial consortia under the microscopic view, (Leica, DMC4500 Digital
Microscope Camera, magnification 1000×): (A) the consortium in the hydrogenic reactor; (B) the
consortium in the methanogenic reactor.

Figure 9 presents the main phyla in the anaerobic digestion system. It is evident, that
bacteria are predominant in both bioreactors, while Archaea representatives are present in
minor amount.
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3.2.1. Bacterial Biodiversity

The microbial community structures in different research works vary greatly, as
they use different inocula, substrates, and conditions in the implementation of anaerobic
biodegradation of lignocellulosic substrates. In this study, we observed that the first BR
(with the main target product hydrogen) contained mainly the representatives of the genera
Proteiniphilum, Prevotella, and Clostridium, followed by Caproiciproducens, Dechloro-
soma, and Caloramator. The microbial community of our second fermenter (with the
main target product methane) was dominated by the genera Proteiniphilum, Bacteroides,
Anaerotaenia, Ruminiclostridium, and Hungateiclostridium. They had the potential to
produce methane by the acetoclastic or hydrogenotrophic metabolic pathway.

Proteiniphilum saccharofermentans comprised 28.2% to 45.4% of the microbial community
in the first and the second bioreactors, respectively (Figures 10 and 11).
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The isolation of this species from an anaerobic mesophilic two-phase biogas reactor
(fed with 95% maize silage and 5% wheat straw) was reported by Hanke et al. [38]. The
strain P. saccharofermentans M3/6T produced acetate, propionate, and iso-valerate as volatile
fatty acids, and carbon dioxide, hydrogen, acetate, formate, propionate, and iso-valerate
as end-products of the fermentation process, suggesting that its function in the biogas
production process is associated with the acidogenic phase [39]. It is known that P. sac-
charofermentans produces extracellular enzymes involved in the degradation of complex
carbohydrates (β-glucan, xylan, arabinoxylan, starch, arabinogalactan, phosphoric acid-
swollen cellulose (PASC), and carboxymethyl cellulose). According to the NCBI database,
the P. saccharofermentans strain M3/6T contains various genes encoding carbohydrate-active
enzymes, which are involved in the decomposition of pectin, arabinogalactan, hemicel-
lulose (arabinan, xylan, mannan, and β-glucans), cellulose, starch, fructan, chitin, and
pullulan [39]. Strain M3/6T is also able to degrade xylose, lyxose, mannose, and melibiose,
as well as some amino acids (e.g., proline, alanine, and asparagine) to pyruvate [40]. The
majority of the metabolites are converted to pyruvate [40]. All these abilities indicate that
the species P. saccharofermentans increases biogas production.

The reductive acetogen Proteiniphilum acetatigenes was detected only in the methane-
producing consortium and comprised 4.7% of the bacterial community (Figure 10). This
species produces acetic acid from yeast extract, peptone, pyruvate, and L-arginine fer-
mentation, as well as propionic acid and is known to increase methane production [41,42].
Interestingly, it has the potential to improve milk yield and milk fat in lactating cows by
lowering somatic cell counts [43].

Prevotella denticola shared 12.7% of the bacterial consortium producing hydrogen
(Figure 9). This species is Gram-negative, obligately anaerobic, rod-shaped, and belongs
to the phylum Bacteroides. It has previously been isolated during biohydrogen produc-
tion [44]. However, it was 0.3% of the community with methanogenic activity, similar to the
observations of Mariakakis et al. [45]. The end products of Prevotella denticola metabolism
during sucrose fermentation are mainly succinic and acetic acids, while smaller quantities
of lactic acid can also be detected. Hydrogen is produced in the first case (hydrolysis of
sucrose to succinic acid) and it is released when the metabolic pathway is directed to acetate
production [45]. Pr. denticola cannot produce hydrogen. Conversely, these bacteria decrease
the hydrogen yield due to competition with the hydrogen-producing organisms. Therefore,
in order to improve the quality of biohydrogen production, the growth of Pr. denticola
should be inhibited [46].

Bacteroides graminisolvens presented 31.2% of the bacterial community in the methane-
producing BR (Figure 11). It was previously isolated from rice-straw residues in a mesophilic
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methanogenic reactor treating waste from cattle farms [47] and methanogenic sludge [48].
Bacteria from the genus Bacteroides were found to be predominant in enriched cultures
with cellulose and hemicellulose as the sole carbon source. This species utilizes cellobiose,
arabinose, xylose, fructose, galactose, glucose, mannose, lactose, maltose, melibiose, su-
crose, raffinose, xylooligosaccharides, dextrin, glycogen, starch, pectin, xylan (birch wood),
amygdalin, and salicin but cannot degrade carboxymethylcellulose and cellulose [47]. That
is why their presence is awaited. According to Sarkar et al. [49], this species produces
propionic and acetic acids.

Another predominant species in the methane-producing consortium was Anaerotaenia
torta (4180 16S rDNA copies, or 15.4%), while in the hydrogen-BR-generated population
its growth was inhibited (to only 0.05%). It was previously isolated from a methanogenic
reactor of cattle waste from farms in Japan. The data show that this species utilizes the
carbohydrates arabinose, ribose, xylose, fructose, galactose, glucose, mannose, rhamnose,
cellobiose, xylan, and mannitol to generate acetate, ethanol, H2, and CO2 as end prod-
ucts [50]. Therefore, we assumed that this species is irrelevant to hydrogen production but
grows in synergy with methane-producing bacteria.

Clostridium ganghwense was the third most abundant species in the first bioreactor
(10.3%). There is a lack of information about C. ganghwense. This bacterial species was
previously isolated from tidal flat sediment. It is known that this species produces glycerol,
ethanol, and CO2 as end products of glucose fermentation [51].

Caproiciproducens galactitolivorans presented in both the hydrogen- and methane-
generating consortia, as it was 9.4% of the first community and 5.7% of the second. This
species was previously isolated from a wastewater treatment plant and was capable of
producing caproic acid from galactitol [52], as well as acetate and butyrate [53]. Ac-
cording to Qin et al. [54], the representatives of the genus Caproiciproducens are the key
hydrogen-producing bacteria when Ruminiclostridium spp. is missing, as in the case with
our hydrogen-producing consortium. The Caproiciproducens spp. and the predominant
cellulolytic species Ruminiclostridium spp. are usually in synergy in methanogenic biore-
actors [55,56]. In the methane-generated population, Ruminiclostridium cellobioparum was
7.6% of the community. However, information about this species is scarce. It is known that
it was isolated quite recently as part of the bacterial consortium from a lab-scale biogas
fermenter fed with maize silage [57].

Information on the role of Dechlorosoma suillum in the two-stage process is scanty. It is
known that this species dominates in environmental samples. According to Goud et al. [58],
this strain was predominant in a control reactor for long-term fermentative biohydrogen
production and has the ability to grow by a dissimilatory reduction of perchlorate and
chlorate. This hypothesis coincides with our results: Dechlorosoma suillum was ranked as
the fifth most abundant species (8.9%) in the first BR. In the second process, where the
amount of methane was high, the species was very poorly represented (0.14%).

Caloramator proteoclasticus predominated in the hydrogen-producing consortium (2363
16S rDNA copies, 7.5%), while in the methane-generating population it was 0.07%. This
species was previously isolated from methanogenic sludge and was known to ferment
proteins and carbohydrates to acetic, formic, and lactic acids, ethanol, branched-chain fatty
acids, and hydrogen [59]. Unfortunately, the high cell amount leads to a low hydrogen
production rate [60], which makes it useless for hydrogen production [61].

Hungateiclostridium thermocellum presented with 1724 16S rDNA copies (6.4% of the
methanogenic community, Figure 11). This species was isolated from a laboratory-scale
biogas fermenter during the conversion of plant biomass to methane-rich biogas [62,63]. H.
thermocellum is related to the degradation of cellulose and the production of methane, as
was confirmed in our study.

The presence of Desulfitobacterium metallireducens was expressed in 1263 16S rDNA
copies (4% of the hydrogen-forming community, Figure 10). These bacteria are capable
of reducing metals and humic acids, as well as chlorinated compounds. It uses lactate,
formate, and butyrate as electron donors for respiration and uses Fe (III), anthraquinone-
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2,6-disulfonate, and 3-chloro-4-hydroxyphenylacetate as electron acceptors [64]. Karatas
et al. [65] have studied the species diversity in a hydrogen-based membrane biofilm reactor
and found that the same bacteria were in a very high amounts, similar to our results.

For the first time, we proved the presence of Rectinema cohabitans in the methane-
generating consortium. It was present with 1153 16S rDNA copies (4.3% of the methanogenic
community, Figure 11). The only information about this bacterial strain is that it is capa-
ble of degrading naphthalene, reducing sulfate, and fermenting various sugars, such as
D-glucose, D-fructose, lactose, and sucrose [66]. The species identification using molecu-
lar methods, such as metagenomics, revealed the microbial population involved in both
bioreactors. Precise microbiome identification by molecular biology techniques overcame
cultivation-based methods and allowed the identification of unculturable microorganisms,
revealing the high diversity of microorganisms involved in AD [67].

3.2.2. Archaeal Biodiversity

As many of the genera belonging to Archaea are methanogenic, the archaeal biodi-
versity in the methanogenic bioreactor (BR2) was studied. Archaeal species were found to
account for only 0.86% of the taxonomic diversity in the methanogenic bioreactor, while
99.14% of the specific sequences belonged to bacteria. In the sample were found the repre-
sentatives of phylum Euryarchaeota, classes Methanobacteria and Methanomicrobia (Figure 12).
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Among them, the species Methanobacterium formicicum was the most abundant, com-
prising 0.71% of the community, followed by Methanosarcina spelaei (0.03%), Methanothrix
soehngenii (0.012%), and Methanobacterium beijingense (0.010%). The other two archaeal
species, Methanobacterium subterraneum, and Methanobrevibacter boviskoreani, were even less
presented and were <0.005% of the methanogenic consortium.

Although it was known as an archaeal species often found in caw’s rumen, Methanobac-
terium formicicum was also studied in terms of methane bioproduction. The strain JF-1
was cultured with formate as the sole energy source in a pH-stat fermenter by Schauer
and Ferry [68]. During the exponential phase, the methane production and formate con-
sumption were linear functions of the growth rate. Hydrogen was produced in only
trace amounts.

Ziganshin et al. [69] reported that the specific biogas production significantly correlates
with Methanosarcinaceae presence, and Methanosarcina spelaei, thus conforming to our
observation. Methanobacterium beijingense is known as a common representative in anaerobic
digesters and is a part of the microbial flora, which plays an important role in the anaerobic
degradation of organic compounds [70].
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4. Conclusions

The two processes for hydrogen and methane production were combined and opti-
mized for each biological step in the process of anaerobic digestion, which makes the whole
system more stable and efficient. The most important advantage of a two-phase anaer-
obic digestion system consists in the possibility of producing hydrogen during the first
acidogenic phase and subsequently producing methane during the second methanogenic
phase while utilizing a waste wheat straw. The synergistic behavior of the newly identi-
fied various anaerobic microorganisms, which differ in the two separate BRs operating
with wheat straw, results in the decomposition of complex organic renewable sources for
obtaining the renewable energy carriers hydrogen and methane. Regarding the potential
environmental impact, together with the economic aspect, it was proven that the energy
released in a single-stage process is approximately 361.62 kWh·t−1, while 1195.89 kWh·t−1

were obtained for the two-stage process with solely wheat straw as a substrate. The micro-
biomes residing in the anaerobic digesters that target hydrogen and methane production
were identified using metagenomics. The wide spectrum of defined microbial consortia
could further be involved in effective processes for renewable energy production.
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LHV lower heating value, [kWh·Nm−3]
Ee primary energy obtained during the anaerobic digestion process, [kWh·t−1]
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